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Abstract—Texture synthesis and morphing are important tech-
niques for efficiently creating realistic and visually attractive
textures. A popular class of synthesis algorithm are pixel-based
techniques, which search in a given 2D exemplar for a pixel with
a similar neighbourhood to the pixel currently being generated.
The methods have the advantage that they are fast, they can be
easily generalised to higher dimensions, and synthesised textures
can be represented as references to the exemplar which allows
definition of additional channels, such as displacement maps, at
no additional cost.

The quality of pixel-based techniques depends on the metric
used to compare pixel neighbourhoods. Lefebvre and Hoppe
introduced the term appearance space for measures describing
pixel neighbourhood similarity. In this paper we introduce new
appearance space attributes and evaluate them and existing
attributes for texture synthesis and morphing. Our results show
that our proposed gradient estimate significantly improves syn-
thesis and morphing quality with little additional cost.

I. INTRODUCTION & BACKGROUND

Texture synthesis and morphing are essential in computer

graphics for creating visually rich textures in a controlled

manner. Various concepts have been explored in the literature,

including procedural techniques [1], [2], parametric exemplar-

based methods [3], [4], and patch-based methods [5]–[7]. One

of the most popular approaches are pixel-based methods [8]–

[15]. This class of algorithms generates a new texture from

a given exemplar texture by searching in it for a pixel with

a similar neighbourhood to the pixel being generated. The

search can be sped up by using k-coherence search [16] and a

multi-resolution approach where synthesis is performed from

the coarsest to the finest resolution, first establishing low

frequencies and then defining fine details [12].

The texture synthesis can greatly benefit from using an

appearance space, where pixels encode texture characteristics

in addition to colour [17]. The high-dimensional appearance

vectors are projected into a low-dimensional space defined

by the first n principal components obtained from a prin-

cipal component analysis (PCA). The appearance space is

conceptually identical to the “feature vectors” proposed by

Hertzmann et al. [18], although the integrated attributes differ.

Hertzmann et al. use luminance information as well as the

responses to steerable filters, but neither include neighbour-

hood information nor the signed feature distance. In previous

research we extended the technique to morphing by weighting

neighbourhood matching results for multiple exemplars [15].

Synthesis and morphing quality depend on the chosen

appearance space attributes. In this paper we introduce new

appearance space attributes and evaluate them and existing at-

tributes. Section II introduces the appearance space attributes.

Section III investigates their effect on texture synthesis and

morphing. The results of this analysis are presented in sec-

tion IV. We conclude this paper and make suggestions for

future research in section V.

II. DEFINITION OF APPEARANCE SPACE ATTRIBUTES

Texture synthesis is improved by introducing new attributes

in addition to colour for testing neighbourhood similarity [17].

Some of the attributes presented below are based on the

intensity image I of an three-channeled exemplar E:

I(P ) =
Cr + Cg + Cb

3
, (Cr Cg Cb)

T = E(P ), (1)

with P ∈ I indexing a pixel. Textures can exhibit anisotrop-

ically shaped features, such as elongated blobs. When syn-

thesing or morphing textures these shape charcateristics should

be maintained. We capture them using contour extraction

and contour sampling. Given a binary feature mask M that

describes the dominant features of a corresponding exemplar

texture, we extract features by tracking the contours of disjoint

components. Our method is based on the crack code encoding
of object boundaries [19]. In order to further optimise the

detected contours, we remove “jaggies” that occur due to the

four-neighbourhood. Figure 1 shows an example of the contour

extraction for an actual binary feature mask. Note that the

binary mask is mirrored, as it is also done during the synthesis

in order to ensure well-defined neighbourhoods outside the

exemplar.

In order to obtain information about feature shapes for any

pixel in the exemplar, the surrounding feature has to be found.

