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Abstract 
 
This projects aim was to compare and implement rendering methods for the existing height 
field based simulation of turbulent water in such a way that a tool for animators was evolved. 
In the end three types of representation were used: a simple quad strip based approach, an 
implementation of a NURBS surface fitted to the height field, and a similar surface ray 
traced to achieve refraction etc. Foam and spray are represented simplistically in the first two 
of these three methods with a variety of techniques evaluated for ray tracing. The resultant 
program, while not being designed for efficiency, shows promise with further development 
opportunities apparent.  
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1. Introduction and Goals 
Water and its effects are a part of our everyday lives and we form an intrinsic and 
subconscious understanding of how water should look. As such the ability to produce 
realistic images and movies that mimic these effects and are indistinguishable from the real 
thing has undergone significant research, especially in the past twenty years. As the models 
described in literature have progressed, so too has the realism of their rendering, as 
illustrated in Figure 1.1. 
The purpose of this project was to explore ways to render, with a degree of realism and 
interactivity, the model of turbulent water created in a previous summer studentship. As 
such the results are in part limited by the underlying model but the application developed is 
designed so that changes to the accuracy of the model will not require significant changes to 
the renderer (at least up to a point).  

 

a) 

b) 

c) 

d) 

e) 

Figure 1.1. Example images of the progression of water rendering. a) 
1986 [7] b) 1995 [11] c) 1996 [6] d) 2001 [12] e) 2001 [20] 
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This application was also to be designed as a tool for animators to use to create videos and 
still frame renderings of water. This means that a greater degree of user interface design and 
control was sought after and is apparent from the implementation. Another effect of this 
goal is that a certain level of interactivity is needed for the tool to be useful so while real-time 
rendering is not possible different methods with different levels of interactivity need to be 
provided and wherever something is going to take an inordinate amount of time the user has 
to be made aware of this.  
In an effort to develop the best possible representation of the model it was also deemed 
necessary to try to implement as many as possible different methods with a view of 
comparing the results of each, however time constraints have meant that for some of the 
intended techniques only a discussion has been provided as implementation was not 
possible. 
Finally, this project is a little different as it builds on work that was done previously and uses 
a model that already exists. Information on this model and what it includes can be found in 
Appendix A 

 

2. Water Surface 
The majority of the work done for this project has revolved around finding a realistic 
representation for the main body of water. This was viewed as the most important feature as 
not only does it represent the most water by volume but humans are naturally attuned to 
how water looks and its behaviour under various light. 
The three methods presented here define a progression from the original mode that 
constituted a very poor representation through a similarly OpenGL based method of 
smoothing the surface into the raytracing method that was finally chosen. 

2.1. Original Representation 
Because the original work that produced the model used here did not focus on graphical 
representations the original representation was embarrassingly simplistic. The column system 
was represented in OpenGL by a series of Quad Strips between the centres of columns as 
shown in Figure 2.1. If the next column to be drawn has 
a height less than a specific threshold then that column is 
determined to not contain any water and as such the 
current Quad Strip is terminated and a new one is formed 
to represent any water on the other side of the gap. 
Normals for each vertex are produced by taking the cross 
product of only two of the adjacent edges. This lack of 
smoothing results in each quadrangle being distinctly 
visible and the resultant effect is extremely unrealistic. 
Example images for this method of representation along 
with a comparison with others are available in Figure 2.8.  
 

Figure 2.1. How the original 
surface is generated from the 
columns. 
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Figure 2.3. Comparison of degrees of NURBS surfaces. a) degree = 1 b) degree = 2 
c) degree = 3 d) degree = 4 

a) b) 

d) c) 

2.2. Tessellated B-Splines 
When looking for a better way to represent the water’s surface the idea of using an implicit 
surface such as NURBS immediately stood out. Given that the columns could already be 
represented by a 2D array of points signifying the tops of each column (as was used in the 
original representation) it seemed logical to use these as 
the control points for a NURBS surface as in Figure 2.2. 
Obviously this means that the surface does not go 
through each control point but is instead pulled towards 
them, however given that for lower orders this difference 
is small and so the amount of information that is lost is 
not significant. In other words the shape approximation 
was deemed to be appropriate for the task [3]. 
If the height for a column was below a threshold then 
that control point was moved to slightly below the base 
(and therefore out of view). 

2.2.1 gluNurbsSurface 
The initial implementation used the pre existing OpenGL GLUnurbs object and the 
gluNurbsSurface methods whose proper use is set out in [22]. This uses supplied knot 
vectors and control points to tessellate the surface automatically and efficiently.  
One disappointing revelation, however, was that the libraries used in place of OpenGL did 
not fully support the storing of tessellated NURBS surfaces, at least in no way that was 
documented. This meant that whenever the view was changed the surface had to be 

Figure 2.2. How the NURBS 
surface is fitted to the columns. 
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recalculated, a time consuming and computationally expensive task. 
The method implemented to create the control points and knot vectors is extremely 
simplistic, using the tops of columns as the control points and the knot vectors having a 
uniform distribution. By experimenting with the order of the polynomial it was found that a 
surface of order 3 (which is equivalent to degree 2) was best as while it is not as smooth as 
others, it more closely resembles the column positions. Figure 2.3 shows a comparison of 
orders. 

