

Rendering of Turbulent Water over
Natural Terrain

Compsci380 Project Report

Student: Nathan Holmberg
Supervisor: Burkhard Wuensche

Nathan Holmberg 2514355

 - 1 -

Abstract

This projects aim was to compare and implement rendering methods for the existing height
field based simulation of turbulent water in such a way that a tool for animators was evolved.
In the end three types of representation were used: a simple quad strip based approach, an
implementation of a NURBS surface fitted to the height field, and a similar surface ray
traced to achieve refraction etc. Foam and spray are represented simplistically in the first two
of these three methods with a variety of techniques evaluated for ray tracing. The resultant
program, while not being designed for efficiency, shows promise with further development
opportunities apparent.

Nathan Holmberg 2514355

 - 2 -

Table of Contents

Abstract ..- 1 -
List of Figures..- 3 -

1. Introduction ..- 4 -
2. Water Surface ..- 5 -

2.1. Original Representation ...- 5 -
2.2. Tessellated B-Splines ..- 6 -
2.3. Ray traced B-Splines ...- 8 -

2.3.1. Newton Solver ...- 8 -
2.3.2. Getting Guesses...- 8 -

2.4 Worthwhile Additions ...- 10 -
3. Particles ..- 12 -

3.1. Original Representation ...- 12 -
3.2. Ray traced Particles ...- 13 -

3.2.1. BSP Tree Basics ...- 13 -
3.2.2. Spheres ..- 14 -
3.2.3. Billboarded Particles..- 15 -
3.2.4. Illuminated Streamlines ..- 16 -
3.2.5. Texture Splats & Volume Rendering..- 16 -

3.3 Implicit Surfaces...- 16 -
4. Supplementary Effects ...- 17 -

4.1. Reflection ...- 17 -
4.2. Refraction ...- 17 -

4.2.1 Schlick’s Approximation..- 18 -
4.3. Skybox...- 19 -
4.4. Accepted Property Values..- 20 -
4.5. Worthwhile Additions ..- 20 -

5. Implementation Overview...- 21 -
5.1. Input..- 21 -
5.2. Operations..- 22 -
5.3. Setting up the Ray Tracer...- 22 -
5.4. Output...- 23 -
5.5. Worthwhile Additions ..- 23 -

6. Conclusion ...- 24 -
Appendix A – Base Model...- 25 -

Volume Model ..- 25 -
Spray Model...- 26 -

Appendix B – Program Interface and Structure...- 29 -
User Interface..- 29 -
Camera Control Keys...- 31 -
Class Diagram ...- 31 -

Appendix C – References ..- 33 -

Nathan Holmberg 2514355

 - 3 -

List of Figures
Figure 1.1 – Some example work (from other sources) - 4 -
Figure 2.1 – Original Representation from columns - 5 -
Figure 2.2 – NURBS surface fitted to the columns - 6 -
Figure 2.3 – Comparison of NURBS degrees - 6 -
Figure 2.4 – Simplifications to the NURBS equations - 7 -
Figure 2.5 – Graphical Representation of the Newton Root Finding Method - 8 -
Figure 2.6 – Column Traversal - 9 -
Figure 2.7 – Effect of moving edge control points - 10 -
Figure 2.8 – Comparison of draw methods - 11 -
Figure 3.1 – Original Particle Representation - 12 -
Figure 3.2 – BSP Tree Creation - 13 -
Figure 3.3 – Using Spheres for particle Representation - 14 -
Figure 3.4 – Using Billboards for particle Representation - 15 -
Figure 3.5 – Illuminated Streamlines image (from other sources) - 16 -
Figure 3.6 – Implicit Surface image (from other sources) - 16 -
Figure 4.1 – Reflection calculation - 17 -
Figure 4.2 – Refraction calculation - 17 -
Figure 4.3 – Refraction Example Image - 18 -
Figure 4.4 – Skybox Comparison - 19 -
Figure 4.5 – Light Caustic generation - 20 -
Figure A – How columns are generated from the environment - 25 -
Figure C.1 – Main Window User Interface - 29 -
Figure C.2 – Select Files Window User Interface - 30 -
Figure C.3 – Progress Window User Interface - 31 -
Figure C.4 – Class diagram of program implementation - 32 -

Table 4.1 – Values used for water properties - 20 -
Table 6.1 – Rendering times of different methods - 24 -

All of the figures in this document are also available as raw images on the CD as size
prevents much of the detail from being seen here.

Nathan Holmberg 2514355

 - 4 -

1. Introduction and Goals
Water and its effects are a part of our everyday lives and we form an intrinsic and
subconscious understanding of how water should look. As such the ability to produce
realistic images and movies that mimic these effects and are indistinguishable from the real
thing has undergone significant research, especially in the past twenty years. As the models
described in literature have progressed, so too has the realism of their rendering, as
illustrated in Figure 1.1.
The purpose of this project was to explore ways to render, with a degree of realism and
interactivity, the model of turbulent water created in a previous summer studentship. As
such the results are in part limited by the underlying model but the application developed is
designed so that changes to the accuracy of the model will not require significant changes to
the renderer (at least up to a point).

a)

b)

c)

d)

e)

Figure 1.1. Example images of the progression of water rendering. a)
1986 [7] b) 1995 [11] c) 1996 [6] d) 2001 [12] e) 2001 [20]

Nathan Holmberg 2514355

 - 5 -

This application was also to be designed as a tool for animators to use to create videos and
still frame renderings of water. This means that a greater degree of user interface design and
control was sought after and is apparent from the implementation. Another effect of this
goal is that a certain level of interactivity is needed for the tool to be useful so while real-time
rendering is not possible different methods with different levels of interactivity need to be
provided and wherever something is going to take an inordinate amount of time the user has
to be made aware of this.
In an effort to develop the best possible representation of the model it was also deemed
necessary to try to implement as many as possible different methods with a view of
comparing the results of each, however time constraints have meant that for some of the
intended techniques only a discussion has been provided as implementation was not
possible.
Finally, this project is a little different as it builds on work that was done previously and uses
a model that already exists. Information on this model and what it includes can be found in
Appendix A

2. Water Surface
The majority of the work done for this project has revolved around finding a realistic
representation for the main body of water. This was viewed as the most important feature as
not only does it represent the most water by volume but humans are naturally attuned to
how water looks and its behaviour under various light.
The three methods presented here define a progression from the original mode that
constituted a very poor representation through a similarly OpenGL based method of
smoothing the surface into the raytracing method that was finally chosen.

2.1. Original Representation
Because the original work that produced the model used here did not focus on graphical
representations the original representation was embarrassingly simplistic. The column system
was represented in OpenGL by a series of Quad Strips between the centres of columns as
shown in Figure 2.1. If the next column to be drawn has
a height less than a specific threshold then that column is
determined to not contain any water and as such the
current Quad Strip is terminated and a new one is formed
to represent any water on the other side of the gap.
Normals for each vertex are produced by taking the cross
product of only two of the adjacent edges. This lack of
smoothing results in each quadrangle being distinctly
visible and the resultant effect is extremely unrealistic.
Example images for this method of representation along
with a comparison with others are available in Figure 2.8.

