
COLLISION DETECTION AND RESPONSE
OF SKELETALLY ANIMATED MODELS

VADIM MACAGON

MARCH 11, 2003

ABSTRACT

This project set out to explore possible ways of handling the collision detection and
response of skinned and skeletally animated models in an interactive and physically
realistic 3d environment. A large part of the project consisted of creating a 3d soccer
simulation to demonstrate the methods that were devised to handle the collision of
skeletally animated models with each other and objects around them. The possibility
of integrating a skeletal animation system (based on pre-generated animations) with
an existing physics engine – in order to provide physically realistic responses to
collisions was also explored. It is hoped the techniques devised in this project will be
of use to anyone interested in creating 3d simulations in the fields of computer
graphics, sports science, or computer games.

 2

1. INTRODUCTION

The aim of this project was to come up with a way to detect collisions of skeletally
animated polygonal models (also referred to as characters) in a 3d environment and to
provide semi-physically realistic responses upon impact of these models with the
environment. Techniques presented in this report are geared towards 3d simulations in
the areas of sport science, and computer games.

Collision detection has been researched for many years in computer graphics, and is
of extreme importance in visual simulations of 3d environments where various objects
can interact with each other. The exact method used to detect collisions will depend
on the way 3d objects are described, the complexity of the objects and the results that
need to be obtained from the collision detection system.

Presently there are a number of algorithms and collision detection libraries that
provide fast collision detection in a 3d environment, however they typically expect
the 3d objects to consist of static geometry and tend to see the object as a polygon
soup. When a human looks at a 3d environment he sees objects, not just an arbitrary
collection of polygons. As mentioned previously, collision detection algorithms tend
to be at least to some extent application specific, and in this particular case some of
the objects will consist of deformable meshes that represent humanoid models.

Existing collision detection libraries deal with polygons (mostly triangles) and
primitive shapes such as spheres, capsules and boxes. When collision between objects
is detected they tend to produce a list of pairs of polygons that intersect, and perhaps
even the intersection points. These results are not sufficient if we want to obtain a
higher-level description of the interaction between objects, such a higher-level
description could be quite useful in sports science and also computer games.

A simple scenario will be used throughout this report to illustrate various points and
to help describe the reasoning behind the techniques presented. Imagine a soccer
game, most of the time each player is in contact with the ground, the soccer ball, or
other players. In order to simulate this scenario we need to be able to detect the
various collisions that occur – in order to make the soccer ball fly with each kick and
to prevent players from falling through the ground. This alone however will not
produce a very realistic simulation.

We’d like to know which limbs, and perhaps even which parts of the limbs, were
involved in an impact so that we can better model the response of the players to the
various impacts they experience. In order to obtain higher-level collision information
the polygon soup that makes up the player model must be subdivided into a number of
groups representing individual limbs or limb parts.

When a collision between objects has been detected the objects need to be
repositioned to ensure they do not interpenetrate each other unless required.
Furthermore in the case of humanoid models one would expect the pose to change in
response to impacts. This is where collision response techniques come into play. With
animated articulated models there are generally two ways to respond to collisions.

 3

The simple way of producing a response to an impact involves creating a collection of
pre-canned animations (i.e. pre-recorded), and playing one of these depending on
which limb or body part is hit, this has been widely used in computer games.
However since there is only a fixed set of animations the end user will quickly notice
that the responses to some impacts are not what they would expect to see in the real
world.

An alternative approach to producing more realistic responses, involves the use of a
physics engine. The player model can be approximated by a collection of rigid bodies
that are connected together and are subjected to physical simulation. This approach
doesn’t restrict the player model to a set of pre-canned animations, instead the
player’s pose can be changed in an infinite number of ways based not only on the
points of impact, but also the force of the impact.

For this project the Open Dynamics Engine1 (ODE) was chosen to provide physically
realistic responses upon impact of the humanoid player models with their
environment. ODE is a free, industrial quality library for simulating articulated rigid
body dynamics. The player models in our simulation will be represented in ODE as a
collection of rigid bodies, connected together by a number of joints that constrain the
positions and orientations of the rigid bodies. Other objects in the environment, like
the soccer ball will also be represented in ODE as rigid bodies. While ODE has its
own collision detection facilities a decision was made not to use them, since they
alone would not be sufficient for the project. The output from the collision detection
system will be fed to ODE, which will in turn try to ensure all constraints are satisfied
and hence produce a visually realistic response to collisions in the soccer simulation.

The soccer simulation has been implemented using The Nebula Device2, which is a
free modular framework for building 3d visualization/game engines. Nebula already
contains a collision detection system that deals with static geometry by making use of
the Optimised Collision Detection3 (OPCODE) library. Nebula also provides a
character animation system, however the collision system is currently incapable of
handling animated characters, so hopefully this project will be a starting point for
filling in that gap.