2.2.2. New Implementation 
As an intermediate step between using the OpenGL provided NURBS methods and 
attempting to ray trace such a surface it seemed appropriate to create a new implementation 
which used evaluator methods written expressly for this project. As such a class named 
NURBSObject was created and can be found in the file ‘Utilities.cs’. This has its own 
blending functions and several evaluators for different purposes based on the equations 
given in [3], [8] and [9]. 
Interestingly, this implementation takes a very similar time, and in some cases less, than the 
gluNURBS method despite being written at a higher level (see Section 6). The main reason 
for this is that assumptions could be made regarding the inputs. Firstly, it became apparent 
that the full NURBS equation was not required as each control point was weighted equally. 
This means that far less computation was necessary for each vertex. Assumptions could also 
be made if the knot sequence was uniformly distributed, something guaranteed by the 
implementation. This means that 
the position within the sequence 
can be calculated mathematically 
instead of traversing the entire 
sequence until the appropriate place 
is found. 
Finally by summing those control 
points whose associated blending 
value was not zero it meant that 
many calculations could be 
discarded. This involves only using 
the control points within degree/2 of 
the position of u and v in the knot 
vectors, possible due to uniformity 
and the particular spread of control 
points. Figure 2.4 contains some of 
the effects of these assumptions. 
With regards to the implementation 
two factors are worth mentioning. 
First, unlike the gluNURBS method it is possible to store the calculated vertices so once the 
surface is computed there is very little overhead in moving the camera within the scene, but 
the second is not so advantageous. When OpenGL decides how many samples to use in 
both directions the distance on the surface is used. This has not been implemented and so 
the number of samples to take in both the u and v directions is currently hard coded. Of 
course changing this shouldn’t be too arduous. For full implementation details please refer 
to ‘Utiltities.cs’ and ‘ColumnSystem.cs’. 

Standard equation for NURBS evaluation: 
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where a & b are the position of u and v in the 
knot vectors (calculated assuming uniformity) 

Figure 2.4. Simplifications of the NURBS equation
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Figure 2.5. Graphical Representation 
of the Newton Root Finding Method 

2.3. Ray traced B-Splines 
The final surface rendering method used was to ray trace the surface. As the title suggests 
the surface is no longer a true NURBS surface as all control points have a weight of 1 
(making it non-rational) and the spacing between knot vectors is assumed to be equal 
(making it uniform). Because these properties are assumed in the evaluators the 
implementation can not handle true NURBS surfaces, hence not using the name even 
though NURBS is a superset containing the type used here.  
The following two sections seek to explain how the intersection point between the implicit 
surface and the ray is found. 

2.3.1. Newton Solver 
Early during implementation it was decided that it 
would be interesting to try to find the intersection 
between the surface and the ray without tessellating 
into triangles and testing each for intersection. 
Further, tessellation would have required 
implementing BSP Trees sooner in the project and 
there was not yet any guarantee that there would be 
time. This also means that the implementation is 
slower than necessary but without trying both a true 
comparison is impossible.  
Following the methods laid out in [9] and the 
example code provided with said paper and in [14], 
the chosen method for raytracing the surface was to 
use a Newton Solver.  
This particular method involves first decomposing 
the ray into two planes, the intersection of which is 
the original ray. The Newton method, a graphical 
representation of which is in Figure 2.5, is then used 
to find how close to the given guess the two planes 
are with the assumption that the distance to the ray 
will be the sum of the two plane distances. New 
guesses are then formed using the tangent at the 
point of the last guess until the distance is within an 
acceptable error, stored as ROOT_TOLERANCE. 
In this case the assumption is that the intersection 
point has been found and will be returned as such. 
One important case is when the tangent found after 
a guess is parallel to the ray. In this case there is no 
intersection between the tangent and the ray planes 
and the solver fails. This occurs if the Jacobian 
matrix is singular and if so the guess must be 
randomly moved a short distance away, the 
tolerance for this is called the 
JITTER_TOLERANCE. 
The mathematics behind this have not been 
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Figure 2.6. Column Traversal 

included here and the reader is referred to [9] for both a more detailed and eloquent 
explanation of the basis of this method. 

The actual implementation, while heavily 
reliant on [9] and [14], differed due to 
unique characteristics of the data. Namely 
because the surface had null control 
points, a value associated with an empty  
or missing column, the solver and 
evaluator had to deal with situations 
where the guess was within an empty 
region. This was dealt with by trying to 
move outside the region and, if this was 
not possible, assuming there was no 
hitpoint near that guess (a reasonable 
assumption).  
Likewise because the bounding volumes 
were formulated differently one of the 
failure conditions was not relevant. In [9] 
failure was assumed if the distance for the 
current guess was larger than for the 
previous. Because this only holds true if 
there is little variance in curvature within 
the bounding volume (as there was with 
their implementation) this could not be 
used.  
The performance of this method is not 
unreasonable on the proviso that the 
initial guess is close and so it is essential 
that the implementation get as near as 
possible, a process described in the next 
section. 
 

2.3.2. Getting Guesses 
Before the Newton solver is even 
employed guesses as close to the proper 
intersection must be sought. This section 
describes how this was achieved. 
First a simple axis aligned bounding box is 
used to check if the ray comes anywhere 
near the water surface. In so doing we 
also determine the first face of the box to 
be intersected which, because the columns 
are also axis aligned, provides a starting 
point and direction for traversing across 
the scene (the hitpoint on P0x in Figure 
2.6). The ray is then intersected with the 
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plane that describes the edge of the next row of columns (P1x) providing a sub portion of 
the ray. For each column it passes over between P0x and P1x it is first determined if the ‘y’ 
value is within the possible bounds of the column (taken as the minimum and maximum of 
all columns in the area around the target column). If so then the midpoint of the column is 
submitted as a guess point to the Newton solver which tries up to 5 iterations (defined by 
MAX_ITER in the code) to find a root. If one is found then it is perceived to be the first hit 
point on the surface and is returned to the ray tracer, if not then the next column is checked. 
Once all columns between P0x and P1x are checked then columns between P1x and P2x are 
checked and so on till either a hit is found or the ray leaves the area defined by the surface. 
Should the ray have been more orthogonal to the ‘z’ axis than the ‘x’, then it would have 
been P0z, P1z and P2z that were used. 
One advantage of this method is that because it both ensures that the first hit point will be 
returned and that each guess is relatively close to where the intersection may be, due to the 
small amount of movement in the ‘u’ and ‘v’ values that can occur between columns which 
represent the width of the greatest possible error. On the other hand its efficiency is very 
dependant on the number of columns in the system and how many columns each ray passes 
over before hitting the surface. 