Figure 2.1. How the original
surface is generated from the
columns.

Nathan Holmberg 2514355

 - 6 -

Figure 2.3. Comparison of degrees of NURBS surfaces. a) degree = 1 b) degree = 2
c) degree = 3 d) degree = 4

a) b)

d) c)

2.2. Tessellated B-Splines
When looking for a better way to represent the water’s surface the idea of using an implicit
surface such as NURBS immediately stood out. Given that the columns could already be
represented by a 2D array of points signifying the tops of each column (as was used in the
original representation) it seemed logical to use these as
the control points for a NURBS surface as in Figure 2.2.
Obviously this means that the surface does not go
through each control point but is instead pulled towards
them, however given that for lower orders this difference
is small and so the amount of information that is lost is
not significant. In other words the shape approximation
was deemed to be appropriate for the task [3].
If the height for a column was below a threshold then
that control point was moved to slightly below the base
(and therefore out of view).

2.2.1 gluNurbsSurface
The initial implementation used the pre existing OpenGL GLUnurbs object and the
gluNurbsSurface methods whose proper use is set out in [22]. This uses supplied knot
vectors and control points to tessellate the surface automatically and efficiently.
One disappointing revelation, however, was that the libraries used in place of OpenGL did
not fully support the storing of tessellated NURBS surfaces, at least in no way that was
documented. This meant that whenever the view was changed the surface had to be

Figure 2.2. How the NURBS
surface is fitted to the columns.

Nathan Holmberg 2514355

 - 7 -

recalculated, a time consuming and computationally expensive task.
The method implemented to create the control points and knot vectors is extremely
simplistic, using the tops of columns as the control points and the knot vectors having a
uniform distribution. By experimenting with the order of the polynomial it was found that a
surface of order 3 (which is equivalent to degree 2) was best as while it is not as smooth as
others, it more closely resembles the column positions. Figure 2.3 shows a comparison of
orders.

2.2.2. New Implementation
As an intermediate step between using the OpenGL provided NURBS methods and
attempting to ray trace such a surface it seemed appropriate to create a new implementation
which used evaluator methods written expressly for this project. As such a class named
NURBSObject was created and can be found in the file ‘Utilities.cs’. This has its own
blending functions and several evaluators for different purposes based on the equations
given in [3], [8] and [9].
Interestingly, this implementation takes a very similar time, and in some cases less, than the
gluNURBS method despite being written at a higher level (see Section 6). The main reason
for this is that assumptions could be made regarding the inputs. Firstly, it became apparent
that the full NURBS equation was not required as each control point was weighted equally.
This means that far less computation was necessary for each vertex. Assumptions could also
be made if the knot sequence was uniformly distributed, something guaranteed by the
implementation. This means that
the position within the sequence
can be calculated mathematically
instead of traversing the entire
sequence until the appropriate place
is found.
Finally by summing those control
points whose associated blending
value was not zero it meant that
many calculations could be
discarded. This involves only using
the control points within degree/2 of
the position of u and v in the knot
vectors, possible due to uniformity
and the particular spread of control
points. Figure 2.4 contains some of
the effects of these assumptions.
With regards to the implementation
two factors are worth mentioning.
First, unlike the gluNURBS method it is possible to store the calculated vertices so once the
surface is computed there is very little overhead in moving the camera within the scene, but
the second is not so advantageous. When OpenGL decides how many samples to use in
both directions the distance on the surface is used. This has not been implemented and so
the number of samples to take in both the u and v directions is currently hard coded. Of
course changing this shouldn’t be too arduous. For full implementation details please refer
to ‘Utiltities.cs’ and ‘ColumnSystem.cs’.

Standard equation for NURBS evaluation:

jipj

n

i

m

j
pi

jijipj

n

i

m

j
pi

wvBuB

wPvBuB
vuS

,,
0 0

,

,,,
0 0

,

)()(

)()(
),(

∑∑

∑∑

= =

= ==

Assuming Rationality:

jipj

n

i

m

j
pi PvBuBvuS ,,

0 0
,)()(),(∑∑

= =

=

Using only near control points:

jipj

pa

pai

qb

qbj
pi PvBuBvuS ,,

2/

2/

2/

2/
,)()(),(∑ ∑

+

−=

+

−=

=

where a & b are the position of u and v in the
knot vectors (calculated assuming uniformity)

Figure 2.4. Simplifications of the NURBS equation

Nathan Holmberg 2514355

 - 8 -

Figure 2.5. Graphical Representation
of the Newton Root Finding Method

2.3. Ray traced B-Splines
The final surface rendering method used was to ray trace the surface. As the title suggests
the surface is no longer a true NURBS surface as all control points have a weight of 1
(making it non-rational) and the spacing between knot vectors is assumed to be equal
(making it uniform). Because these properties are assumed in the evaluators the
implementation can not handle true NURBS surfaces, hence not using the name even
though NURBS is a superset containing the type used here.
The following two sections seek to explain how the intersection point between the implicit
surface and the ray is found.

2.3.1. Newton Solver
Early during implementation it was decided that it
would be interesting to try to find the intersection
between the surface and the ray without tessellating
into triangles and testing each for intersection.
Further, tessellation would have required
implementing BSP Trees sooner in the project and
there was not yet any guarantee that there would be
time. This also means that the implementation is
slower than necessary but without trying both a true
comparison is impossible.
Following the methods laid out in [9] and the
example code provided with said paper and in [14],
the chosen method for raytracing the surface was to
use a Newton Solver.
This particular method involves first decomposing
the ray into two planes, the intersection of which is
the original ray. The Newton method, a graphical
representation of which is in Figure 2.5, is then used
to find how close to the given guess the two planes
are with the assumption that the distance to the ray
will be the sum of the two plane distances. New
guesses are then formed using the tangent at the
point of the last guess until the distance is within an
acceptable error, stored as ROOT_TOLERANCE.
In this case the assumption is that the intersection
point has been found and will be returned as such.
One important case is when the tangent found after
a guess is parallel to the ray. In this case there is no
intersection between the tangent and the ray planes
and the solver fails. This occurs if the Jacobian
matrix is singular and if so the guess must be
randomly moved a short distance away, the
tolerance for this is called the
JITTER_TOLERANCE.
The mathematics behind this have not been

Nathan Holmberg 2514355

 - 9 -

Figure 2.6. Column Traversal

included here and the reader is referred to [9] for both a more detailed and eloquent
explanation of the basis of this method.