1 ODE can be obtained from http://opende.sourceforge.net
2 Nebula can be obtained from http://nebuladevice.sf.net
3 OPCODE can be obtained from http://www.codercorner.com/Opcode.htm

 4

2. SKELETAL ANIMATION

The player models consist of a single mesh that is deformed based on the underlying
skeleton, animation of the character using pre-canned character animation works by
changing the pose of the skeleton. It is important to understand how this system works
in detail since the collision detection and response techniques presented later on are
geared towards working with such models.

A model’s skeleton is made up of a collection of joints, arranged in a hierarchical
structure. Figure 1 shows the make-up of a player model, the bones are just a visual
aid to make it easier to see the relationships between the joints and are typically only
used by animators during the creation of the animations. Every vertex in the mesh is
weighted by one to four joints4 and the final position of each vertex (in model space)
will be determined by the current pose of the skeleton.

Each joint in the skeleton has two rotation and two translation components, and all
joints except for the root joint have a parent joint. A rotation component is described
by a quaternion, and a translation component is described by a 3-vector. One pair of
rotation/translation components contains the initial position of the joint relative to its
parent, and its initial orientation. The second pair of rotation/translation components
contains the current position of each joint relative to its parent, and its current
orientation. The algorithm for determining the final position of each vertex in the
mesh is known as skinning and works as shown in Listing 1.

Throughout the remainder of this report, matrix multiplication is performed in left to
right order. In this particular case each matrix is a 4x4 matrix with the translation
component stored in the fourth row of the matrix.

4 The limit of 4 joints is imposed by the implementation of skinning in Nebula.

Joint
Bone
Mesh

Figure 1 – Low Resolution Character Model

 5

 Tir is the matrix obtained by converting the initial joint rotation component into a

rotation matrix.
 Tit is the matrix obtained by converting the initial joint translation component into

a translation matrix.
 The final Ti is known as the pose matrix, and the position component of Ti

specifies the initial position of the joint in model space. Ti
-1 is the inverse of Ti.

 Tip is the pose matrix of the parent joint.
 The Ti* matrices need only be computed once when the character skeleton is

created.
 Tc, Tcr, Tct, Tcp are obtained in a similar way from the current joint rotation and

translation components.
 Ts is known as the skinning matrix, and represents the transformation that needs to

be applied to the initial joint pose in order to obtain the current joint pose (Tc).
 vi is a 3-vector that contains the initial position of the vertex in model space.
 wjv is the weight (in the range 0-1) of a joint j on the vertex v.
 The final vc will contain the current position of the vertex in model space.
 For each vertex the sum of the weights should add up to 1.

The current rotation and translation components of each joint are obtained every
frame from one or more animation curves, if multiple curves are used the samples
obtained from each curve are blended together. Rotation and translation components
are obtained from separate curves. Each animation curve can be obtained by recording
the rotation/translation components of each joint at key frames of the animation. If the
skeleton bones remain the same length each frame then only an animation curve for
the rotation component is necessary for most joints. Hence an animation that runs at
30 fps and lasts for 2 seconds would have an animation curve for the rotation
component that contains 60 entries (assuming there are 60 key frames), with each
entry specifying a quaternion that describes the rotation applied by the joint at that
key frame.

Further details on how character animation is performed can be obtained by studying
the source code for the character animation system in Nebula, the information
provided so far should be sufficient for understanding the rest of this report.

for each joint j
let Ti = Tir x Tit
if j has a parent

let Ti = Ti x Tip
let Tc = Tcr x Tct
if j has a parent
 let Tc = Tc x Tcp
let Ts = Ti

-1 x Tc

for each vertex v
 let vc = (0,0,0)
 for each joint j that v is weighted by
 let vc = vc + (vi x Ts) x wjv

Listing 1 - Skinning

 6

3. COLLISION DETECTION

In a simulation where one or more objects are moving, the collision detection scheme
must be capable of detecting collisions between stationary and moving objects. When
checking for collision between stationary objects it is sufficient to only consider their
current position at the time at which the check is made and the collision check
essentially just becomes an intersection check. However with moving objects
checking for collision requires taking into consideration not only their current position
at the time of the check, but also their previous position at the time of the last check.

Figure 2 illustrates the situation that may occur when checking for collision between
two moving objects. It would not suffice to check for intersection between the two
spheres at t2, because no intersection would be detected at that time and the collision
at time tc would be missed. Instead a number of tests along the object displacement
vectors are performed to ensure a collision is detected if it has occurred between t1
and t2. In practice, detection of a contact between two moving spheres can be done
using a simpler method [1]. Unfortunately most objects in our simulation consist of
complex geometry so intersection tests aren’t as simple as they are for spheres. To
improve performance a bounding sphere can encapsulate geometry and that sphere is
then used for rough collision detection (other bounding volumes could be used
instead). However, relying on the sphere alone would produce phantom collisions
because the sphere is only an approximation of the real object and thus there is likely
to be empty space inside the sphere that is not occupied by the object.