2.4 Worthwhile Additions 
One interesting benefit of using B-Spline surfaces that has not been implemented but is 
worthy of mention is the effect that could be achieved by offsetting each control point 
slightly depending on the position of each column. This would allow for the simulation of 
adhesion along boundaries and possibly viscous shear, two things currently missing from the 
underlying model. Figure 2.7 provides an indication of how this might work. 
Likewise using flow and pressure information between columns could be used to identify 
areas of high turbulence and a texture be generated that simulates the high air content of the 
water at such places, i.e. foam. 

 

a) b) 

Figure 2.7. The effect of slightly displacing control points. a) Unaffected b) Edge 
points moved against the flow 
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Figure 2.8. A Comparison of the three draw methods used. a) Original b) gluNurbs c) Ray traced. 
Example videos are provided for a better comparison 

a) b) c) 
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3. Particles 
The second major feature of the model that needed to be represented was the particle 
system. This system was used to account for any activity that required water to break away 
from the main body of water and as such included a variety of effects. As these range from 
small whitecaps on the tops of waves, through spray from water impacting on rocks, to 
laminar like flow over waterfalls it was unlikely that a simple method would be sufficient. 
With this in mind a variety of techniques were investigated and while only a few were able to 
be implemented the others are included with a discussion on their relative merits. 

3.1. Original Representation 
The original representation for water particles was to use the glutSphere object provided by 
OpenGL. Each particle was represented by one sphere the radius (and therefore size) of 
which was determined by the volume of water that the particle was supposed to represent. 
Some effort was made to differentiate between types of spray by using the velocity and 
‘timeAlive’ attributes of each particle to alter the colour and opacity of the representing 
sphere. However the effect this generated was disappointing and was eventually disbanded 
when work began to focus on raytracing. 
This method was used for the first three attempts and little work was done to progress the 
way particles were represented until ray tracing began. 

 Figure 3.1. Original Particle Representation
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3.2. Ray Traced Particles 
Ray tracing particles presents particular problems. Namely due to the possible numbers (up 
to 100,000 in some scenes) it is far too time consuming to test for ray intersection with each 
one. As such an acceleration technique known as BSP Trees was used and a discussion of 
this appears in the first section. 
There is also the problem of how different splashes appear to have different properties and 
so the ray tracer would have to implement several different methods of representation, while 
not all of these were completed an overview of the technologies that could be employed is 
included along with a description of where they might be useful. 

3.2.1. BSP Tree Basics 
The only acceleration technique that was implemented during the course of the project was a 
simple Binary Space Partitioning Tree. This technique splits the system into two at each step 
and creates a tree of these partitions. This tree is then ray traced with the ray being passed 
down the branches of the tree in such a way that the minimum number of intersection 
calculations need be performed. 
Normally when implementing BSP Trees care has to be taken that a partitioning plane does 
not intersect an object. However due to the fact that only particles are contained within the 
tree this has been disregarded as the chance of plane / particle intersection is very slim. Of 
course this also makes the implementation easier. 
After implementing BSP Trees a decrease in rendering time of between 4 and 5 times was 
realised. While this is good it is not as large as might be expected, possibly due to the 
relatively ‘flat’ nature of the particle’s distribution and the simplistic division algorithm that 

will mean that most division will only be with planes perpendicular to the x and z axes.  
This algorithm is demonstrated in Figure 3.2 with the following explaination. First an axis 
aligned bounding box is fitted to the particles. This is then subdivided into two along it 
longest side creating two smaller boxes and a division of the particles accordingly, thee two 
boxes are also split, again along the longest axis, and the process continues until the 

Figure 3.2. BSP Tree creation.  
NB. The unevenness of the tree shown is actually quite likely due to the concentration of 
particles in certain areas and the simplicity of the algorithm used for partitioning. 
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maximum tree depth is reached or there is less than a threshold number of objects within a 
box. 
The implementation was derived primarily from the start point of an assignment for 
COMPSCI715 and as such does not constitute the most efficient implementation. For the 
program structure and details of this implementation please refer to Appendix B and the file 
‘Raytracer.cs’. 
 

3.2.2. Spheres 
The first method used to represent particles is very similar to the original representation 
discussed previously. Simply put this involves ray tracing a sphere at the position of each 
particle. Because ray sphere intersections are perhaps the fastest and easiest this translates to 
a ‘reasonably’ fast method. Of course without the BSP Tree this would still be daunting 
Result looks similar to the original representation, as one might expect, but there are still 
possible uses for this method. Namely very dispersed sprays of large droplets, such as those 
created after a smooth splash breaks up, could be represented by this method. To achieve 
this, a combination of the ‘time alive’ and a check as to the how far the nearest neighbour is 
could be used to transition between another method and this. 

 
Figure 3.3. Using spheres to represent particles 
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3.2.3. Billboarded Particles 
The term Billboarded refers to raytracing a picture or object as a texture on a plane parallel 
to the view plane, which in this case has been a plane orthogonal to the vector between the 
position of the particle and the eye point of the view. 
Intersection with the billboard is simply a ray plane intersection and a length calculation. 
First the ray is hit against the plane that was determined on initialization (as described above) 
and then the distance between this hit and the position is determined. If it is within the 
stored value of ‘radius’ for the particle then there is an intersection and this is returned. 
Normally billboarding is used to fix either textures or animations to points in the scene and 
while the current implementation does not use this, it is a realistic possibility. This means 
that either textures of droplets or frames from animations of droplets evolving could be used 
to create a more realistic effect. The actual implementation draws each particle as a simple 
circle which explains the lack of difference between Figures 3.3 and 3.4 but even then the 
lack of shadows on the under side makes it look like more realistic spray.  
One other possible benefit of the billboarding technique that was mentioned is that rainbow 
effects could be pre-computed and applied to the texture for each particle. While such 
effects are too difficult and computationally expensive to ray trace directly it may be possible 
to generate them using heuristics before tracing begins. 

 
Figure 3.4. Using Billboards to represent particles 
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Figure 3.6. Example of implicit 
water surface generated from 
particles. Image from [13]. 

Figure 3.5. Example of Illuminated 
Streamlines as used in CFD [23]. 