The actual implementation, while heavily
reliant on [9] and [14], differed due to
unique characteristics of the data. Namely
because the surface had null control
points, a value associated with an empty
or missing column, the solver and
evaluator had to deal with situations
where the guess was within an empty
region. This was dealt with by trying to
move outside the region and, if this was
not possible, assuming there was no
hitpoint near that guess (a reasonable
assumption).
Likewise because the bounding volumes
were formulated differently one of the
failure conditions was not relevant. In [9]
failure was assumed if the distance for the
current guess was larger than for the
previous. Because this only holds true if
there is little variance in curvature within
the bounding volume (as there was with
their implementation) this could not be
used.
The performance of this method is not
unreasonable on the proviso that the
initial guess is close and so it is essential
that the implementation get as near as
possible, a process described in the next
section.

2.3.2. Getting Guesses
Before the Newton solver is even
employed guesses as close to the proper
intersection must be sought. This section
describes how this was achieved.
First a simple axis aligned bounding box is
used to check if the ray comes anywhere
near the water surface. In so doing we
also determine the first face of the box to
be intersected which, because the columns
are also axis aligned, provides a starting
point and direction for traversing across
the scene (the hitpoint on P0x in Figure
2.6). The ray is then intersected with the

Nathan Holmberg 2514355

 - 10 -

plane that describes the edge of the next row of columns (P1x) providing a sub portion of
the ray. For each column it passes over between P0x and P1x it is first determined if the ‘y’
value is within the possible bounds of the column (taken as the minimum and maximum of
all columns in the area around the target column). If so then the midpoint of the column is
submitted as a guess point to the Newton solver which tries up to 5 iterations (defined by
MAX_ITER in the code) to find a root. If one is found then it is perceived to be the first hit
point on the surface and is returned to the ray tracer, if not then the next column is checked.
Once all columns between P0x and P1x are checked then columns between P1x and P2x are
checked and so on till either a hit is found or the ray leaves the area defined by the surface.
Should the ray have been more orthogonal to the ‘z’ axis than the ‘x’, then it would have
been P0z, P1z and P2z that were used.
One advantage of this method is that because it both ensures that the first hit point will be
returned and that each guess is relatively close to where the intersection may be, due to the
small amount of movement in the ‘u’ and ‘v’ values that can occur between columns which
represent the width of the greatest possible error. On the other hand its efficiency is very
dependant on the number of columns in the system and how many columns each ray passes
over before hitting the surface.

2.4 Worthwhile Additions
One interesting benefit of using B-Spline surfaces that has not been implemented but is
worthy of mention is the effect that could be achieved by offsetting each control point
slightly depending on the position of each column. This would allow for the simulation of
adhesion along boundaries and possibly viscous shear, two things currently missing from the
underlying model. Figure 2.7 provides an indication of how this might work.
Likewise using flow and pressure information between columns could be used to identify
areas of high turbulence and a texture be generated that simulates the high air content of the
water at such places, i.e. foam.

a) b)

Figure 2.7. The effect of slightly displacing control points. a) Unaffected b) Edge
points moved against the flow

Nathan Holmberg 2514355

 - 11 -

Figure 2.8. A Comparison of the three draw methods used. a) Original b) gluNurbs c) Ray traced.
Example videos are provided for a better comparison

a) b) c)

Nathan Holmberg 2514355

 - 12 -

3. Particles
The second major feature of the model that needed to be represented was the particle
system. This system was used to account for any activity that required water to break away
from the main body of water and as such included a variety of effects. As these range from
small whitecaps on the tops of waves, through spray from water impacting on rocks, to
laminar like flow over waterfalls it was unlikely that a simple method would be sufficient.
With this in mind a variety of techniques were investigated and while only a few were able to
be implemented the others are included with a discussion on their relative merits.

3.1. Original Representation
The original representation for water particles was to use the glutSphere object provided by
OpenGL. Each particle was represented by one sphere the radius (and therefore size) of
which was determined by the volume of water that the particle was supposed to represent.
Some effort was made to differentiate between types of spray by using the velocity and
‘timeAlive’ attributes of each particle to alter the colour and opacity of the representing
sphere. However the effect this generated was disappointing and was eventually disbanded
when work began to focus on raytracing.
This method was used for the first three attempts and little work was done to progress the
way particles were represented until ray tracing began.

 Figure 3.1. Original Particle Representation

Nathan Holmberg 2514355

 - 13 -

3.2. Ray Traced Particles
Ray tracing particles presents particular problems. Namely due to the possible numbers (up
to 100,000 in some scenes) it is far too time consuming to test for ray intersection with each
one. As such an acceleration technique known as BSP Trees was used and a discussion of
this appears in the first section.
There is also the problem of how different splashes appear to have different properties and
so the ray tracer would have to implement several different methods of representation, while
not all of these were completed an overview of the technologies that could be employed is
included along with a description of where they might be useful.

3.2.1. BSP Tree Basics
The only acceleration technique that was implemented during the course of the project was a
simple Binary Space Partitioning Tree. This technique splits the system into two at each step
and creates a tree of these partitions. This tree is then ray traced with the ray being passed
down the branches of the tree in such a way that the minimum number of intersection
calculations need be performed.
Normally when implementing BSP Trees care has to be taken that a partitioning plane does
not intersect an object. However due to the fact that only particles are contained within the
tree this has been disregarded as the chance of plane / particle intersection is very slim. Of
course this also makes the implementation easier.
After implementing BSP Trees a decrease in rendering time of between 4 and 5 times was
realised. While this is good it is not as large as might be expected, possibly due to the
relatively ‘flat’ nature of the particle’s distribution and the simplistic division algorithm that

will mean that most division will only be with planes perpendicular to the x and z axes.
This algorithm is demonstrated in Figure 3.2 with the following explaination. First an axis
aligned bounding box is fitted to the particles. This is then subdivided into two along it
longest side creating two smaller boxes and a division of the particles accordingly, thee two
boxes are also split, again along the longest axis, and the process continues until the

Figure 3.2. BSP Tree creation.
NB. The unevenness of the tree shown is actually quite likely due to the concentration of
particles in certain areas and the simplicity of the algorithm used for partitioning.

Nathan Holmberg 2514355

 - 14 -

maximum tree depth is reached or there is less than a threshold number of objects within a
box.
The implementation was derived primarily from the start point of an assignment for
COMPSCI715 and as such does not constitute the most efficient implementation. For the
program structure and details of this implementation please refer to Appendix B and the file
‘Raytracer.cs’.

3.2.2. Spheres
The first method used to represent particles is very similar to the original representation
discussed previously. Simply put this involves ray tracing a sphere at the position of each
particle. Because ray sphere intersections are perhaps the fastest and easiest this translates to
a ‘reasonably’ fast method. Of course without the BSP Tree this would still be daunting
Result looks similar to the original representation, as one might expect, but there are still
possible uses for this method. Namely very dispersed sprays of large droplets, such as those
created after a smooth splash breaks up, could be represented by this method. To achieve
this, a combination of the ‘time alive’ and a check as to the how far the nearest neighbour is
could be used to transition between another method and this.