Nebula’s collision detection system associates a bounding sphere with every object
which may be involved in a collision at one time or the other and provides two
methods to check for collision between a pair of moving objects, the quick swept
sphere approach [1] or a more accurate (but slower) approach in Listing 2. The
accurate approach places an upper bound on the maximum number of intersection
tests that will be done and only performs multiple tests along the displacement vector
if the object has travelled more than 1/8th it’s bounding sphere’s radius.

Figure 2 – Collision between moving objects

 7

 p0 is the position of object 0 last frame
 p1 is the position of object 1 last frame
 v0 is the displacement vector for object 0 (i.e. current position – last position)
 v1 is the displacement vector for object 1
 v0len is the length of v0
 v1len is the length of v1
 rad0 is the radius of bounding sphere associated with object 0
 rad1 is the radius of bounding sphere associated with object 1

In a simulation containing n different objects (that may collide with each other) a
brute force collision detection system will have to test for collision between every pair
of objects, hence it would be O(n2). If n is large and the objects themselves are quite
complex the collision detection may take up too much time each frame. Fortunately
there are ways to reduce the number of pairs that need to be tested each frame and
also to avoid complex collision tests when simpler tests can be used to indicate early
on whether a collision could’ve possibly occurred.

Spatial subdivision is one way to speed up collision detection. By subdividing the
world within which the simulation occurs into smaller spaces it is possible to
eliminate tests of pairs of objects that reside in non-adjacent sub-spaces. There are
numerous spatial subdivision schemes one could choose from, depending on the type
of simulation. For this particular project it was deemed unnecessary to use an explicit
spatial subdivision scheme because the soccer simulation is relatively small and the
collision system in Nebula already uses some early out tests as described next.

Previously it was mentioned that the Nebula collision detection system associates a
sphere with each object, the system also keeps track of both the current position of the
sphere its previous position. Additionally each object belongs to a collision class, and
the end user is able to specify the types of collision checks to be performed between
each pair of classes, or whether collision between any pair of classes should be
ignored entirely. Each frame the system computes an axis-aligned bounding box
(AABB) that encloses the two spheres (the past and the present). A collision could
only occur between two moving objects if the corresponding AABBs overlap along

let num = max(v0len ÷ (rad0 × 0.125), v1len ÷ (rad1 × 0.125))
let maxChecks = 16
if num is zero then
 Let num = 1
else if num > maxChecks
 num = maxChecks
let d0 = v0 ÷ num
let d1 = v1 ÷ num

repeat num times
 p0 = p0 + d0
 p1 = p1 + d1
 check for intersection between object 0 at position p0 and
 object 1 at position p1, if intersection found break out of the loop

Listing 2 – Detecting Collisions Between a Pair of Moving Objects

 8

all 3 global axes, existence of such an overlap would indicate that the two objects
might have occupied the same space at the same time and further tests would need to
be performed to determine whether they actually collided. The use of AABB boxes in
this way to speed up collision detection is typically known as Sweep and Prune [7].
All objects are kept sorted by the system along the global x-axis using the
corresponding AABBs, and the system is typically requested to check for collisions
between all objects it keeps track of every frame. The exact algorithm used by Nebula
is summarized in Listing 3.

 AABBx is the AABB that corresponds to object x.
 classx is the collision class that object x belongs to.

Essentially collision between stationary objects can be detected by checking for an
intersection between the objects, and collision between moving objects can be
handled by checking for collision between so called stationary objects in a number of
snapshots of the moving objects taken in the time between the last and the current
frame.

3.1. THE CHARACTER COLLIDE SHAPE

The deformable mesh of each character in the soccer simulation consists of up to 2000
triangles. If the check for intersection between characters used a simplistic method
that simply tested each triangle in one mesh against all the triangles in the other mesh,
the method would have to go through approximately 4 million pairs. Despite today’s
blazingly fast CPUs, processing two soccer teams each frame of the simulation while
also handling user input, rendering, logic, and perhaps even sound while maintaining
a descent frame-rate is going to be impossible using this method. Therefore to achieve
a reasonable frame-rate the number of pairs that are tested each frame needs to be
reduced.

To cut down on the number of triangles that need to be processed two methods where
used. First of all the visual representation of the character (Figure 3) was separated
from the representation used for intersection tests (the collision mesh). The collision
mesh is a low-resolution version of the original character mesh and in our case
consists of around 280 triangles (Figure 4). Secondly the collision mesh was
subdivided so that only parts of the mesh would be tested when necessary and
triangle/triangle intersection tests where eliminated entirely.

for each object obj
 for each AABBx that overlaps with AABBobj along the x-axis
 if user requested collisions between classx and classobj to be ignored
 move onto the next object
 else
 if AABBx overlaps with AABBobj along the y & z axes.
 perform further collision tests between x and obj (Listing 2)

Listing 3 – Checking for collisions.