3.2.4. Illuminated Streamlines 
Another method that was reviewed as a 
possible alternative for spray was 
illuminated streamlines. Typically it is 
impossible to render a one dimensional 
figure such as a line in a ray tracer as 
there is no one normal to use in lighting 
calculations. This can be overcome by 
using the normal which is in the same 
plane as both the line and the direction 
from the hitpoint to the light source, 
enabling proper effects [23].  
While most of the usual uses and 
properties set out in the literature are 
not applicable, this technique was 
looked at because of its ability to 
simulate very fast moving splashes and 
spray, as is the case in aerated waterfalls 
etc, and what might be called a motion 
blurring effect. Figure 3.5 shows how 
some of these effects may look and a partial implementation can be found in ‘RayTracer.cs’. 

3.2.5. Texture Splats & Volume Rendering 
The final method thought of for raytracing is the use of texture splats or some type of 
volume rendering to create the impression of fine mist, as is often found in areas where 
spray rejoins the main body of water at high velocity such as at the base of waterfalls. In 
these areas spray takes on some of the characteristics of fog and so the techniques that were 
investigated largely stem from attempts in this area. 
Raytracing volumes such as this is related very closely with simulating the scattering of light 
underwater and including one might form the basis for the other. 

3.3 Implicit Surfaces 
One of the most promising representations that 
were not implemented was the possibility of using 
implicit surfaces to create a solid object, the shape 
of which is determined by the particles. Such a 
method would be perfect for laminar flows that 
exist outside the column system, the most 
important of which would be over waterfalls. The 
current methods employed all disregard effects 
where particles are in close proximity so make such 
flows look either more turbulent than they are or 
highly unrealistic. 
While this may look nice, however, it would take 
considerable computation to use the marching 
cubes algorithm (for example). More recently 
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Figure 4.1. Reflection vectors: 
 n = surface normal 
 d = ray direction 
 r = new ray direction 
 a = parallel to n, scaled by d 
 θ = angle of incidence 

Figure 4.2. Refraction vectors: 
 n = surface normal 
 d = ray direction 
 b = tangent to the surface 
 θ = angle of incidence  
 θ’ = angle of refraction 

(November 2003) work has been published which have implemented a surface over particles 
specifically. [13] presents a method of water simulation using only particles and represents 
the surface using ‘level set methods’ although this would involve possibly rewriting parts of 
the underlying model it would achieve the required effect, the results of this are 
demonstrated in Figure 3.6. 
 

4. Supplementary Effects 
This section describes some of the effects that had to be included with the ray tracer and 
while important for realism are not directly related to either the water surface or particles. 

4.1. Reflection 
Reflections are probably the simplest and most 
important effects that could be included. This 
involves creating a second ray for each hit on a 
reflective surface which is used to find the colour 
to be reflected. This continues for as many 
iterations as is specified by the programmer (in 
this case 2 because the scene is unlikely to have 
many multiple reflections of importance) or until 
a ray hits the background or non-reflective 
surface.  
Following the premise that the angle of incidence 
is equal to the angle of reflection we can deduce 
that: 

adr 2+=  
and using the formula for orthogonal projection 
we can find a such that [17]: 

n
n
nddr 2||||

2 •−=  

The basic diagram illustrating this relationship can 
be found in Figure 4.1. 
As will be discussed in the next section, the 
resultant reflected colour must be scaled by a 
factor depending on the absorption properties of 
water and the size of the angle of incidence.   

4.2. Refraction 
The second effect discussed here is that of 
refraction. This refers to the bending of light as it 
passes from one medium to another that has a 
different refractive index. Water is one such 
material and has a commonly accepted refractive 
index of 1.33 compared to the 1.0 of air. 
The mathematics for calculating the direction of 
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this ray is a little more complicated but still simplistic and one of the most commonly taught. 
The relationship between vectors can be found in Figure 4.2 and the equation to find t (the 
transmitted ray) is as follows: 
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where n1 and n2 represent the refractive indices of the two materials (in this case air and 
water). 
In terms of the model, refraction is important due to the distortion effect it has on the 
ground. This allows the movement of waves to be seen even if there are not enough 
highlights to show them explicitly. This can be seen in Figure 4.3.  

 

4.2.1 Schlick’s Approximation 
Water is also a dielectric (not to be confused with conductive properties) which means that 
the intensity of the refracted vs. the reflected ray varies according to the angle of incidence. 
The typical operation of such is that as the angle of incidence (θ) approaches zero the 
transmitted ray approaches one and the specular reflectance approaches zero. The Fresnel 
equations are commonly used to describe this relationship but are difficult to compute. As 
such, the standard equations used in ray tracing are those proposed by Schlick in [16]  and 
are reffered to as Schlick’s approximation. 
This approximation does not provide exact answers and are only valid for unpolarized light 
but given that ignoring polarization probably creates even larger errors, this error is seen to 
be inconsequential, a view shared by [17]. 
The equations that were used to govern this relationship for reflectance (R(θ)) and 
transmittance (T(θ))are as follows: 

5
00 )cos1)(1()( θθ −−+= RRR  

and from the conservation of energy 
)(1)( θθ RT −=  

Figure 4.3. Image showing the effect of refraction 
on the appearance of the ground plane. 
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(a) (b) 

Figure 4.4. a) Flat coloured sky. b) Using the texture map ‘CloudTexture.bmp’ which 
includes clouds. Both images use a non-transparent water surface  

Where R0 is the base reflectance set by the user and cos θ can be determined by –d•n making 
the formula computationally inexpensive. 
It should be noted that this relationship is only used for transparent surfaces where 
refraction is expected to occur in the model and its effect is discounted for the ground 
panels and spheres etc. 