Figure 3.3. Using spheres to represent particles

Nathan Holmberg 2514355

 - 15 -

3.2.3. Billboarded Particles
The term Billboarded refers to raytracing a picture or object as a texture on a plane parallel
to the view plane, which in this case has been a plane orthogonal to the vector between the
position of the particle and the eye point of the view.
Intersection with the billboard is simply a ray plane intersection and a length calculation.
First the ray is hit against the plane that was determined on initialization (as described above)
and then the distance between this hit and the position is determined. If it is within the
stored value of ‘radius’ for the particle then there is an intersection and this is returned.
Normally billboarding is used to fix either textures or animations to points in the scene and
while the current implementation does not use this, it is a realistic possibility. This means
that either textures of droplets or frames from animations of droplets evolving could be used
to create a more realistic effect. The actual implementation draws each particle as a simple
circle which explains the lack of difference between Figures 3.3 and 3.4 but even then the
lack of shadows on the under side makes it look like more realistic spray.
One other possible benefit of the billboarding technique that was mentioned is that rainbow
effects could be pre-computed and applied to the texture for each particle. While such
effects are too difficult and computationally expensive to ray trace directly it may be possible
to generate them using heuristics before tracing begins.

Figure 3.4. Using Billboards to represent particles

Nathan Holmberg 2514355

 - 16 -

Figure 3.6. Example of implicit
water surface generated from
particles. Image from [13].

Figure 3.5. Example of Illuminated
Streamlines as used in CFD [23].

3.2.4. Illuminated Streamlines
Another method that was reviewed as a
possible alternative for spray was
illuminated streamlines. Typically it is
impossible to render a one dimensional
figure such as a line in a ray tracer as
there is no one normal to use in lighting
calculations. This can be overcome by
using the normal which is in the same
plane as both the line and the direction
from the hitpoint to the light source,
enabling proper effects [23].
While most of the usual uses and
properties set out in the literature are
not applicable, this technique was
looked at because of its ability to
simulate very fast moving splashes and
spray, as is the case in aerated waterfalls
etc, and what might be called a motion
blurring effect. Figure 3.5 shows how
some of these effects may look and a partial implementation can be found in ‘RayTracer.cs’.

3.2.5. Texture Splats & Volume Rendering
The final method thought of for raytracing is the use of texture splats or some type of
volume rendering to create the impression of fine mist, as is often found in areas where
spray rejoins the main body of water at high velocity such as at the base of waterfalls. In
these areas spray takes on some of the characteristics of fog and so the techniques that were
investigated largely stem from attempts in this area.
Raytracing volumes such as this is related very closely with simulating the scattering of light
underwater and including one might form the basis for the other.

3.3 Implicit Surfaces
One of the most promising representations that
were not implemented was the possibility of using
implicit surfaces to create a solid object, the shape
of which is determined by the particles. Such a
method would be perfect for laminar flows that
exist outside the column system, the most
important of which would be over waterfalls. The
current methods employed all disregard effects
where particles are in close proximity so make such
flows look either more turbulent than they are or
highly unrealistic.
While this may look nice, however, it would take
considerable computation to use the marching
cubes algorithm (for example). More recently

Nathan Holmberg 2514355

 - 17 -

Figure 4.1. Reflection vectors:
 n = surface normal
 d = ray direction
 r = new ray direction
 a = parallel to n, scaled by d
 θ = angle of incidence

Figure 4.2. Refraction vectors:
 n = surface normal
 d = ray direction
 b = tangent to the surface
 θ = angle of incidence
 θ’ = angle of refraction

(November 2003) work has been published which have implemented a surface over particles
specifically. [13] presents a method of water simulation using only particles and represents
the surface using ‘level set methods’ although this would involve possibly rewriting parts of
the underlying model it would achieve the required effect, the results of this are
demonstrated in Figure 3.6.

4. Supplementary Effects
This section describes some of the effects that had to be included with the ray tracer and
while important for realism are not directly related to either the water surface or particles.

4.1. Reflection
Reflections are probably the simplest and most
important effects that could be included. This
involves creating a second ray for each hit on a
reflective surface which is used to find the colour
to be reflected. This continues for as many
iterations as is specified by the programmer (in
this case 2 because the scene is unlikely to have
many multiple reflections of importance) or until
a ray hits the background or non-reflective
surface.
Following the premise that the angle of incidence
is equal to the angle of reflection we can deduce
that:

adr 2+=
and using the formula for orthogonal projection
we can find a such that [17]:

n
n
nddr 2||||

2 •−=

The basic diagram illustrating this relationship can
be found in Figure 4.1.
As will be discussed in the next section, the
resultant reflected colour must be scaled by a
factor depending on the absorption properties of
water and the size of the angle of incidence.

4.2. Refraction
The second effect discussed here is that of
refraction. This refers to the bending of light as it
passes from one medium to another that has a
different refractive index. Water is one such
material and has a commonly accepted refractive
index of 1.33 compared to the 1.0 of air.
The mathematics for calculating the direction of

Nathan Holmberg 2514355

 - 18 -

this ray is a little more complicated but still simplistic and one of the most commonly taught.
The relationship between vectors can be found in Figure 4.2 and the equation to find t (the
transmitted ray) is as follows:

2
2

22
1

2

1))(1(1))((
n

ndnn
n

ndndnt •−
−−

•−
=

where n1 and n2 represent the refractive indices of the two materials (in this case air and
water).
In terms of the model, refraction is important due to the distortion effect it has on the
ground. This allows the movement of waves to be seen even if there are not enough
highlights to show them explicitly. This can be seen in Figure 4.3.

4.2.1 Schlick’s Approximation
Water is also a dielectric (not to be confused with conductive properties) which means that
the intensity of the refracted vs. the reflected ray varies according to the angle of incidence.
The typical operation of such is that as the angle of incidence (θ) approaches zero the
transmitted ray approaches one and the specular reflectance approaches zero. The Fresnel
equations are commonly used to describe this relationship but are difficult to compute. As
such, the standard equations used in ray tracing are those proposed by Schlick in [16] and
are reffered to as Schlick’s approximation.
This approximation does not provide exact answers and are only valid for unpolarized light
but given that ignoring polarization probably creates even larger errors, this error is seen to
be inconsequential, a view shared by [17].
The equations that were used to govern this relationship for reflectance (R(θ)) and
transmittance (T(θ))are as follows:

5
00)cos1)(1()(θθ −−+= RRR

and from the conservation of energy
)(1)(θθ RT −=

Figure 4.3. Image showing the effect of refraction
on the appearance of the ground plane.

Nathan Holmberg 2514355

 - 19 -

(a) (b)

Figure 4.4. a) Flat coloured sky. b) Using the texture map ‘CloudTexture.bmp’ which
includes clouds. Both images use a non-transparent water surface

Where R0 is the base reflectance set by the user and cos θ can be determined by –d•n making
the formula computationally inexpensive.
It should be noted that this relationship is only used for transparent surfaces where
refraction is expected to occur in the model and its effect is discounted for the ground
panels and spheres etc.