However, features tend to be sparse, so that most pixels lie

outside of encoded features. For this reason, we sample the

surrounding contour boundaries by radially casting rays. The

closest intersection point of each ray with any contour is

stored in a set of sample points. In this way, pixels do not

have to lie within features for obtaining information about
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Fig. 1. The contours of a binary feature mask of an actual texture. Left:
The exemplar and its binary feature mask. Right: The extracted contours,
the result of contour sampling for five selected pixels, and the illustration
of derived appearance space attributes (see section II). 20 rays are used to
radially sample the region surrounding each pixel. The sample points are
shown in cyan. The lines in yellow indicate the direction of the first principal
axis (that is, the direction of maximal variance). The green ellipses represent
the elongation of the point sets. The red dots depict the centroids of the
sample points. Note that the binary mask is mirrored. The area in the black
box corresponds to the original binary mask.

the surrounding area. In addition, holes within features can

be taken into account. Figure 1 shows some examples of the

sampling. Note that the maximal distance of a hit point is

restricted to twice the average contour diameter in order to

avoid extremely high variance due to scattering of sample

points.

We define the following appearance space attributes. The

corresponding textures A contain only one single appearance

space attribute and are used in the next section for analysing

the attribute’s effect on texture synthesis and morphing.

RGB Colour: The RGB colour triples of the input exem-

plar, so that:

A(P ) = E(P ).

Signed Feature Distance: The distance from pixel P to the

closest pixel Q ∈ M for which M(P ) �= M(Q). We define

the following distance equation:

A(P ) = s ·
(
max
U∈M

(
δ(U)

)− δ(P )
)
,

δ(X) =
1

|QX −X|k ,

s =

{
1 if M(P ) = 1

−1 if M(P ) = 0.

(2)

The vector (QX−X) points from X to the closest pixel QX

with a different value in M . The exponent k serves as control

parameter that stretches or compresses the distance curve. With

k > 1, the curve converges faster to the maximum.

Gradient Estimates: The partial derivatives of I ,
(
∂I
∂x ,

∂I
∂y

)
,

approximated by using the convolution kernels of a standard

Sobel operator. Given the two kernels, Sx = (1 2 1)T ·(1 0 −1)
and Sy = (1 0 −1)T · (1 2 1), the attribute image is defined

as:

A(P ) =
(
(Sx ∗ I)(P ), (Sy ∗ I)(P )

)
, (3)

where the operator ∗ denotes a convolution.

Steerable Filter Responses: The responses of I to oriented

first derivatives of a Gaussian distribution G. Using steerable

filter responses as appearance space attribute is inspired by

the attributes Hertzmann et al. [18] suggest for their “feature

vectors” (although the authors use a full steerable pyramid of

oriented third derivatives). The oriented first derivative of the

Gaussian function is given by Freeman and Adelson [20]:

G′
θ = cos(θ) · ∂G

∂x
+ sin(θ) · ∂G

∂y
,

where θ is the rotation angle in radians. Given G′
θ, the filter

response of I can be computed using the convolution G′
θ ∗ I .

For n rotation angles, the attribute image is given by:

A(P ) =
(
(G′

θ0 ∗ I)(P ), (G′
θ1 ∗ I)(P ), · · · , (G′

θn−1
∗ I)(P )

)
,

θi =
i · π
n

, i ∈ [0, n).

Neighbourhood Variance: The variance σ2 of vectorised

neighbourhoods in I . For a set of neighbourhood offsets N ,

the attribute image is given by:

A(P ) = σ2(N , P ) =
1

|N | ·
∑
Δ∈N

(
I(P +Δ)− μ(N , P )

)2
,

where |N | is the number of elements in the neighbourhood,

and μ(N , P ) gives the mean of the whole neighbourhood

around P .

Feature Shape — First Principal Axis: The first eigenvec-

tor �e1 of the feature shape sample points around P , scaled by

the first eigenvalue λ1 (�e1 and λ1 are obtained by performing

a principal component analysis (PCA) on the feature shape

sample points). The two-channelled attribute image is defined

as:

A(P ) = λ1(P ) · �e1(P ).

The first principal axis defines an axis of maximal variance

through the set of sample points, and therefore characterises

the orientation of the sample points. Figure 1 illustrates the

first principal axis for selected pixels by yellow lines.