4.3. Skybox 
In simple ray tracers, if a ray does not hit any of the objects in the scene it is given the 
standard background colour. This however is unrealistic especially when dealing with 
reflections off the surface of the water. As such, the inclusion of a skybox for the ray traced 
surface turned out to be very important in creating an added sense of realism. 
Most non-ray traced programs use a texture mapped bounding cube that is used when there 
is no object between the eye and infinity and while this is good for programs such as games 
it would greatly increase the computation necessary for each ray that hits the ‘background’. 
Because of this an easier method which uses only the direction of each ray to determine a 
hitpoint on a sphere was used, the idea for which was gleaned from [5]. 
First the world is divided into two by the ‘y’ direction of the ray creating a horizon, namely if 
it is positive then the sky texture is used and if it is negative the ray is pointing at the ground. 
The problem then becomes a simple matter of texture mapping a sphere, namely creating u 
and v coordinates and extracting the texture value for that coordinate from the texture map. 
Namely, where x, y, and z represent the normalized direction (and so the radius is one) [17]: 

π2
),(2arctan xyu =  and 

π
π )/arccos( rzv −=  

Of course these are the equations for the standard case and so only half of each texture map 
will be used but given the distortion of applying a square texture to a sphere this was not 
seen as a major problem to be solved given time constraints. 
Also due to these constraints no interpolation of the texture maps has been implemented, 
meaning that looking directly at the sky is not a particularly pretty sight but this is offset by 
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Figure 4.5. How the generation of light 
caustics may work 

the more realistic reflections that are generated off the water, as demonstrated in Figure 4.4. 
The implementation for this can be found in ‘RayTracer.cs’ starting on line 323. 
As is common with skyboxes no illumination effects can be seen on the background and 
may have to be manually applied to the textures if this is so desired. 
 

4.4. Accepted Property Values 
This section documents the values that were used for various properties of water. In most 
cases these values were chosen because ‘they looked good’ and are not representative of the 
true values. That said some are based on experimental data and are referenced accordingly. 
Table 4.1 contains these values. 

 

4.5. Worthwhile Additions 
One of the most notably missing effects that this model would benefit from is light caustics. 
This refers to the areas of higher intensity light which are collated due to the refraction of 
light through the water gathering in specific regions. They are a sure sign of wave motion on 
the surface and one of the effects that the 
human eye expects to see. 
The reason that this wasn’t included in this 
project is that including light caustics would 
require another pass of the ray tracer to 
generate a second texture for objects in the 
environment. This would require significant 
changes to the program as it stands, and while a 
partial implementation was possible completion 
was precluded by the time available. 
The following details how such effects may 
have been achieved, as was usual for this 
project however, it details a conjectured theory 
only that has not been proven yet. By using rays 
defined by the position of the light source and 
sample points on the water surface it should be 
possible to use the refracted instance to find the 
point on the ‘ground’ that would be illuminated 
by the light, as in Figure 4.5. If enough of these 

Table 4.1. Values used for various water properties. Where three values are given they 
correspond to the red, green and blue channels respectively 

Property Name Value Used 
Diffuse reflectance {0.1f,0.1f, 0.3f} 
Specular reflectance {0.7f,0.7f,0.8f} 
Phong exponent 1000 
Specular transmittance (absorption) {0.34f,0.05f,0.009f} 
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sample rays are used then a map of hits can be built up and using the density of these hits a 
texture created that illustrates where light is concentrated and diffuse. This method would 
also work for multiple light sources with the algorithm being repeated for each. 
A second missing effect is how the depth of water changes its colour and the scattering that 
occurs when photons encounter sediment in the water. Research already exists in this area, 
the clearest explanation found in [12], and including these effects would be a simple matter 
of extending the existing program. 
Of course these are only two of the possible additions. Anti-aliasing, multi-sampling, 
smoothing etc would all make the renderer better but fall outside the scope of this project. 
 

5. Implementation Overview 
This section provides an overview of the features, structure and I/O of the program written 
as partial requirements for this project. The C# language was used as it is easy and fast to 
implement prototypes in while retaining much of the speed advantages of C++ (if these do 
in fact exist). Given that the model was also written in this language it seemed a natural 
progression to write the renderer in it also. 
While the OpenGL libraries aren’t directly available, a third party, open source 
implementation called CsGL exists and was used extensively[4]. This provides a wrapper of 
the actual libraries that can be used with any .NET language (although was written 
specifically for C#). It is not, however, a perfect translation and there exist idiosyncrasies 
that had to be dealt with but was more than adequate for what was needed here.  

5.1. Input 
The input for the program written for this project is in the form of files representing the 
scene and the positions of the water. The first step of this project was in fact to alter the 
program written to model water to output this information into proper files (previously the 
only output was in the form of bitmap images). 
While the model data used was produced in a previous project this is not the only possible 
source of data. To separate the two programs a format was created to serialize and 
deserialize information about the scene. While this was originally intended to allow pre-
computed scenes to be used in the rendering process it also means that any file following the 
format set out below could in theory be used. 
For any sequence of scenes there are two types of files needed. The first is a static file 
containing information about the scene and the second contains information about the 
position and state of water at each time step. 
The static file, whose default name is ‘model.state’ typically contains the bare panels and 
spheres as used by the original modeller but was intended to be extended or replaced 
between the modelling and rendering process. This means that more complicated /realistic 
scenes could be used in conjuncture with the data created by the modeller. 
For each time step there is a separate file, named ‘time###.state’, where ### refers to 
numbers which are incremented with each frame, retaining the ordering. These files first 
contain information on the position of the first column and what the heights and widths of 
every column will be. It is from this information that the positions of all the other columns 
will be determined. For each column the heights of the base and top are stored along with 
information on the pressure and rate of flow (in 2D). This information was kept as it may 
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help with rendering while all information regarding pipes and the cells within columns are 
discarded. Particle information is also stored in this file with the position, velocity, mass and 
the length of time alive being stored for each. 
For the actual implementation information please refer to the source file ‘Serialization.cs’. 