4.3. Skybox
In simple ray tracers, if a ray does not hit any of the objects in the scene it is given the
standard background colour. This however is unrealistic especially when dealing with
reflections off the surface of the water. As such, the inclusion of a skybox for the ray traced
surface turned out to be very important in creating an added sense of realism.
Most non-ray traced programs use a texture mapped bounding cube that is used when there
is no object between the eye and infinity and while this is good for programs such as games
it would greatly increase the computation necessary for each ray that hits the ‘background’.
Because of this an easier method which uses only the direction of each ray to determine a
hitpoint on a sphere was used, the idea for which was gleaned from [5].
First the world is divided into two by the ‘y’ direction of the ray creating a horizon, namely if
it is positive then the sky texture is used and if it is negative the ray is pointing at the ground.
The problem then becomes a simple matter of texture mapping a sphere, namely creating u
and v coordinates and extracting the texture value for that coordinate from the texture map.
Namely, where x, y, and z represent the normalized direction (and so the radius is one) [17]:

π2
),(2arctan xyu = and

π
π)/arccos(rzv −=

Of course these are the equations for the standard case and so only half of each texture map
will be used but given the distortion of applying a square texture to a sphere this was not
seen as a major problem to be solved given time constraints.
Also due to these constraints no interpolation of the texture maps has been implemented,
meaning that looking directly at the sky is not a particularly pretty sight but this is offset by

Nathan Holmberg 2514355

 - 20 -

Figure 4.5. How the generation of light
caustics may work

the more realistic reflections that are generated off the water, as demonstrated in Figure 4.4.
The implementation for this can be found in ‘RayTracer.cs’ starting on line 323.
As is common with skyboxes no illumination effects can be seen on the background and
may have to be manually applied to the textures if this is so desired.

4.4. Accepted Property Values
This section documents the values that were used for various properties of water. In most
cases these values were chosen because ‘they looked good’ and are not representative of the
true values. That said some are based on experimental data and are referenced accordingly.
Table 4.1 contains these values.

4.5. Worthwhile Additions
One of the most notably missing effects that this model would benefit from is light caustics.
This refers to the areas of higher intensity light which are collated due to the refraction of
light through the water gathering in specific regions. They are a sure sign of wave motion on
the surface and one of the effects that the
human eye expects to see.
The reason that this wasn’t included in this
project is that including light caustics would
require another pass of the ray tracer to
generate a second texture for objects in the
environment. This would require significant
changes to the program as it stands, and while a
partial implementation was possible completion
was precluded by the time available.
The following details how such effects may
have been achieved, as was usual for this
project however, it details a conjectured theory
only that has not been proven yet. By using rays
defined by the position of the light source and
sample points on the water surface it should be
possible to use the refracted instance to find the
point on the ‘ground’ that would be illuminated
by the light, as in Figure 4.5. If enough of these

Table 4.1. Values used for various water properties. Where three values are given they
correspond to the red, green and blue channels respectively

Property Name Value Used
Diffuse reflectance {0.1f,0.1f, 0.3f}
Specular reflectance {0.7f,0.7f,0.8f}
Phong exponent 1000
Specular transmittance (absorption) {0.34f,0.05f,0.009f}

Nathan Holmberg 2514355

 - 21 -

sample rays are used then a map of hits can be built up and using the density of these hits a
texture created that illustrates where light is concentrated and diffuse. This method would
also work for multiple light sources with the algorithm being repeated for each.
A second missing effect is how the depth of water changes its colour and the scattering that
occurs when photons encounter sediment in the water. Research already exists in this area,
the clearest explanation found in [12], and including these effects would be a simple matter
of extending the existing program.
Of course these are only two of the possible additions. Anti-aliasing, multi-sampling,
smoothing etc would all make the renderer better but fall outside the scope of this project.

5. Implementation Overview
This section provides an overview of the features, structure and I/O of the program written
as partial requirements for this project. The C# language was used as it is easy and fast to
implement prototypes in while retaining much of the speed advantages of C++ (if these do
in fact exist). Given that the model was also written in this language it seemed a natural
progression to write the renderer in it also.
While the OpenGL libraries aren’t directly available, a third party, open source
implementation called CsGL exists and was used extensively[4]. This provides a wrapper of
the actual libraries that can be used with any .NET language (although was written
specifically for C#). It is not, however, a perfect translation and there exist idiosyncrasies
that had to be dealt with but was more than adequate for what was needed here.

5.1. Input
The input for the program written for this project is in the form of files representing the
scene and the positions of the water. The first step of this project was in fact to alter the
program written to model water to output this information into proper files (previously the
only output was in the form of bitmap images).
While the model data used was produced in a previous project this is not the only possible
source of data. To separate the two programs a format was created to serialize and
deserialize information about the scene. While this was originally intended to allow pre-
computed scenes to be used in the rendering process it also means that any file following the
format set out below could in theory be used.
For any sequence of scenes there are two types of files needed. The first is a static file
containing information about the scene and the second contains information about the
position and state of water at each time step.
The static file, whose default name is ‘model.state’ typically contains the bare panels and
spheres as used by the original modeller but was intended to be extended or replaced
between the modelling and rendering process. This means that more complicated /realistic
scenes could be used in conjuncture with the data created by the modeller.
For each time step there is a separate file, named ‘time###.state’, where ### refers to
numbers which are incremented with each frame, retaining the ordering. These files first
contain information on the position of the first column and what the heights and widths of
every column will be. It is from this information that the positions of all the other columns
will be determined. For each column the heights of the base and top are stored along with
information on the pressure and rate of flow (in 2D). This information was kept as it may

Nathan Holmberg 2514355

 - 22 -

help with rendering while all information regarding pipes and the cells within columns are
discarded. Particle information is also stored in this file with the position, velocity, mass and
the length of time alive being stored for each.
For the actual implementation information please refer to the source file ‘Serialization.cs’.

5.2. Operations
The ModelView program, the main method of which resides in ‘ModelView.cs’, which forms
the basis of the project is a GUI based interface designed to allow as much control over the
animation process as possible. The order of operations is quite simple. Using the interface
provided by the button ‘Select Files’, the static file containing information about the scene
and the instance files containing the water at each time step are selected. This creates an
array of filenames, but does not load anything, and the trackbar is initialized to have as many
points as are needed. The ‘Load Files’ button is then used to either load the single file
representing the select time step or to load and store all instances in an array. This distinction
was made to allow for times when the complexity of a scene or the available memory
precludes loading all time steps at once.
This will also initialize the OpenGL panel with the selected time step’s information and the
default view. This can then be manipulated using the trackball and camera controls provided
by ‘Trackball.cs’. These are based almost exclusively on those provided for various
COMPSCI372 assignments and operate in a way that should be familiar to those who have
used these and similar programs before. A ‘Controls Enabled’ option is also provided to
ensure erroneous mouse movements don’t change the camera position between frames, if so
desired.
Changing the selected ‘Render Type’ will automatically redraw the scene and wile there is no
indication of progress for the original and tessellated NURBS based methods, when ray
tracing another window will open which includes a rudimentary indication of progression
(based on the number of pixels calculated). Example shots of all the user interface screens
are provided in Appendix C.

