
A Simulation Environment for OpenRTM-aist
Ian Chen, Bruce MacDonald, Burkhard Wünsche

University of Auckland
New Zealand

{i.chen, b.macdonald}@auckland.ac.nz
burkhard@cs.auckland.ac.nz

Geoffrey Biggs, Tetsuo Kotoku
Intelligent Systems Research Institute

National Institute of Advanced Industrial
Science and Technology

Tsukuba, Japan
{geoffrey.biggs, t.kotoku}@aist.go.jp

Abstract — Unified testing of multiple heterogeneous robotic soft-
ware components is a challenging problem and many robotic systems
rely on vendor-specific tools for testing and evaluation of individual
subsystems. The consequence is often the unexpected interactions
between components that arise during system integration.

OpenRTM-aist is a distributed software framework that standard-
ises the development of robotic systems while encouraging software
reuse and improving the efficiency of the system integration process.
The problem is the lack of a well-integrated simulation tool that
provides a safe, virtual test environment for evaluating OpenRTM-
aist components.

This paper presents a simulation environment for OpenRTM-
aist. As opposed to creating a built-in simulation tool tied to the
OpenRTM-aist architecture, we use an existing general purpose robot
simulator, namely Gazebo, because of its modular design and frame-
work independent architecture. We show that by creating an interface
layer to Gazebo, robotic systems developed using OpenRTM-aist
can be tested in Gazebo simulation without modifications to the
underlying software code. In addition, we demonstrate the interoper-
ability between OpenRTM-aist component-based robot systems and
Player client programs in achieving a global robot task in the same
simulation context.

Keywords: OpenRTM-aist, Robot Simulation

I. INTRODUCTION

As technology advances, robotic systems are being built
from an increasing number of hardware devices, equipped
with a diverse range of sensors, and controlled by complex
software algorithms. The problem of integrating multiple robot
components is one that is common to many robot developers
across different application domains. As a result, guidelines
and standards have been devised in the robot community to
promote reusability and interoperability.

The Object Management Group [1], a large consortium
of companies and research institutions, develops open stan-
dards for a range of technologies. In recent years, it has
begun developing standards for robotics. The first standard
produced is the Robotic Technology Component standard [2],
which specifies the requirements for component-based robot
software, including interfaces and execution semantics. The
standard is itself an extension of the Super Distributed Objects
standard.

OpenRTM [3] is a distributed software framework based
upon this standard. It complies with the standard, as well
as providing additional features, such as well-defined data
interchange semantics and component callbacks for asyn-
chronous execution. OpenRTM-aist [3] is the open source im-

plementation distributed by the National Institute of Advanced
Industrial Science and Technology (AIST).

As the OpenRTM community continues to grow, it is in need
of a simulation environment for safe and cost-effective testing
of OpenRTM based mobile robotic systems that is simple to
use directly from OpenRTM. Robot simulation is an important
part of the robot development cycle for creating robust, high
quality robotic software, and can provide useful insights to
potential real world problems. There exist many simulation
tools specific to robot vendors that produce accurate simula-
tion results for particular robot components. However, robot
system integration requires a simulation environment capable
of performing unified testing of multiple robot components
integrated in one application.

Where a diverse range of robotic components and systems
is controlled by the same framework, such as the case with
OpenRTM, there is an additional advantage to an integrated
simulation tool, which can provide additional cost savings
by close integration with the control architecture as well as
a variety of components and vendors. Ideally the simulation
environment should provide the same software interface as the
real world devices, so that OpenRTM-aist applications may be
conveniently tested with both simulated and real scenarios.

This paper presents a general robot simulation environment
for OpenRTM-aist. A set of interface components is created
that enable OpenRTM-aist robot systems to exchange data
with an existing 3D robot simulator in the same way as it
would with real robot devices.

Section II describes related work. Section III describes the
OpenRTM-aist framework. Section IV describes the selected
robot simulation tool. Section V details the implementation
of the simulation interface layer that links OpenRTM-aist to
the robot simulation tool. Section VI presents results from
simulation of various robot tasks, and Section VII concludes
the paper.

II. RELATED WORK

There are a number of publicly available robot simulators
with large community support. These simulators are designed
to be generic and extensible to meet the needs of the wide
range of users.