Feature Shape — Elongation: The ratio of the first and

second eigenvalue, λ1/λ2, as a measure of elongation and

shape of the sampled surrounding. Thus, the attribute image

is given by:

A(P ) =
λ1(P )

λ2(P )
.

In figure 1, elongation is illustrated by green ellipses.
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Feature Shape — Centroid Offset: The x- and y-

component of the displacement vector from the pixel P to

the centroid c̆ of the feature shape sample points, such that:

A(P ) = c̆− P, c̆ =
1

|S(P )| ·
∑

Q∈S(P )

Q,

where S(P ) depicts the set of feature shape sample points

around P . The displacement of the centroid depends on how

close a pixel is to a feature boundary. The red dots in figure 1

depict the centroids c̆ of the set of sample points.

Of the defined attributes, Lefebvre and Hoppe [17] proposed

the first two. However, our signed feature distance defined in

equation 2 is more flexible than theirs as it allows adjusting

the distance curve using the control parameter k. The use of

steerable filter responses is inspired by the attributes Hertz-

mann et al. propose for their “feature vectors” [18], although

the authors use different steerable filters.

III. ANALYSIS OF APPEARANCE SPACE ATTRIBUTES

This section presents an evaluation of the effectiveness and

suitability of the appearance space attributes described above.

The results of the analysis allow the reader to maximise texture

synthesis and morphing performance with respect to both

speed and visual quality.

The definition of some of the proposed attributes includes

parameters that adjust the behaviour of the function (see

section II). We used the following settings: For the signed

feature distance we set k = 2. For the steerable filter

responses, we used a Gaussian filter kernel of size 7 × 7,

and four steerable filters at angles θ ∈ {0, π
4 ,

π
2 ,

3π
4 }. For the

neighbourhood variance, we used a full 7× 7 neighbourhood.

For the attributes based on feature shape information (first

principal axis, elongation, and centroid offset), we used 50

rays for radially sampling the feature contours.

μ σ σnorm

RGB colour 2.167E-4 1.665E-5 0.0725
Signed feature distance 0.0518 0.0212 0.1861
Gradient estimates 0.0163 1.159E-4 6.643E-3
Steerable filter responses 0.0871 5.557E-4 6.068E-3
Neighbourhood variance 0.024 2.25E-4 7.965E-3
First principal axis 167.3237 122.4592 0.2093
Elongation 167.3403 122.3929 0.2097
Centroid offset 167.2188 122.4365 0.2092

TABLE I
AVERAGE COMPUTATION TIMES FOR DIFFERENT APPEARANCE SPACE

ATTRIBUTES, BASED ON 32 EXEMPLARS OF SIZE 128× 128. THE TABLE

SHOWS THE MEAN μ AND THE STANDARD DEVIATION σ IN SECONDS, AS

WELL AS THE STANDARD DEVIATION σnorm OF THE NORMALISED

TIMINGS (THAT IS, THE MEASURED TIMINGS DIVIDED BY THE LARGEST

MEASURED TIMING PER ATTRIBUTE).

In order to test the appearance space attributes we compute

the appearance vectors of the exemplars with each attribute

alone. The results were generated with the algorithm we

presented in [15] and are shown in figures 2–5. For comparison

we included a reference run using the a combination of RGB
colour, signed feature distance, and gradient estimates (since

Reference

RGB color

Signed feature distance

Gradient estimates

Steerable filter responses

Neighborhood variance

First principal axis

Elongation

Centroid offset

Fig. 2. Morphing results for the single appearance space attributes. The top
row shows the exemplars, feature masks, and the reference result. The insets
show the first three dimensions of the projected appearance space mapped
into RGB colour space.

this proved subsequently to be the best combination). Note

that the employed exemplars range from near-regular over

irregularly structured to near-stochastic textures. Table I shows

the average duration and standard deviation for computing the

attributes.