 9

The Nebula collision detection system uses the term collide shape to refer to the data
that describes the shape (i.e. geometry) of an object that may be involved in
collisions. As mentioned previously Nebula is currently only capable of dealing with
collide shapes that consist of non-deformable geometry, these shapes consist of a
triangle soup and an AABB tree (that is built by OPCODE). Therefore a new collide
shape was devised to represent characters.

The new collide shape consists of 3 levels, and is used by the collision detection
system for performing intersection tests between characters and other non-deformable
objects. Level 1 is made up of a collection of bounding volumes (spheres and
capsules), each bounding volume contains a sub-group of triangles from Level 2 (the
collision mesh). The remaining Level 3 consists of another collection of volumes
(spheres and capsules).

Figure 3 – High Resolution Mesh Figure 4 – Low Resolution Mesh

 10

Level 1 bounding volumes are used to subdivide the collision mesh into groups, such
that each group coincides with a body part. This subdivision serves two distinct
purposes. First of all by subdividing a character into parts the collision detection
method doesn’t always have to process every triangle in the collision mesh, since it’s
rare for all body parts to be in contact with something at the same time. Secondly,
higher-level collision information becomes available, so the collision system can tell
the user not just whether a character collided with some object, but also which parts of
the character collided with that object. This additional information is extremely useful
in trying to create a realistic simulation. For instance, in the soccer simulation the
soccer player could be made to limp slightly if another player hits him in the foot, or
could get a bloody nose as a result of the soccer ball hitting him in the face.

These bounding volumes are attached to the character skeleton so they move with the
character. This is achieved by associating each bounding volume with a skeleton joint
and positioning/orienting the volume relative to that joint. Figure 6 provides a simple
example of computing the position of the bounding volume for the wrist (in this case
we assume there are only 3 joints in the whole skeleton). The position of the sphere
volume in model space is obtained by flattening the joint hierarchy at the joint to
which the volume is attached, just as it is done during vertex skinning. Position and
orientation is computed in a similar way for capsule volumes, the only difference
being that two points are transformed instead of one.

Figure 5 – Level 1 bounding volumes for a character.

 11

 Tflat is the result of flattening the joint hierarchy at the wrist joint.
 usphere is a 3-vector containing the coordinates of the centre of the sphere volume

relative to the wrist joint.
 vsphere is the 3-vector containing the coordinates of the centre of the sphere volume

in model space.

The collision mesh for a character is classified as Level-2, and can be used to obtain
finer grained information about which areas of the character came into contact with an
object. This can be achieved by tagging each triangle in the collision mesh with a
group identifier that allows for further subdivision of the collision mesh. For example
the triangles belonging to the volume that bounds the left forearm could be separated
into two groups, one group would consist of the triangles on the outer side of the
forearm, the other would consist of the ones on the inner side. It could be taken even
further to uniquely identify each triangle. All this extra information can be used to

Tflat = T2 x T1 x T0
vsphere = usphere x Tflat

Figure 6 – Attaching a volume to a skeleton joint

Listing 4 – Computing volume position in model space.

Figure 7 – Level 2 Collision Mesh and Triangle Groups

 12

provide visual feedback to the user whenever the character experiences an impact by
adding a decal to the character’s texture at the point of impact.

Figure 8 – Level 3 volumes (Front View)

Figure 9 – Level 3 volumes (Right View) Figure 10 – Level 3 volumes (Back View)

 13

The final level is made up of a collection of volumes, these volumes are bound to the
character skeleton just like Level 1 volumes, and there may be multiple Level 3
volumes for each Level 1 volume. Unlike the Level 1 volumes Level 3 volumes don’t
contain any triangles, and exist solely for the purpose of computing an estimate of the
penetration depth between a character and some other object whenever a collision
occurs, this is used for collision response and is explained in section 4. Ideally the
Level 3 volumes should approximate the collision mesh as closely as possible, but as
can be seen in Figures 8-10 that’s hard to do without using lots of small volumes.

As already mentioned, during the search for an intersection between a character and
some object, the bounding volumes provide spatial subdivision that allows for fast
elimination of whole groups of triangles at once - if the bounding volumes enclosing
these groups don’t overlap with the object. In order to provide any significant
advantage over the brute force approach to finding intersections the bounding
volumes need to satisfy a number of properties. The bounding volume should
encapsulate triangles as tightly as possible in order to minimize the number of “false
positives” which lead to checking all triangles in the volume. The test to check
whether a volume overlaps with another should be as quick as possible. And finally it
should be computationally cheap to transform each volume as the character is
animated.

After some consideration the sphere and capsule were chosen. The sphere has a quick
overlap test and only the sphere centre needs to be transformed during animation.
Unfortunately spheres usually do not provide a very tight fit. The capsule can be
described by a line segment and a radius, and has a pretty quick overlap test. Only the
two endpoints of the line segments need to be transformed during animation. Capsules
provide a better fit than spheres in some cases. Furthermore capsules and spheres
allow for quick computation of penetration depth when two volumes or a volume and
a triangle intersect (the depth value is necessary for providing proper collision
response).