The Microsoft Robotics Studio simulator [4] is a 3D robot
simulator that offers high fidelity simulation of general robot
tasks. The simulator is built on a service-oriented architecture,

978-1-4244-5907-0/09/$26.00 ©2009 IEEE - 113 - SI International 2009

and each entity in simulation provides a number of operations
in the form of a service for exchanging messages with other
components. The main limitation is the closed source nature of
both the simulator and the underlying Agei PhysX [5] physics
engine.

USARSim [6] is a 3D mobile robot simulator, initially
designed for simulation of urban search and rescue operations,
and is commonly used as the research simulation platform in
the RoboCup [7] community. The simulator is built on the
commercial game engine, Unreal Engine 2 [8], and controls to
simulation entities in the engine is done through the provided
Gamebot interface. While the simulator itself is open source,
the game engine is proprietary.

OpenRAVE [9] is an open source planning and simulation
tool. The plug-in driven architecture supports the integration
of custom functionalities, such as planning, control, or sensing
modules, that are loaded at run time. Interaction with the
simulation uses high level scripts in scripting environments
such as Octave or Matlab. The simulator is designed to be
cross-platform, and many of the components are reusable.
However, the focus of the simulator has been placed on robot
manipulation and humanoid robot tasks.

There is a robot simulation tool in the OpenRTM commu-
nity, available from the OpenHRP project [10]. The OpenHRP
dynamics simulator simulates humanoid robotics and is used
for development of humanoid software applications. The sim-
ulator uses Virtual Reality Modeling Language (VRML) for
modelling and features sophisticated algorithms for dynamics
simulation, contact force calculation, collision detection, and
walking pattern generation. OpenRTM is already able to
interact with the OpenHRP simulator. However, this simulator
is focused in particular on humanoid robots. The design of
the simulator is also intertwined with OpenHRP’s architecture
and separation of the simulator from OpenHRP to work with
existing RT Components from other projects is difficult. What
OpenRTM needs is a simulator that handles the suitable mobile
robot simulation problem well, and is simple to use directly
from OpenRTM. Without one, OpenRTM will be limited in
the range of robotic systems it can accurately and completely
simulate. This paper presents an alternative robot simulator for
OpenRTM-aist that is simple and light-weight. We build on
an existing robot simulator designed for simulation of general
robot tasks.

III. OPENRTM-AIST

OpenRTM-aist is based on the CORBA (Common Object
Request Broker Architecture) distributed object middleware
and implements the RT Component standard. RT Components
form the basis of an OpenRTM-aist system.

Components communicate via two types of ports. Data ports
provide one-way, asynchronous communication. An InPort
subscribes to an OutPort, which publishes data. Service ports
are used for request-response communication. Component
introspection is supported, in keeping with the standard, which
allows a range of component metadata to be discovered at
run time, such as component capabilities and available ports.

Internally, components execute a state machine. States include
activated, deactivated, execute, and error.

OpenRTM-aist provides two graphical tools for developing
robot systems. RTCBuilder is an Eclipse plug-in for generating
the skeleton code of RT Components based on user-provided
specifications. RTSystemEditor is another Eclipse plug-in used
for connecting multiple RT Components to create a complete
robot system, by linking data and service ports between
components.

IV. ROBOT SIMULATION TECHNOLOGY

Redesigning the OpenHRP architecture for interfacing di-
rectly with other RT Components is one option for creating
a general purpose OpenRTM simulator. However, substantial
effort and time would be necessary.

There are a number of general purpose robot simulators with
large community support as reviewed in Section II. Instead
of taking the time-consuming process of building a robot
simulator from the ground up, we take advantage of existing
technology and choose from the range of readily available
robot simulator as the base simulation platform for OpenRTM-
aist.

The Gazebo robot simulator has been chosen based on its
functional features, simulation fidelity, flexibility and ease of
integration, extensibility, and documentation and support. An
open source project is preferred as it conforms to OpenRTM-
aist’s goal for an open architecture.

A. Gazebo

Gazebo is an open source 3D robot simulation tool widely
supported and used by many research organisations. Gazebo
is part of the Player Project [11] for development of robotic
and sensor applications and adopts a similar architecture
design as Player. It features a publisher/subscriber, a form of
client/server, model of communication. The design of Gazebo
enables the simulation platform to work seamlessly with
Player robot systems, and in addition, the operation of Gazebo
is independent of Player’s framework, which greatly increases
the reusability of the simulation tool.

Gazebo uses open source rendering and physics libraries
that also have wide community support. The Open Dynamics
Engine (ODE) [12] is used to provide rigid body physics sim-
ulation and OGRE3D [13] provides high quality 3D graphics
rendering. Each simulation entity in Gazebo can be associated
with zero or more controllers that handle commands
for controlling the associated simulation entity, as well as
generating data describing the states of the entity.