5.2. Operations 
The ModelView program, the main method of which resides in ‘ModelView.cs’, which forms 
the basis of the project is a GUI based interface designed to allow as much control over the 
animation process as possible. The order of operations is quite simple. Using the interface 
provided by the button ‘Select Files’, the static file containing information about the scene 
and the instance files containing the water at each time step are selected. This creates an 
array of filenames, but does not load anything, and the trackbar is initialized to have as many 
points as are needed. The ‘Load Files’ button is then used to either load the single file 
representing the select time step or to load and store all instances in an array. This distinction 
was made to allow for times when the complexity of a scene or the available memory 
precludes loading all time steps at once. 
This will also initialize the OpenGL panel with the selected time step’s information and the 
default view. This can then be manipulated using the trackball and camera controls provided 
by ‘Trackball.cs’. These are based almost exclusively on those provided for various 
COMPSCI372 assignments and operate in a way that should be familiar to those who have 
used these and similar programs before. A ‘Controls Enabled’ option is also provided to 
ensure erroneous mouse movements don’t change the camera position between frames, if so 
desired. 
Changing the selected ‘Render Type’ will automatically redraw the scene and wile there is no 
indication of progress for the original and tessellated NURBS based methods, when ray 
tracing another window will open which includes a rudimentary indication of progression 
(based on the number of pixels calculated). Example shots of all the user interface screens 
are provided in Appendix C. 

5.3. Setting up the Ray Tracer 
This section was included as one of the features of the program is that any view chosen 
using the OpenGL based rendering methods can be replicated exactly for the ray tracer. This 
overcomes the fact that interactivity is prohibited by the length of time it takes to ray trace 
each frame by allowing navigation and camera position to occur before ray tracing. It is also 
important as the trackball and camera controls don’t actually work for the ray traced view. 
The ray trace view is composed of an eyepoint, direction, up vector, a distance and size of 
the ‘viewing plane’ and the number of pixels to sample in each direction.  
The particular implementation I chose was to choose an arbitrary size of the ‘viewing plane’ 
(s) and derive the distance (d) from the required zoom (fov). This is achieved by the simple 
formula below: 

)5.0tan(2 fov
sd =  

For the eyepoint, direction, and up vector the information regarding these three factors used 
in the gluLookat() command are multiplied with the current transformation matrix (as 
created by the trackball object) to create the proper viewpoint. While it is relatively simple 
the effect it has on interactivity is marked. 
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5.4. Output 
Output is in the form of either bitmap or JPEG encoded images although due to quality 
concerns only the bitmap methods are currently used. There are two events that generate 
these images. The first is whenever a ray traced image is completed. Due to a peculiarity of 
CsGL the image isn’t shown as it is generated and because render times were sometimes 
ludicrously long it was deemed better if output was directly to an image file on the hard disk. 
Failing this the ‘Render’ button on the interface either captures the current view or, if the 
‘Batch Render’ option is selected it loads each of the selected time steps and renders each to 
a different file. This automates the process of creating frames for animation so there is no 
need for a human operator to choose the next frame, especially important when ray tracing 
can mean that each takes several minutes. 
In the case of a single frame capture the filename follows the format of “time <date> <time> 
method <method number>.bmp” where <date> and <time> represent the current date and time 
and <method number> represents the ‘Render Type’ selected. For batch rendered files the 
format is the same but with “Frame <frame number>” prefixed which provides an ordering 
mechanism for the output files. For the methods used to convert pixel information into 
these file formats please refer to ‘Utilities.cs’. 
These bitmaps are then used with the open source program ‘MakeAVI’ [15] which converts 
them into avi files using whatever codecs are available. 

5.5. Worthwhile Additions 
While one of the original goals was to create a tool that could be used by animators wishing 
to simulate the movement and effects of water, the majority of work has focused on 
implementing rendering methods and the theory behind different techniques. As a result 
there were several things which were not implemented but would help towards this aim. 
The first would be to include in the interface the capability to explicitly set a view. This 
would enable a more accurate comparison of angles and an ability to use the same view on 
several computers (if rendering separate frames of the same sequence on different 
computers). Currently this has been hardcoded when required. 
The second worthwhile addition, namely the ability to set water properties and 
environmental effects (such as the sky texture and light positions) is currently much the 
same. If this information is either stored in a configuration file or accessible through the user 
interface, a greater degree of flexibility and control would be afforded. 
While these two additions are largely superficial the final and most important would be the 
ability to set camera paths through scenes that would be followed as frames are rendered. 
This would greatly enhance the usability of the program as a rendering tool for animators 
and should produce interesting effects, especially with moving highlights etc. 
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6. Conclusion & Results 
The results presented here represent only some of the work that could be done towards this 
subject and needless to say it is limitations on time and resources that have precluded a full 
study, but the initial results look encouraging.  
In the end several rendering methods used at different stages of the production process 
seems to be the best answer with, for example, the original representation being adequate for 
finding the best possible view while the OpenGL based tessellation methods give an idea as 
to what the shape of the surface will look like. For the final rendering ray tracing seems the 
most obvious choice but even within this different techniques could be used for different 
effects, especially when treating spray. Billboarded particles, illuminated streamlines, texture 
splats and implicit surfaces would all be useful for simulating various types of spray and 
laminar flow such as that over waterfalls. 
The application developed also provides the required interactivity and a tool for animators 
with extensions possible as discussed Section 5. 
However, while it may be that all are useful one of the goals called for a comparison of the 
techniques and so Table 6.1 contains some time-based information on how they compare. It 
is important to note that the implementation as is stands is really just a proof of concept and 
is not at all efficiently coded. In particular the code for the BSP trees are very raw, a possible 
explanation for the appalling times shown in the table. 
 

  

The time for ‘first’ drawing includes initialization etc while ‘next’ doesn’t 
Small Scene: 80x20 columns, 2800 particles 
Large Scene:  
Test System: Athlon XP 2100 w/ 512MB RAM 

Table 6.1. Rendering Times of different methods 

Description Time taken 
(First / Next) 

Original Representation – small scene 60ms / 15ms 
gluNURBS – small scene 1600ms / 1400ms 
New Implementation – small scene 4000ms / 1200ms 
Raytracing – small scene 500x500 380000ms 
Raytracing – small scene (surface only) 86000ms 
Raytracing – small scene (spheres only) 104000ms 
Raytracing – small scene (Billboarded only) 230000ms 
Original Representation – large scene 700ms / 500ms 
gluNURBS – large scene 20000ms /19000ms
New Implementation – large scene 9000ms / 1400ms 
Raytracing – large scene 500x500 5400000ms 
Raytracing – large scene (surface only) 4780000ms 
Raytracing – large scene (spheres only) 400000ms 
Raytracing – large scene (Billboarded only) 1400000ms 
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Appendix A – Base Model 
 
This section describes the model that was used to create the data for rendering during this 
project. It is important to note that the following does not constitute work done during the 
course of the project and should not be seen as such. 