Objects overlap if
 d < sum of radii

 d² < (sum of radii) ²

Figure 11 – Overlap of spheres and capsules.

 14

Axis aligned bounding boxes (AABB) [5] and oriented bounding boxes (OBB) [6]
were also taken into consideration. However when the AABB needs to be transformed
during animation there are two options. One is to compute a new AABB by finding
the extents of the transformed geometry, but doing so is computationally expensive.
Alternatively the previous AABB is transformed and a new one is computed based on
the transformed vertices of the old AABB, but this may produce an AABB that is
twice as large as the original. Oriented bounding boxes don’t suffer from this
“growing” problem, but they take up more memory and are more expensive to
transform [8].

3.2. CHARACTER INTERSECTION

Once the collide shape for a character has been defined the method in Listing 5 is
used to find intersections with another character (intersection tests are done in world
space).

intersected <= IntersectCharacters(characterA, characterB)
{
 Transform all Level-1 and Level-3 volumes to world space
 For each Level-1 volume volA1 from characterA
 For each Level-1 volume voB1 from characterB
 If volA1 and volB1 intersect store information about the contact
 i.e. IntersectLevel1(volA1, volB1)
}

intersected, contact <= IntersectLevel1(volA1, volB1)
{
 if volA1 and volB1 overlap
 transform all triangles in volB1 to world space (i.e. skinning)
 for each Level-3 volume volA3 in volA1
 for each triangle tri in volB1
 check for intersection between volA3 and tri
 if intersection exists store the contact point, contact normal and depth
 intersected = true
 if contact points were found then
 combine all contacts into a single contact
 else
 transform all triangles in volA1 to world space
 for each Level-3 volume volB3 in volB1
 for each triangle tri in volA1
 check for intersection between volB3 and tri
 if intersection exists store the contact point, contact normal and depth
 intersected = true
 if contact points were found then
 combine all contacts into a single contact
}

Listing 5 – Finding an intersection between characters.

 15

The method for finding the intersections between a character and a non-deformable
object is slightly different. Recall that non-deformable objects are handled by
OPCODE, which builds an AABB tree from the mesh that is then used to quickly
obtain a list of potentially colliding triangles.

During the building of the collide shape for the soccer player character it became
obvious that a lot of the Level-1 volumes only contained one Level-3 volume, such
was the case for legs, and arms. Therefore the methods above could be improved by
checking for this case and avoiding the Level-1 overlap test altogether. Furthermore
for character intersection it may be beneficial to buffer the transformed triangles. This
means that if a character is involved in collisions with multiple objects the relevant
parts of the collision mesh only need to be skinned once after the skeleton is
repositioned for each frame.

4. COLLISION RESPONSE

In order to provide the proper response to collision there are primarily three things the
collision detection system should be capable of providing for each collision, a contact
position, a contact normal and a penetration depth.

intersected <= IntersectCharacterOpcodeShape(character, opcodeShape)
{
 transform all Level-1 and Level-3 volumes in character to world space
 for each Level-1 volume volA1 from character
 obtain a list of triangles from opcodeShape that overlap with volA1
 transform touched triangles to world space (if any)
 for each Level-3 volume volA3 in volA1
 for each triangle tri in the transformed triangles list
 check for intersection between volA3 and tri
 if intersection exists store the contact point, contact normal and depth
 intersected = true
 if contact points were found then
 combine all contacts into a single contact
}

Listing 6 – Finding an intersection between a character and an OPCODE shape.

Figure 12 – Foot hitting ball.

 16

Once a collision between two or more objects has been detected something must be
done to bring the intersecting objects into a touching contact (so they just touch, but
don’t intersect each other). This usually involves moving one of the objects some
distance back, but this is not always simple because another object may by now
occupy that space so some sort of shuffling may be necessary. Alternatively objects
could be allowed to move only when their final position has been verified to be valid.

To resolve an intersection between two objects two approaches can be used. The first
approach relies on checking for intersection several times along the lines of
movement (displacement vectors), the objects are then moved back to their positions
at the time when the first intersection has occurred. A drawback of this approach is
that intersection must be checked several times, and a limit needs to be placed on the
maximum number of checks that can be done. The more checks are made the more
precise the estimate of the time of the first intersection, but clearly more checks will
also take up more CPU time.

An alternative, faster, approach can be used for dealing with collisions involving
characters. Recall each character has a collection of Level-3 volumes, consisting of
capsules and spheres. While multiple intersection tests along the lines of movement
may still be necessary in order to move the objects back to the approximate positions
at which the first intersection test has occurred not as many tests need to be done
because once intersection has been detected the Level-3 volumes can be used to
obtain an estimate of penetration depth between two objects. Penetration depth is the
depth to which two objects interpenetrate each other, if penetration depth is zero the
objects are just touching.