The core of Gazebo’s simulation platform is not designed
to provide network communications, as this should be the
job of robot middlewares such as Player. Gazebo enables
clients to access its data using shared memory (SHM). Data
generated by controllers are published using Gazebo
interfaces, known as Ifaces. The data is written to a shared
memory space where it can be read, also using Ifaces,
by other processes. This enables interprocess communication
between the client robotic software and Gazebo, independently

- 114 - SI International 2009

Fig. 1. The data flow between client RT Components, interface RT
Components and Gazebo. As an example, data is shown being sent from
the InPort of a camera interface RT Component to the OutPort of a client
RT Component. The InPorts and OutPorts of other RT Components are not
shown for clarity.

of the platforms, frameworks, or programming languages.
The C++ library libgazebo is provided by Gazebo for
communication with the simulation data stored in SHM.

V. SIMULATION INTERFACE COMPONENTS

To link OpenRTM-aist with Gazebo, a set of interface
components has been developed. The components encapsulate
the underlying simulation platform and enable client RT com-
ponents to exchange data with Gazebo without modifications
to the client’s software code.

For each type of simulation device in Gazebo, such as a
sensor device (a laser range finder or a camera, for example),
a corresponding RT Component is created; we will refer to it
as an interface RT Component. The interface RT Components
are responsible for exchanging data between controllers
in Gazebo and the client RT Components. An interface RT
Component can have zero or more InPorts that accept com-
mands sent from client RT Components. There can be one or
more OutPorts depending on the types of data each simulation
device is capable of generating. The simulation framework is
shown in Fig. 1.

The life cycle of an interface RT Component is as follows:

• Initialisation – The interface RT Component is initiated
with a default Gazebo server ID, and simulation device
ID that it will subscribe to. These values are can be
configured using RTSystemEditor.

• Activation – The interface RT Component subscribes to
one simulation device using libgazebo.

• Execution – The interface RT Component continuously
monitors for new data published by the subscribed simu-
lation device. Incoming data are processed into robot data
formats consistent with the RT Component’s interface
guidelines [3]. The resulting data are then forwarded to
the client RT Components through its OutPorts. Service
requests from client RT Components are handled in a
similar manner.

• Deactivation – The interface RT Component unsubscribes
to the simulation device.

RTSystemEditor is used to create connections between the
interface RT Components and the client RT Components. In
cases where there are multiple simulation devices of the same
type in Gazebo, such as two laser sensors, instances of the
an interface RT Component can be created and configured
in RTSystemEditor to map to the corresponding device based
on its unique ID. The configuration of RT Components can
be saved as XML files which can later be imported back to
RTSystemEditor to restart the simulation.

VI. RESULTS

A number of interface RT Components have been imple-
mented in C++ for OpenRTM-aist-1.0-RC1. We show re-
sults of three simulations of OpenRTM-aist robot systems in
Gazebo.

An obstacle avoidance RT Component has been created
and simulated in Gazebo.1 The algorithm controls a robot to
navigate towards the open space while avoiding obstacles de-
tected by the laser range finder. Two interface RT Components
are used. A laser interface RT Component reads range data
from SHM then forwards the data through its OutPort to the
InPort of the obstacle avoidance RT Component. The obstacle
avoidance RT Component uses the range data to determine
the appropriate velocity and turn rate that the robot should
move at and sends the commands to the position2d interface
RT Component. The commands are then communicated to the
Gazebo simulation device controller over SHM. In simulation,
we use the available Pioneer2DX model provided by Gazebo
as the primary robot platform and equip it with a simulated
Hokuyo URG laser range finder. Fig. 2(a) shows the RT
Components used and the layout in RTSystemEditor. Fig. 2(b)
shows the Gazebo simulation.

The second example shows a video player RT Compo-
nent simulated in Gazebo. The video player displays image
frames captured by a camera device. A camera interface RT
Component reads image data from SHM then sends the data
through its OutPort to the InPort of the video player RT
Component. In simulation, we mount a camera sensor on
an unmanned helicopter model that overlooks an agricultural
environment consisting of a moving cow; this simulates an
animal monitoring application in agriculture. Fig. 3(a) shows
the components in RTSystemEditor, and Fig. 3(b) shows
the Gazebo simulation and the video player RT Component
displaying the view captured by the onboard camera.