5.3. Setting up the Ray Tracer
This section was included as one of the features of the program is that any view chosen
using the OpenGL based rendering methods can be replicated exactly for the ray tracer. This
overcomes the fact that interactivity is prohibited by the length of time it takes to ray trace
each frame by allowing navigation and camera position to occur before ray tracing. It is also
important as the trackball and camera controls don’t actually work for the ray traced view.
The ray trace view is composed of an eyepoint, direction, up vector, a distance and size of
the ‘viewing plane’ and the number of pixels to sample in each direction.
The particular implementation I chose was to choose an arbitrary size of the ‘viewing plane’
(s) and derive the distance (d) from the required zoom (fov). This is achieved by the simple
formula below:

)5.0tan(2 fov
sd =

For the eyepoint, direction, and up vector the information regarding these three factors used
in the gluLookat() command are multiplied with the current transformation matrix (as
created by the trackball object) to create the proper viewpoint. While it is relatively simple
the effect it has on interactivity is marked.

Nathan Holmberg 2514355

 - 23 -

5.4. Output
Output is in the form of either bitmap or JPEG encoded images although due to quality
concerns only the bitmap methods are currently used. There are two events that generate
these images. The first is whenever a ray traced image is completed. Due to a peculiarity of
CsGL the image isn’t shown as it is generated and because render times were sometimes
ludicrously long it was deemed better if output was directly to an image file on the hard disk.
Failing this the ‘Render’ button on the interface either captures the current view or, if the
‘Batch Render’ option is selected it loads each of the selected time steps and renders each to
a different file. This automates the process of creating frames for animation so there is no
need for a human operator to choose the next frame, especially important when ray tracing
can mean that each takes several minutes.
In the case of a single frame capture the filename follows the format of “time <date> <time>
method <method number>.bmp” where <date> and <time> represent the current date and time
and <method number> represents the ‘Render Type’ selected. For batch rendered files the
format is the same but with “Frame <frame number>” prefixed which provides an ordering
mechanism for the output files. For the methods used to convert pixel information into
these file formats please refer to ‘Utilities.cs’.
These bitmaps are then used with the open source program ‘MakeAVI’ [15] which converts
them into avi files using whatever codecs are available.

5.5. Worthwhile Additions
While one of the original goals was to create a tool that could be used by animators wishing
to simulate the movement and effects of water, the majority of work has focused on
implementing rendering methods and the theory behind different techniques. As a result
there were several things which were not implemented but would help towards this aim.
The first would be to include in the interface the capability to explicitly set a view. This
would enable a more accurate comparison of angles and an ability to use the same view on
several computers (if rendering separate frames of the same sequence on different
computers). Currently this has been hardcoded when required.
The second worthwhile addition, namely the ability to set water properties and
environmental effects (such as the sky texture and light positions) is currently much the
same. If this information is either stored in a configuration file or accessible through the user
interface, a greater degree of flexibility and control would be afforded.
While these two additions are largely superficial the final and most important would be the
ability to set camera paths through scenes that would be followed as frames are rendered.
This would greatly enhance the usability of the program as a rendering tool for animators
and should produce interesting effects, especially with moving highlights etc.

Nathan Holmberg 2514355

 - 24 -

6. Conclusion & Results
The results presented here represent only some of the work that could be done towards this
subject and needless to say it is limitations on time and resources that have precluded a full
study, but the initial results look encouraging.
In the end several rendering methods used at different stages of the production process
seems to be the best answer with, for example, the original representation being adequate for
finding the best possible view while the OpenGL based tessellation methods give an idea as
to what the shape of the surface will look like. For the final rendering ray tracing seems the
most obvious choice but even within this different techniques could be used for different
effects, especially when treating spray. Billboarded particles, illuminated streamlines, texture
splats and implicit surfaces would all be useful for simulating various types of spray and
laminar flow such as that over waterfalls.
The application developed also provides the required interactivity and a tool for animators
with extensions possible as discussed Section 5.
However, while it may be that all are useful one of the goals called for a comparison of the
techniques and so Table 6.1 contains some time-based information on how they compare. It
is important to note that the implementation as is stands is really just a proof of concept and
is not at all efficiently coded. In particular the code for the BSP trees are very raw, a possible
explanation for the appalling times shown in the table.

The time for ‘first’ drawing includes initialization etc while ‘next’ doesn’t
Small Scene: 80x20 columns, 2800 particles
Large Scene:
Test System: Athlon XP 2100 w/ 512MB RAM

Table 6.1. Rendering Times of different methods

Description Time taken
(First / Next)

Original Representation – small scene 60ms / 15ms
gluNURBS – small scene 1600ms / 1400ms
New Implementation – small scene 4000ms / 1200ms
Raytracing – small scene 500x500 380000ms
Raytracing – small scene (surface only) 86000ms
Raytracing – small scene (spheres only) 104000ms
Raytracing – small scene (Billboarded only) 230000ms
Original Representation – large scene 700ms / 500ms
gluNURBS – large scene 20000ms /19000ms
New Implementation – large scene 9000ms / 1400ms
Raytracing – large scene 500x500 5400000ms
Raytracing – large scene (surface only) 4780000ms
Raytracing – large scene (spheres only) 400000ms
Raytracing – large scene (Billboarded only) 1400000ms

Nathan Holmberg 2514355

 - 25 -

Appendix A – Base Model

This section describes the model that was used to create the data for rendering during this
project. It is important to note that the following does not constitute work done during the
course of the project and should not be seen as such.

Volume Model
Continuing the work of O’Brien & Hodges and Mould & Yang [10] [11] the volume model,
representing the main body of water in our model, is a column based system. Using columns
holds the advantages of easy surface creation as the top of all columns are known and less
flow calculations needed so the system is less computationally intensive.

The structure of the volume model is
much the same as that used in the
previous work mentioned above. That
is the environment is divided into equal
sized squares which form the base of
columns as in figure 2. All columns
start with a user defined height which
then varies over time dependant on the
calculated flows. Source / sink columns
are the only ones to retain their heights
allowing for in and out flows to the
system. Pipes are then created between
each of the eight adjacent columns and
each cell that could overlap during the
course of the simulation. Pipes are also
created between the cells of one
column and the air above the adjacent
columns. At this point the system is

ready to begin simulation.
The underlying basis for the flow equations that are used in this simulation is the science of
hydrostatics, or that describing the pressure of fluids at rest. The equations related with this
approach are simple, both to understand and to compute, and as a result are easy to
implement.
For any column in the grid the hydrostatic pressure can be calculated from the equation
below based on the work of Bernoulli.