Volume Model 
Continuing the work of O’Brien & Hodges and Mould & Yang [10] [11] the volume model, 
representing the main body of water in our model, is a column based system. Using columns 
holds the advantages of easy surface creation as the top of all columns are known and less 
flow calculations needed so the system is less computationally intensive. 

The structure of the volume model is 
much the same as that used in the 
previous work mentioned above. That 
is the environment is divided into equal 
sized squares which form the base of 
columns as in figure 2. All columns 
start with a user defined height which 
then varies over time dependant on the 
calculated flows. Source / sink columns 
are the only ones to retain their heights 
allowing for in and out flows to the 
system. Pipes are then created between 
each of the eight adjacent columns and 
each cell that could overlap during the 
course of the simulation. Pipes are also 
created between the cells of one 
column and the air above the adjacent 
columns. At this point the system is 

ready to begin simulation. 
The underlying basis for the flow equations that are used in this simulation is the science of 
hydrostatics, or that describing the pressure of fluids at rest. The equations related with this 
approach are simple, both to understand and to compute, and as a result are easy to 
implement. 
For any column in the grid the hydrostatic pressure can be calculated from the equation 
below based on the work of Bernoulli. 

)(
2
1

0
2 EpvghQ +++= ρρ  

Where Q is the total pressure, h the height of the column, g acceleration due to gravity, ρ the 
density of the fluid, v the velocity of flow. p0 the air pressure and E the pressure arising from 
external forces which together form the pressure energy term. In this case the height of the 
column is the height above some arbitrary point in the world so long as the same point is 
used for all columns.  

a) Environment 
before columns 
are generated. 

b) Top down view 
with environment 
split into grid for 
columns. 

c) Columns after 
generation with 
initial heights. 

Figure A. Column Generation from environment. 
Arrows indicate position of some pipes.
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Using the pressure differences between cells it is possible to calculate the acceleration and 
from that the flow that should occur between cells. The final equation for the flow velocity 
(η) through a pipe is: 

)(0 l
QQ

tf tailhead

ρ
ηη −

∆+=  

Where l is the pipe length, f is a friction coefficient (as suggested in [10]), and η0 is the flow 
in the previous time step. An interesting point to note is the lack of any viscosity parameter 
in this equation. This is because one of Bernoulli’s assumptions was that the distances 
between points of measurement were so small that viscous losses were negligible, instead the 
friction coefficient used allows energy to slowly escape from the system. While not physically 
justified it serves as an ad-hoc method of including viscosity and in all examples was set at 
0.995. 
Using the flow calculated for the pipe the volume of water that should be moved through it 
is calculated by: 

ctV η∆=  
Where c is the cross-sectional area of the pipe, or the amount of overlap between the cells. 
Because mass is to be conserved the volume removed from one column is the same as that 
added to the other. Care must also be taken not to allow a volume of less than zero to occur. 
This system is very fast considering the mass of water that is being represented but there are 
several problems. 
Columns pose a problem as a representation because turbulence is a three dimensional 
feature; this is considered one of the classical characteristics of turbulence [1]. While using 
the ‘cells’ given by Mould & Yang relaxes the assumption of vertical isotropy this goes a long 
way to explaining some of the model’s inability to simulate certain situations. A second 
problem arises from the fact that turbulence is a feature of flow and not of the fluid ‘at rest’. 
This means that while hydrostatics may be easy to use the equations generated for flow are 
incomplete and ignore many of the visible characteristics of water such as shear stresses. 
This is perhaps the largest flaw in the model and something that lends itself to further 
research.  

Spray Model 
The spray model is used to model water as it breaks free of the main volume of water. There 
is no easy physical solution to when spray should be created and as such assumptions must 
be made instead. Earlier work with column systems were concerned mainly with generating 
splashes from hitting objects and as such used vertical velocity thresholds for generating 
spray. Because the idea here is to model waterfalls the assumptions used here are those 
regarding the heights of wave crests before they become unstable (when the wave height is 
0.78 of the water depth) [21]. This obviously allows waterfalls to form easily but also works 
for rapids as large flow velocities form ‘spikes’ of water that while erroneous are then turned 
into spray due to their large heights.   
The spray system begins its evolution when particles are generated. First the number of 
particles (or volume) needs to be determined. Using the formula to calculate flow through a 
weir it is possible to determine the required flow rate and therefore volume. This is through 
the equation [2]: 

gBHflowrate 2
3
2 2

3

=  
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Where B is the base length, H the height and g the acceleration due to gravity. The volume to 
pass through in this time step can then be found by flow rate * time step. This determines the 
number of particles to be created as all those generated, except the last, is of a user defined 
volume. The last of course needs to be the remainder of volume to be moved as mass must 
be conserved and not created. Depending on the scale and resolution of the model currently 
being used this can be set to achieve the best looking results. The position of the particles is 
also easily determined and is set at a random position in the face that the particle is being 
generated from. The final initial variable that is needed for each particle is velocity and this 
can also be generated from the flow rate equation above. In this case the velocity of flow 
through a column’s face is found to be flow rate / face area. Flows within the column 
structure may mean the velocity should not be perpendicular to the front of the face; to 
account for this the average flow from surrounding columns is used to give direction to the 
scalar velocity calculated above. 
In many cases the velocity imparted to the particle should not only be horizontal but also 
include an initial y velocity. To do this the difference in total height between the column for 
which particles are being generated and the column behind is used in the classic formula 