Simply bringing colliding objects into touching contact is not sufficient on its own to
create a realistic simulation. When two moving objects collide in the real world they
won’t both just come to a complete stop, physics dictates that due to conservation of
momentum either one object or both will deflect off each other and continue to travel
in some direction. Therefore objects must be given physical properties and a physics
engine needs to be used in order to correctly compute new velocities for objects after
a collision.

Writing a general physics engine from the ground up is not a trivial task. Therefore
the Open Dynamics Engine was chosen to assist in generating the appropriate
collision response for the soccer simulation. ODE primarily deals with rigid bodies
and joints. ODE joints have a different meaning to the skeleton joints mentioned in
previous sections. The ODE joints are attached to rigid bodies and embody one or
more constraints on the position/orientation of bodies relative to each other. Different
types of ODE joints are available, and each type provides its own set of constraints.
The exact shape of a rigid body is not important [2].

ODE resolves interpenetration between rigid bodies using contact joints [2], since the
exact shape of each body is not strictly necessary for computation of the physical
properties of the rigid body it is not kept track of by ODE. However the contact joints
need to be provided with information about intersections by the collision detection
system in order to properly resolve collisions, specifically the contact position,
contact normal and penetration depth.

 17

One of the goals of the soccer simulation was not only to allow the ball to bounce off
the goal post, or the players, but also to have players realistically fall over if they are
knocked down or are tripped up (usually known as rag-doll physics). This meant
ODE would have to handle whole characters that consist of a number of connected
bodies and not just simple objects like the soccer ball, which can be represented using
a single rigid body. A method had to be devised for integrating Nebula’s skeletal
character animation system with ODE.

4.1. DEDUCING RIGID BODY TRANSFORMS FROM CHARACTER SKELETON

Figure 13 demonstrates one possible configuration of ODE rigid bodies and ODE
joints in order to build an articulated soccer player character. Three types of ODE
joints are used in this case, hinge joint, ball joint and angular motor joint (amotor), but
other types may also be suitable depending on the character being articulated. The
constraints placed on rigid bodies by each joint are described in [2] (accompanied by
nice images).

Figure 13 – Building an articulated character using ODE rigid bodies

At any one time a character’s pose is determined either by the Nebula character
animation system or by ODE. Whenever control switches from the animation system
to ODE the rigid bodies that correspond to various body parts of the character must be

 18

re-positioned to match the current pose of the character, furthermore the ODE joints
that connect the rigid bodies must be re-attached and the angular limits the joints
place on orientation of bodies relative to each other need to be recomputed. Therefore
rigid bodies need to be attached to the character skeleton just like Level-1 and Level-3
volumes, the rigid body transforms can then be obtained from the skeleton using the
method in Listing 7.

 Tbrj is the transform of the rigid body b relative to the Nebula joint j.
 Tflatj is the flattened joint hierarchy at j.
 Tw is the character model to world transform.

Since all ODE joints have a corresponding Nebula joint, obtaining the anchor position
(vanchor) of the ODE joint from the character skeleton is trivial (Listing 8).

 Tw is the character model to world transform
 vp and vanchor are 3-vectors.

Figure 14 – Articulated Right Leg

for each rigid body b
 obtain the Nebula joint j that b is attached to
 Tb = Tbrj x Tflatj x Tw

Listing 7 – Compute rigid body transforms from the character skeleton.

for each ODE joint odej
 obtain the corresponding Nebula joint nebj
 let Tflatnebj = matrix formed from flattening the joint hierarchy at nebj
 vp = position component of Tflatnebj
 vanchor = vp x Tw

Listing 8 – Compute ODE joint anchor.

 19

Taking into consideration the knee as an example of a hinge joint, limits need to be
set on how far the bodies are allowed to rotate relative to each other in order to
prevent the thigh and the shin getting into humanly impossible positions. Whenever
the hinge anchor or axis is set the current relative orientation of the bodies is stored,
and from there on ODE can determine the relative angle of rotation about the hinge
axis by taking into account the initial orientation and the current orientation [3]. Each
time the switch is made from pre-canned animation to ODE the hinge anchor and axis
are going to be updated. Hence the angular limits must be recomputed because the
current relative orientation of the bodies is considered by ODE to be the initial
orientation, however this is not really the case and so the limits must be adjusted to
match ODE’s perception.

Once the relative angle of rotation (θ) is known the angular limits that need to be
given to ODE can be obtained using the formula below.

The ODE ball and amotor joints are used together for the hips, shoulders and head.
The ball joint constrains the orientations of the bodies relative to each other, while the
amotor joint is used to set angular limits on their rotation relative to each other [2].
For our soccer player an amotor can be used in euler mode and initial limits can be set
for rotation about the 3 motor axes. Similar to the hinge joints the rotational limits on

odeLimit = initialLimit - θ
while odeLimit < -180.0f
 odeLimit = odeLimit + 360.0f
while odeLimit > 180.0f
 odeLimit = odeLimit - 360.0f

Figure 13 – Right Hip Joints

Listing 9 – Obtaining an adjusted angular limit.