With respect to the characteristics of the input exemplars,

we can observe that the performance of the synthesis and

morphing algorithm increases as the input exemplars become

more structured or regular. The algorithm relies on distinct

features that yield well distinguishable local neighbourhoods,

which are not present in the stochastic exemplars selected for

the test.

The examples show that the RGB colour alone is not

capable of preserving features within the exemplars. Features

“melt” into each other, which causes blurring and smoothing

(particularly noticeable in figure 4). In fact, our results with

RGB colour show similarities to the outputs of Wei’s early

morphing algorithm, which only compares colours [21].

With respect to the preservation and morphing of dominant

features, the signed feature distance produces the best results

among the tested attributes for all exemplars. While other
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Reference

RGB color

Signed feature distance

Gradient estimates

Steerable filter responses

Neighborhood variance

First principal axis

Elongation

Centroid offset

Fig. 3. Morphing results for the single appearance space attributes. The top
row shows the exemplars, feature masks, and the reference result. The insets
show the first three dimensions of the projected appearance space mapped
into RGB colour space.

attributes tend to lose features in the transition region, the

signed feature distance is capable of morphing the structures

between different materials (for example, see figures 4 and 5).

This is highly desirable, particularly for more complex texture

morphing problems.

Despite its superior morphing capabilities, the signed feature

distance tends to produce a high-frequent noise, noticeable as

fine-grained speckles (see figures 2 and 5). In comparison,

the results with RGB colour as single attribute look much

smoother. The noise can be explained by small synthesis errors

within features, for which the binary feature mask does not

provide any neighbourhood information.

Gradient estimates and steerable filter responses perform

similarly, since the two attributes are closely related. However,

gradient estimates preserve features slightly better and can be

computed more efficiently. As illustrated in table I, computing

the four steerable filter responses takes more than five times

as long as computing gradient estimates.

The neighbourhood variance performs best if the highest

variance is clustered around the texture features (for example,

see figure 3). In these cases, the projected appearance space

Reference

RGB color

Signed feature distance

Gradient estimates

Steerable filter responses

Neighborhood variance

First principal axis

Elongation

Centroid offset

Fig. 4. Morphing results for the single appearance space attributes. The top
row shows the exemplars, feature masks, and the reference result. The insets
show the first three dimensions of the projected appearance space mapped
into RGB colour space.

looks similar to the projected appearance space of the signed

feature distance. However, the neighbourhood variance, by

taking the intensity image as basis, is noisier than the signed

feature distance, which is based on binary feature masks.

If there is significant variance within features, the results

for neighbourhood variance are not convincing. The example

shown in figure 4 illustrates the difference between clustered

high variance (left exemplar) and more uniformly distributed

variance (right exemplar).

The morphing results of the attributes based on feature

shape information (first principal axis, elongation, and centroid

offset) are unexpectedly poor. Elongation fails in all cases.

The other two attributes perform only marginally better (for

example in figure 2, where near-regular textures are morphed).

The inset images of the projected appearance space suggest

that elongation provides very little information. For the first

principal axis, the appearance space looks very unstructured

and chaotic, which could explain the poor performance of this

attribute.

The standard deviation of the measured timings (table I)

for signed feature distance and the three attributes that depend
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Reference

RGB color

Signed feature distance

Gradient estimates

Steerable filter responses

Neighborhood variance

First principal axis

Elongation

Centroid offset

Fig. 5. Morphing results for the single appearance space attributes. The top
row shows the exemplars, feature masks, and the reference result. The insets
show the first three dimensions of the projected appearance space mapped
into RGB colour space.

on the feature shape information is much higher than for the

other attributes (about 3–35 times as high). This fact can be

explained by the dependence on exemplar features. For the

signed feature distance, sparse binary feature masks result in

longer radial searches for the nearest feature boundary. For the

feature shape information, the contour sampling takes longer

the more features are present. Because the other attributes

do not depend on the characteristics of the input texture,

their computation time shows little variation among different

exemplars.