asuv 222 +=  
Where v is the current velocity, u is the initial velocity, a the acceleration, in this case gravity, 
and s the distance covered. While this may not be a perfect physical solution it does manage 
to provide a more believable representation. 
One of the methods that were initially considered to help create the illusion of water pooling 
and incompressibility was the use of cohesion. This involves creating small forces between 
water particles which attract and repel neighbours in the effort of keeping an optimal 
distance apart and is an effort to model intermolecular bonds. After both observing the 
inefficiency and inaccuracy of using cohesion within the particle system and after reading 
enough to convince that such was unneeded due to water’s low viscosity so long as the 
movement was turbulent, such as is the case with spray, [18][19] this was excluded when the 
particle and column systems were combined. The visual effects of such cohesion might be 
achieved by appropriate rendering of the particle system but due to time constraints we were 
not able to explore this topic in more detail. This means that the only active force during a 
time step is gravity.  
Collision detection with the boundary is the same as for the original particle system 
described in the implementation section and so collisions with columns is the only thing 
explained here. 
After calculating which column the particle is above (or within), the particle’s y coordinate 
value is tested to see if it should be absorbed into the column. Simply increasing the 
column’s volume and destroying the particle was found not to be accurate enough however 
as this would force the column’s height up, often absorbing more particles in the process. 
This would not have been a problem for the small scale splash effects that the underlying 
model was designed for but causes considerable problems when the particles are modelling 
waterfalls where there are many particles hitting at any one time. After trying to spread the 
volume of a colliding particle over several columns it was found that by instead modelling 
the force of impact and subsequent pressure increase in the column not only was the 
problem reduced but more realistic effects were generated. The equations used were the 
same as for external objects colliding with the water presented in Mould and Yang. The 
force on the object is given as two terms.  

gVvF ρµ −−=  
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Where v is the velocity of the object, µ is the viscosity, V the volume of water displaced, ρ 
the density of the fluid and g the acceleration due to gravity. The first term describes the 
force of the fluid on the particle and the second is the force due to buoyancy. Because the 
force on the fluid must be equal but oppositely orientated to that on the water droplet this 
formula can then be used to determine the force on the column. Using the formulas: 

AmP /=   and  
a
Fm =  

We can then calculate the resultant pressure of this force on the column, stopping it from 
rising unrealistically. 
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Appendix B – Program Interface and Structure 
User Interface 
This section contains example screens of the user interface with descriptions of the various 
features. 

Main Window 
This window is initially presented to the user and provides the majority of available options 
 

 
 
 

1) OpenGL window – This window shows the current output, clicking and dragging 
anywhere within the program activates the trackball and allows the user to change 
the view. Likewise the camera control keys will change the view here 

2) Rendering Method – Changing the method by clicking on a new radio button will 
redraw the OpenGL window with the desired method 

3) Controls Enabled – If selected the trackball and camera will be active, otherwise user 
interaction is halted 

Figure B.1. Main Window User Interface
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4) Batch Render – If selected the ‘Render; button will cycle through all loaded time 
steps, outputting the results to sequential filenames. 

5) Load Files – Once Files have been selected this button will either load a single time 
step into memory or all those selected (depending on the value of (8)) 

6) Select Files – Opens the Select Files dialog to allow the user to select those files 
representing the background scene and water at each time step. 

7) FPS – Frames per second. Not very important but changes how the ‘Current Time’ 
value in (10) is incremented 

8) Load Options – Determines if all or only one time step will be in memory at a time. 
Helpful when dealing with very large files. 

9) Render – Captures the output window to a file or, if ‘Batch Render’ is selected, 
renders all frames using the current view and method. 

10) Controls – Allows the user to navigate between loaded time steps using the trackbar. 

Select Files 
This window is presented to the user to allow them to select the relevant static and instance 
files as described in Section 5.1. 

 
 

1) Select Files 1 – This area allows the user to navigate to the directory in which files 
the files relating to each time step are stored. 

2) Select Files 2 – This are allows the user to select filenames from the currently 
selected directory to use as either the static or instance files. 

3) Select/Remove Static – Uses the file currently selected in (2) as the static file or 
removes that displayed in (6) 

4) Select/Remove Instance – Similar to (3) but allows for multiple selections and 
governs the contents of (7) 

5) Clear All/OK – Either resets the form or accepts the currently selected files and 
informs the main program that a new selection of files is ready to be loaded 

Figure B.2. Select Files User Interface 
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6) Static State File – Displays the current file that contains information relating to the 
position of background objects such as rocks and ground panels. 

7) Instance State Files – Displays the selected files that contain information on the 
position of the water at each time step. 

Progress Window 
Due to the time that raytracing can take, a simple progress window was included. This runs 
in a separate thread and allows the user to cancel the raytracing at any time. An image is still 
saved in these cases to allow the user to see what the image may have looked like 
 The progress itself is actually a simplistic calculation based on the number of pixels already 
calculated and the number remaining, regardless of how complex the scene is behind each of 
these pixels. As a result it is not uncommon for the progress bar to proceed in fits and starts 
as simple areas (where only the background is drawn) are completed. 

 
1) Resolution – Displays the resolution being used for the current image in Width x 

Height format 
2) Start/End Times – Displays the system time of when the ray tracing started and, on 

completion, when it stopped 
3) Percentage Complete – Provides both a numerical and visual representation of how 

much of the image has been completed 
4) OK/Cancel – Allows the user to stop the ray tracer at any time. Needless to say the 

OK button is only available when the ray tracer has completed 

Camera Control Keys 
The following lists the keyboard controls for camera operation: 
Z/X – Zoom in / out of scene 
Q/E – Increase / Decrease the elevation of the camera 
R/F – Raise / Lower the position of the camera (in the y direction) 
A/D – Rotate the camera on its y axis 
W/S – Move the camera forward / backward along its current direction 

Class Diagram 
The class diagram on the following page was created after implementation, which explains 
some of the strange design. The diagram also does not include all attributes or methods as 
these can be found already in the implementation if required. 

Figure B.3. Progress Indication 
User Interface 
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Figure B.4. Class Diagram 
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