 20

each axis need to be updated whenever the amotor is reset (when switching from pre-
canned animation to physical simulation), once the relative angle of rotation about
each axis has been determined the new limits can be deduced using the method in
Listing 9. The relative angle of rotation about each motor axis can be obtained
similarly to the way it is obtained in [4].

The alternative to directly positioning bodies and re-adjusting joints and angular
limits all the time is to compute the linear and angular velocities that should be
applied to the rigid bodies in order to bring them into alignment with the character
skeleton. However this would require a simulation step just to bring the bodies into
alignment, and any other forces/torques will need to be applied in the following
simulation step.

4.2. DEDUCING POSE OF CHARACTER SKELETON FROM RIGID BODIES

After ODE manipulates the rigid bodies that make up the physical representation of
the character, the character skeleton (i.e. Nebula joints) must be updated to reflect the
new position and orientation of the various body parts. Rigid body position and
orientation can only be obtained from ODE in world space, hence the model to world
transform of each body must be decomposed in order to obtain the rotation and
translation components for the skeleton joints. Furthermore the number of ODE joints
is likely to be less than the number of Nebula joints, due the lack of a one to one
relationship the assumption must be made that any Nebula joint which doesn’t have a
corresponding ODE joint remains stationary relative to its parent. The method in
Listing 10 was devised to handle the task, but at present assumes the root joint has a
rigid body attached to it.

For each Nebula joint nebj
 Obtain parent joint nebjp of nebj
 If nebj has no parent joint (i.e. nebj is the root joint)
 If a rigid body body1 is attached to nebj
 Compute the current model to world transform for the character (Tw)
 and the current transform of nebj (Tj)
 See Listing 11.
 else
 error
 else
 let Tpb = body transform corresponding to nebjp
 If a rigid body body1 is attached to nebj
 Tj = Tbrj

-1 x Tb x Tpbrj
-1 x Tpb

-1
 else
 let Tb = Tj x Tpb

 Tj doesn’t change

Listing 10 – Updating character skeleton from rigid bodies.

 21

 The algorithm assumes joints are processed in order, such that a Nebula joint is
always processed before its ancestor joints, that way Tpb is always up to date
whenever it is used.

 Tb is the current body transform associated with nebj (every Nebula joint still has
a body transform even if it doesn’t have a corresponding rigid body).

 Tpb is the current body transform associated with nebjp.
 Tbrj is the transform of the body attached to nebj and relative to it.
 Tbprj is the transform of the rigid body attached to nebjp, if nebjp doesn’t have a

corresponding rigid body then Tbprj is set to identity.
 Tj is the joint transform (rotation x translation) of nebj relative to nebjp.

The formulas deserve some further explanation, which is best done with an example.
Assume the skeleton pose before the rigid bodies were moved about by ODE is
known, and there is a single root Nebula joint (j0) that is the predecessor of all other
joints in the skeleton.

Each joint jn has a corresponding joint transform Tjn and a body transform Tbn,
for n = 0 to num joints - 1. Tjn consists of the rotation and translation components of
the joint relative to its parent. Tbrjn is the transform of the body bn relative to the joint
jn. Joint j2 doesn’t have a body attached, since there is no body there is no Tbrj2 (or it
could be considers to be the identity matrix), however j2 still has a corresponding
body transform Tb2. Tw is the current character model to world transform.

The formula in Listing 11 only works for n > 0, in order to extract the character
transform and the current rotation/translation components of the root joint the
assumption must be made that the root’s translation component hasn’t changed. This
means any change in the orientation of the body attached to the root is associated with
the root’s rotation component and any change in the position of the body is associated
with the character transform. Translation is associated with the character transform

Tb4 = Tbrj4 x Tj4 x Tj3 x Tj2 x Tj1 x Tj0 x Tw (1)
Tb3 = Tbrj3 x Tj3 x Tj2 x Tj1 x Tj0 x Tw (2)

 Tbrj3
-1 x Tb3 = Tj3 x Tj2 x Tj1 x Tj0 x Tw (3)

 Tb4 = Tbrj4 x Tj4 x Tbrj3
-1 x Tb3 (Substitute 3 into 1)

 Tbrj4
-1 x Tb4 = Tj4 x Tbrj3

-1 x Tb3
 Tj4 = Tbrj4

-1 x Tb4 x (Tbrj3
-1 x Tb3)-1

 Tjn = Tbrjn
-1 x Tbn x (Tbrj(n-1)

-1 x Tb(n-1))-1

Figure 14 – Sample skeleton with attached rigid bodies.

Listing 11 – Computing the Nebula joint transform from an ODE rigid body.

 22

because the root joint cannot move large distances from the model space origin,
otherwise when control is switched from ODE back to the pre-canned animation
system the root translation component will be blended with the translation component
from the pre-defined animation and as a result the character will be flung back to its
previous position (due to the linear interpolation of the translation components). The
method for extracting the new root joint transform (Tj0) and the new character
transform (Tw) is shown in Listing 12.