1The obstacle avoidance algorithm has been ported from the Player Project.

- 115 - SI International 2009

(a)

(b)

Fig. 2. (a) The RTSystemEditor showing the connections between the laser
interface RT Component (RTCLaser), the obstacle avoidance RT Component
(LaserObstacleAvoid), and the position2d interface RT Component (RTCPo-
sition2d). (b) A screenshot showing the Pioneer2DX robot avoiding various
obstacles in Gazebo

The last example demonstrates the interoperation of an
OpenRTM-aist robot system and a Player client robot system
in the same Gazebo simulation instance. The example shows
two Pioneer robots in a maze-like environment navigating
in a leader-follower formation. The obstacle avoidance RT
Component is used to control the lead robot to explore the
environment while the Player client program controls the sec-
ond robot to follow closely behind. Fig. 4 shows a screenshot
of the Gazebo simulation. The result shows the flexibility of
Gazebo to act as a single, shared simulation environment for
testing robot systems created using different robotic software
frameworks.

The ease with which OpenRTM-aist was linked to Gazebo
shows the usefulness of an approach to robot software de-
velopment that is modular with defined interfaces. Gazebo is
part of the Player Project and was designed to work well with
Player. Had Gazebo been integrated in the Player Architecture,
linking OpenRTM-aist would have been more difficult. It
would also have introduced inefficiency by requiring commu-
nication through a separate framework in between OpenRTM-
aist and Gazebo. The separation of functional (Gazebo) from
integration (Player) software has, in this case, greatly increased
the reusability of the functional software.

VII. CONCLUSIONS

We have presented the design and initial implementation of
a 3D virtual robot simulation environment for robotic systems
that use OpenRTM-aist. A set of interface components has
been implemented that enable communication between RT
Components and the Gazebo simulation platform. We have

(a)

(b)

Fig. 3. (a) The RTSystemEditor showing the connection between the camera
interface RT Component (RTCCamera) and the video player RT Component
(VideoPlayer). (b) A screenshot showing the agricultural simulation environ-
ment consisting of a helicopter robot and a cow. The robot is equipped with
a downward looking camera that captures images displayed in the window
shown on the left.

Fig. 4. A screenshot showing an OpenRTM-aist controlled robot (leading
robot with blue laser scan) working with a Player controlled robot (following
robot with green laser scan) in Gazebo. Both Pioneer2DX robots are equipped
with a simulated SICK LMS 200 laser range finder.

also demonstrated the usefulness of the simulation tool on
three simple tasks.

Future work includes improving the simulation interface
components for a more complete support of the various
types of robot devices based on the RT Component interface
guidelines. The simulation interface components will also need
to be tested with larger OpenRTM-aist robot systems.

ACKNOWLEDGMENT

This project is financially supported by the National Institute
of Advanced Industrial Science and Technology, and the
University of Auckland Doctoral Scholarship.

- 116 - SI International 2009

REFERENCES

[1] “The Object Management Group (OMG),” October 2009,
http://www.omg.org/.

[2] “Robotics domain task force,” http://robotics.omg.org/.
[3] National Institute of Advanced Industrial Science and

Technology (AIST), “RT-Middleware: OpenRTM-aist,” 2009,
http://www.openrtm.org/.

[4] Microsoft, “Microsoft robotics studio,” 2009,
http://msdn2.microsoft.com/en-us/robotics/default.aspx.

[5] Ageia, “Ageia PhysX,” 2009, http://www.ageia.com/.
[6] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “USAR-

Sim: a robot simulator for research and education,” in IEEE International
Conference on Robotics and Automation, Roma, April 10-14 2007, pp.
1400–1405.

[7] The RoboCup Federation, “Robocup,” February 2008,
http://www.robocup.org/.

[8] Epic Games, “Unreal Technology,” 2009,
http://www.unrealtechnology.com/.

[9] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for
autonomous robotics,” Robotics Institute, Carnegie Mellon University,
Pittsburgh, Tech. Rep., 2008.

[10] “OpenHRP - Open Architecture Humanoid Robotics Platform,”
http://www.openrtp.jp/openhrp3/en/index.html.

[11] Player/Stage, “The player/stage project,” 2009, http://playerstage.sf.net/.
[12] R. Smith, “Open dynamics engine,” http://www.ode.org/.
[13] OGRE, “OGRE 3D : Object-oriented graphics rendering engine.”

http://www.ogre3d.org.

- 117 - SI International 2009