IV. RESULTS

Our analysis confirms that the RGB colour and signed

feature distance proposed by Lefebvre and Hoppe [17] are

very powerful appearance space attributes and essential for

successful texture synthesis and morphing. The above results

suggest that gradient estimates can improve the structure of

synthesised and morphed textures.

We tested this hypothesis by comparing morphing results

obtained using RGB colour and signed feature distance with

results obtained by adding additionally our gradient estimate.

Fig. 6. Comparison of 2D texture morphing without (left) and with (right)
partial derivatives as additional appearance space attribute. The insets show the
two input exemplars and the first three dimensions of the projected appearance
space mapped into RGB colour space.

When integrating the new attribute, the synthesis and morphing

result improved in almost every case as illustrated in figure 6.

Note how both the synthesis in regions with only one texture as

well as the morphing in the transition region between the two

textures improve when including partial derivatives as addi-

tional appearance space attribute. When comparing the visual

(colour-encoded) representation of the projected appearance

space of the two exemplars, more structure and emphasis of

feature boundaries can be noticed if partial derivatives are

included.

We also tested various combinations of the above three

attributes with feature shape information, but no visually

significant improvement could be observed.

The fact that all three attributes that depend on feature

shape information fail to produce convincing results suggests

that a more sophisticated approach is required. As detailed

in section II the region surrounding a pixel is sampled by

radially casting rays and intersecting them with extracted

feature boundaries. The result is a set of sample points, from

which the different appearance space attributes are derived. As

illustrated in figure 1, the samples are sometimes very scattered

and do not properly reflect the surrounding (for example,

shown by the sample in the bottom-right corner). At the same

time, sample points cluster at a feature boundary if a pixel is

very close to that boundary. These clusters can alter the result

of the PCA and influence the position of the centroid.

Ellipse fitting presents a potentially more robust alternative

to sampling the surrounding features using rays. Various

algorithms exist for fitting an analytical ellipse to a set of

points (e.g., [22]). For a given pixel in the exemplar, the

“visible” vertices of all surrounding feature boundaries could

serve as a set of input data points for the fitting algorithm.

In order to avoid extremely elongated ellipses (particularly

for pixels outside of encoded features, as illustrated in fig-

ure 1), the ratio between semi-major axis and semi-minor axis

might has to be constrained. For deriving appearance space

attributes, the orientation of the fitted ellipse as well as the

ratio between semi-major axis and semi-minor axis could serve

as basis.

A second alternative to the proposed three attributes could
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Fig. 7. 3D texture morphing results with a target texture size of 1283 voxels
(top left) and 2563 voxels.

be a metric based on shape matching (e.g., [23]). For example,

the shape of the sampled contours could be matched against

a representative set of pre-defined shapes. The best-matching

shape (e.g. its index) together with the shape similarity could

then serve as channels of the attribute image.

Since the synthesis of 3D textures from 2D exemplars is

more complicated we tested the most promising combinations

of appearance space attributes for 3D texture morphing. We

found that a combination of RGB colour, signed feature dis-

tance and our gradient estimate was again superior. Examples

of the texture morphing results are given in figure 7.

V. CONCLUSION & FUTURE WORK

The appearance space attributes RGB colour and signed

feature distance, originally introduced by Lefebvre and

Hoppe [17], are essential for obtaining good synthesis and

morphing results. We found that integrating the partial deriva-

tives of the intensity image ( equation 1) of the input exemplar

supports the texture morphing extremely well. The derivatives

in x- and y-direction are approximated using the convolution

masks of a standard Sobel operator (equation 3).

The results obtained by using feature shape attributes were

disappointing. We conclude that even though feature shape at-

tributes are useful from a theoretical perspective the presented

attributes are not suitable for the types of textures tested and

better attributes must be found.

Nevertheless, taking the shape of dominant structures in the

exemplars into account is promising, and the proposed ellipse

fitting or template shape similarity might yield more suitable

attributes. In addition, numerous alternative appearance space

attributes could be derived from image processing techniques

not mentioned in this paper, for example channels of other

colour spaces, responses to other filters, image statistics, and

so forth. We look forward to explore these ideas in the future.
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