 Trdiff is the rotation component of Tdiff.
 Tbi is the previous body transform.
 Torj0 is the last known rotation component of j0 (the root joint).
 Topj0 is the last known position (i.e. translation) component of j0.
 Tow is the previous character transform.
 R is the current rotation of b0 relative to its previously known rotation.
 P is the current translation of b0 relative to its previously known translation.

Tb0 = Tbrj0 x Torj0 x R x Topj0 x Tow x P = Tbrj0 x Tj0 x Tw
Tbi = Tbrj0 x Torj0 x Topj0 x Tow
Tdiff = Tbi

-1 x Tb0
R = Trdiff
Tj0 = Torj0 x Trdiff x Topj0
P = (Tbrj0 x Tj0 x Tow)-1 x Tb0
Tw = Tow x P
= Tow x (Tbrj0 x Tj0 x Tow)-1 x Tb0
= Tow x Tow

-1 x (Tbrj0 x Tj0)-1 x Tb0
= (Tbrj0 x Tj0)-1 x Tb0

Listing 12 – Computing the root joint transform and the character transform.

 23

4.3. CHARACTER NAVIGATION

In order to allow the end user to control the soccer player a spherical rigid body is
placed at the base of the character and the character transform is derived from the
sphere’s transform. Forces and torques are applied to the sphere in order to move and
orient the character. The character can be subjected to gravity and friction as a whole
without having to physically simulate each foot, which reduces the amount of work
ODE has to do. And additionally sliding against walls or down inclines is
automatically handled by ODE.

Whenever the user presses a key to move the character the direction of movement is
determined with respect to the character’s local axes. This presents some difficulties if
both torques and forces are applied to the sphere during a physics time step. The
problem stems from the fact that application of a torque changes the direction of the
character, but the new orientation can’t be determined until the physics step is taken.
So if both a torque and a force are applied the character will move in the direction he
was facing at the beginning of the physics step but he will also rotate about while
doing so, hence producing nothing resembling proper character movement. To
counteract this problem an attempt was made to allow either torques or forces
(through the centre of mass, hence no torque will be generated) to be applied at any
one physics step. However a satisfactory solution has not been obtained as yet,
because the current implementation seems to prevent any translation whenever the
user rotates the character while moving.

 24

5. CONCLUSION

The collision detection techniques discussed in this report seem to work, however,
there is little doubt there is room for improvement. One area that wasn’t explored by
this project is temporal coherence, various collision detection algorithms have been
exploiting it with success and it may be possible to apply it to the methods presented.
Also, other collision detection algorithms such as variants of GJK [9] exist that are
able to compute the penetration depth between complex objects, so it may be worth
considering using one of them instead of the approximation provided by Level 3
volumes described in this report.

The integration of the ODE physics engine with Nebula’s skeletal animation system
for the purpose of rag-doll physics using the ideas presented in this report has yet to
be proven to work in practice, as the implementation has not as yet been completed.

This project is still very much a work in progress, and suggestions for improvement or
corrections for any mistakes will be appreciated.

6. IMPLEMENTATION

Some of the techniques described in previous sections have been implemented as part
of the soccer simulation. Unfortunately due to time constraints not everything has
been implemented and things that have been implemented are somewhat of a mess.
Further details regarding the existing and future implementations will be available in a
separate document that will accompany the soccer simulation. The demo and source
can be obtained from www.steelronin.com (sooner or later).

7. ACKNOWLEDGMENTS

Many thanks to the dedicated and underpaid Scott Lange who modelled and animated
the environment and characters for the simulation. Thanks to the good folks in
#nebula, especially Leaf Garland and Bruce Mitchener for providing assistance with
Nebula, Per Vognsen for helping out with bits of maths and physics. And finally
thanks to Radon Labs for releasing Nebula, Magic Software Inc. for their freely
available implementations of various low-level intersection algorithms, Russell Smith
for ODE and Pierre Terdiman for OPCODE.

 25

8. REFERENCES

[1] Simple Intersection Tests For Games article in Gamasutra, Oct 18 1999
[2] Open Dynamics Engine v0.035 User Guide
[3] ODE v0.035 source code, method getHingeAngle (joint.cpp)
[4] ODE v0.035 source code, method amotorComputeEulerAngles (joint.cpp)
[5] Jeff Lander
 When Two Hearts Collide:
 Axis Aligned Bounding Boxes article on Gamasutra.com
 Feb 3 2000
[6] Nick Bobic
 Advanced Collision Detection Techniques article on Gamasutra.com
 March 30 2000
[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi.
 I-COLLIDE: An interactive and exact collision detection system for large-scale
 environments
 1995
[8] Gino van den Burgen

Efficient Collision Detection of Complex Deformable Models using AABB Trees
Nov 6 1998

[9] Gino van den Burgen
 Proximity Queries and Penetration Depth Computation on 3D Game Objects
 GDC 2001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