)(
2
1

0
2 EpvghQ +++= ρρ

Where Q is the total pressure, h the height of the column, g acceleration due to gravity, ρ the
density of the fluid, v the velocity of flow. p0 the air pressure and E the pressure arising from
external forces which together form the pressure energy term. In this case the height of the
column is the height above some arbitrary point in the world so long as the same point is
used for all columns.

a) Environment
before columns
are generated.

b) Top down view
with environment
split into grid for
columns.

c) Columns after
generation with
initial heights.

Figure A. Column Generation from environment.
Arrows indicate position of some pipes.

Nathan Holmberg 2514355

 - 26 -

Using the pressure differences between cells it is possible to calculate the acceleration and
from that the flow that should occur between cells. The final equation for the flow velocity
(η) through a pipe is:

)(0 l
QQ

tf tailhead

ρ
ηη −

∆+=

Where l is the pipe length, f is a friction coefficient (as suggested in [10]), and η0 is the flow
in the previous time step. An interesting point to note is the lack of any viscosity parameter
in this equation. This is because one of Bernoulli’s assumptions was that the distances
between points of measurement were so small that viscous losses were negligible, instead the
friction coefficient used allows energy to slowly escape from the system. While not physically
justified it serves as an ad-hoc method of including viscosity and in all examples was set at
0.995.
Using the flow calculated for the pipe the volume of water that should be moved through it
is calculated by:

ctV η∆=
Where c is the cross-sectional area of the pipe, or the amount of overlap between the cells.
Because mass is to be conserved the volume removed from one column is the same as that
added to the other. Care must also be taken not to allow a volume of less than zero to occur.
This system is very fast considering the mass of water that is being represented but there are
several problems.
Columns pose a problem as a representation because turbulence is a three dimensional
feature; this is considered one of the classical characteristics of turbulence [1]. While using
the ‘cells’ given by Mould & Yang relaxes the assumption of vertical isotropy this goes a long
way to explaining some of the model’s inability to simulate certain situations. A second
problem arises from the fact that turbulence is a feature of flow and not of the fluid ‘at rest’.
This means that while hydrostatics may be easy to use the equations generated for flow are
incomplete and ignore many of the visible characteristics of water such as shear stresses.
This is perhaps the largest flaw in the model and something that lends itself to further
research.

Spray Model
The spray model is used to model water as it breaks free of the main volume of water. There
is no easy physical solution to when spray should be created and as such assumptions must
be made instead. Earlier work with column systems were concerned mainly with generating
splashes from hitting objects and as such used vertical velocity thresholds for generating
spray. Because the idea here is to model waterfalls the assumptions used here are those
regarding the heights of wave crests before they become unstable (when the wave height is
0.78 of the water depth) [21]. This obviously allows waterfalls to form easily but also works
for rapids as large flow velocities form ‘spikes’ of water that while erroneous are then turned
into spray due to their large heights.
The spray system begins its evolution when particles are generated. First the number of
particles (or volume) needs to be determined. Using the formula to calculate flow through a
weir it is possible to determine the required flow rate and therefore volume. This is through
the equation [2]:

gBHflowrate 2
3
2 2

3

=

Nathan Holmberg 2514355

 - 27 -

Where B is the base length, H the height and g the acceleration due to gravity. The volume to
pass through in this time step can then be found by flow rate * time step. This determines the
number of particles to be created as all those generated, except the last, is of a user defined
volume. The last of course needs to be the remainder of volume to be moved as mass must
be conserved and not created. Depending on the scale and resolution of the model currently
being used this can be set to achieve the best looking results. The position of the particles is
also easily determined and is set at a random position in the face that the particle is being
generated from. The final initial variable that is needed for each particle is velocity and this
can also be generated from the flow rate equation above. In this case the velocity of flow
through a column’s face is found to be flow rate / face area. Flows within the column
structure may mean the velocity should not be perpendicular to the front of the face; to
account for this the average flow from surrounding columns is used to give direction to the
scalar velocity calculated above.
In many cases the velocity imparted to the particle should not only be horizontal but also
include an initial y velocity. To do this the difference in total height between the column for
which particles are being generated and the column behind is used in the classic formula

asuv 222 +=
Where v is the current velocity, u is the initial velocity, a the acceleration, in this case gravity,
and s the distance covered. While this may not be a perfect physical solution it does manage
to provide a more believable representation.
One of the methods that were initially considered to help create the illusion of water pooling
and incompressibility was the use of cohesion. This involves creating small forces between
water particles which attract and repel neighbours in the effort of keeping an optimal
distance apart and is an effort to model intermolecular bonds. After both observing the
inefficiency and inaccuracy of using cohesion within the particle system and after reading
enough to convince that such was unneeded due to water’s low viscosity so long as the
movement was turbulent, such as is the case with spray, [18][19] this was excluded when the
particle and column systems were combined. The visual effects of such cohesion might be
achieved by appropriate rendering of the particle system but due to time constraints we were
not able to explore this topic in more detail. This means that the only active force during a
time step is gravity.
Collision detection with the boundary is the same as for the original particle system
described in the implementation section and so collisions with columns is the only thing
explained here.
After calculating which column the particle is above (or within), the particle’s y coordinate
value is tested to see if it should be absorbed into the column. Simply increasing the
column’s volume and destroying the particle was found not to be accurate enough however
as this would force the column’s height up, often absorbing more particles in the process.
This would not have been a problem for the small scale splash effects that the underlying
model was designed for but causes considerable problems when the particles are modelling
waterfalls where there are many particles hitting at any one time. After trying to spread the
volume of a colliding particle over several columns it was found that by instead modelling
the force of impact and subsequent pressure increase in the column not only was the
problem reduced but more realistic effects were generated. The equations used were the
same as for external objects colliding with the water presented in Mould and Yang. The
force on the object is given as two terms.

gVvF ρµ −−=

Nathan Holmberg 2514355

 - 28 -

Where v is the velocity of the object, µ is the viscosity, V the volume of water displaced, ρ
the density of the fluid and g the acceleration due to gravity. The first term describes the
force of the fluid on the particle and the second is the force due to buoyancy. Because the
force on the fluid must be equal but oppositely orientated to that on the water droplet this
formula can then be used to determine the force on the column. Using the formulas:

AmP /= and
a
Fm =

We can then calculate the resultant pressure of this force on the column, stopping it from
rising unrealistically.

Nathan Holmberg 2514355

 - 29 -

Appendix B – Program Interface and Structure
User Interface
This section contains example screens of the user interface with descriptions of the various
features.

Main Window
This window is initially presented to the user and provides the majority of available options

1) OpenGL window – This window shows the current output, clicking and dragging
anywhere within the program activates the trackball and allows the user to change
the view. Likewise the camera control keys will change the view here

2) Rendering Method – Changing the method by clicking on a new radio button will
redraw the OpenGL window with the desired method

3) Controls Enabled – If selected the trackball and camera will be active, otherwise user
interaction is halted

Figure B.1. Main Window User Interface

Nathan Holmberg 2514355

 - 30 -

4) Batch Render – If selected the ‘Render; button will cycle through all loaded time
steps, outputting the results to sequential filenames.

5) Load Files – Once Files have been selected this button will either load a single time
step into memory or all those selected (depending on the value of (8))

6) Select Files – Opens the Select Files dialog to allow the user to select those files
representing the background scene and water at each time step.

7) FPS – Frames per second. Not very important but changes how the ‘Current Time’
value in (10) is incremented

8) Load Options – Determines if all or only one time step will be in memory at a time.
Helpful when dealing with very large files.

9) Render – Captures the output window to a file or, if ‘Batch Render’ is selected,
renders all frames using the current view and method.

10) Controls – Allows the user to navigate between loaded time steps using the trackbar.

Select Files
This window is presented to the user to allow them to select the relevant static and instance
files as described in Section 5.1.

1) Select Files 1 – This area allows the user to navigate to the directory in which files
the files relating to each time step are stored.

2) Select Files 2 – This are allows the user to select filenames from the currently
selected directory to use as either the static or instance files.

3) Select/Remove Static – Uses the file currently selected in (2) as the static file or
removes that displayed in (6)

4) Select/Remove Instance – Similar to (3) but allows for multiple selections and
governs the contents of (7)

5) Clear All/OK – Either resets the form or accepts the currently selected files and
informs the main program that a new selection of files is ready to be loaded

Figure B.2. Select Files User Interface

Nathan Holmberg 2514355

 - 31 -

6) Static State File – Displays the current file that contains information relating to the
position of background objects such as rocks and ground panels.

7) Instance State Files – Displays the selected files that contain information on the
position of the water at each time step.

Progress Window
Due to the time that raytracing can take, a simple progress window was included. This runs
in a separate thread and allows the user to cancel the raytracing at any time. An image is still
saved in these cases to allow the user to see what the image may have looked like
 The progress itself is actually a simplistic calculation based on the number of pixels already
calculated and the number remaining, regardless of how complex the scene is behind each of
these pixels. As a result it is not uncommon for the progress bar to proceed in fits and starts
as simple areas (where only the background is drawn) are completed.

1) Resolution – Displays the resolution being used for the current image in Width x

Height format
2) Start/End Times – Displays the system time of when the ray tracing started and, on

completion, when it stopped
3) Percentage Complete – Provides both a numerical and visual representation of how

much of the image has been completed
4) OK/Cancel – Allows the user to stop the ray tracer at any time. Needless to say the

OK button is only available when the ray tracer has completed

Camera Control Keys
The following lists the keyboard controls for camera operation:
Z/X – Zoom in / out of scene
Q/E – Increase / Decrease the elevation of the camera
R/F – Raise / Lower the position of the camera (in the y direction)
A/D – Rotate the camera on its y axis
W/S – Move the camera forward / backward along its current direction

Class Diagram
The class diagram on the following page was created after implementation, which explains
some of the strange design. The diagram also does not include all attributes or methods as
these can be found already in the implementation if required.

Figure B.3. Progress Indication
User Interface

Nathan Holmberg 2514355

 - 32 -

Figure B.4. Class Diagram

Nathan Holmberg 2514355

 - 33 -

Appendix C – References

[1] Abbot M & Basco D. (1989). Computational Fluid Dynamics – An Introduction for Engineers.
 Longman Scientific & Technical.

[2] Badger W & Banchero J. (1955). Introduction to Chemical Engineering. McGraw-Hill.

[3] Cohen, E. et al (2001). Geometric Modeling with Splines: An Introduction, A K Peters,
 Massachusetts, 2001

[4] Dupont, L. et al (2003). CsGL – C# graphics Library. http://csgl.sourceforge.net/ Viewed
 last on 9/11/03

[5] Feasel, J. (2003). World’s Slowest Ray Tracer.
 http://www.cs.unc.edu/~feasel/classes/236/raytrace.html Viewed last on 9/11/03

[6] Foster, N. & Metaxas, D. (1996). Realistic Animation of Liquids. Graphical Models and
 Imaging Processing: GMIP V. 58 n 5:471-483

[7] Fournier, A. & Reeves, W (1986). A Simple Model of Ocean Waves. SIGGRAPH ‘86

[8] Grahn, H. et al (1999). NURBS in VRML. In Proceedings of the Web3DVRML, 1999.

[9] Martin, W et al (2000). Practical Ray Tracing of Trimmed NURBS Surfaces. Journal of
 Graphics Tools V. 5 n 1:27-52

[10] Mould D & Yang Y. (1997). Modeling water for computer graphics. Computer & Graphics V.
 21 n 6:801-814 1997

[11] O’Brien J & Hodgins J. (1995). Dynamic Simulation of splashing fluids. Computer Animation
 ’95:198-205

[12] Premože, S. & Ashikhmin (2001). Rendering Natural Waters. Computer Graphics Forum
 V. 20 n 4:189-200

[13] Premože, S. et al. (2003). Particle Based Simulation of Fluids. Europgraphics 2003 V. 22
 n 3:401-410

[14] Press, W et al. (2003). Numerical Recipes in C: The art of Scientific Computing (2nd Edition).
 Cambridge University Press, Cambridge

[15] Ridley, J (2003). SourceForge.net: Project Info – MakeAVI.
 http://makeavi.sourceforge.net/projects/makeavi/ Viewed last on 9/11/03

[16] Schlick, C (1994). An Inexpensive BRDF model for Physically based Rendering. Eurographics
 ’94 V. 13 n 3:233-246

Nathan Holmberg 2514355

 - 34 -

[17] Shirley, P. & Morley, R.K. (2003). Realistic Ray Tracing (2nd Edition). A K Peters,
 Massachusetts, 2003

[18] Sims K. (1990). Particle Animation and rendering using data parallel computation. SIGGRAPH
 ‘90

[19] Stein C & Max N. (1998). A Particle-Based Model for Water Simulation. Prepared for
 SIGGRAPH ‘98

[20] Tessendorf, J (2001). Simulating Ocean Water. SIGGRAPH 2001 Course Notes

[21] Thorton E & Guza R. (1982). Energy Saturation and Phase Speeds Measured on a Natural
 Beach. Journal of Geophysical Research V. 87 c 12:9499-9508 1982

[22] Woo M., Neider J., Davis T. & Shreiner, D. (1999). OpenGL Programming Guide (3rd
 Edition). Addison & Wesley, New Jersey, 1999.

[23] Zöckler, M. et al (1996). Interactive Visualization of 3D-Vector Fields using Illuminated Stream
 Lines. IEEE Visualization ’96 Conference p. 107

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

