
A 3D Interface for an Unmanned Aerial Vehicle

B. Cervin 1, C. Mills1, and B. C. Wünsche2

1 Dept. of Software Engineering, University of Auckland, Private Bag 92019, Auckland, New Zealand.
2 Graphics Group, Dept. of Computer Science, University of Auckland, Private Bag 92019, Auckland,

New Zealand.
bcervin@gmail.com, cmil074@ec.auckland.ac.nz, burkhard@cs.auckland.ac.nz

Abstract
The Defence Technology Agency (DTA) of the New Zealand Defence Force is developing a remotely controlled
aircraft to provide reconnaissance for units in the field. In this paper we describe the development of a real-time
3D interface for this aircraft which is used for remote control and mission planning. The interface uses a public
domain flight simulator for 3D graphics display and integrates terrain data supplied by the Joint Geospatial
Facility (JGSF) and Geographical Information Systems (GIS). Furthermore the design of the interface enables its
integration into the Virtual Maritime System Architecture which will be used for the simulation of large scale
interactive multi-user battlefield scenarios.

Keywords: Graphical user interfaces, flight simulator, military simulations, terrain visualization

1 Introduction
The Defence Technology Agency (DTA) of the New
Zealand Defence Force is developing an Unmanned
Aerial Vehicle (UAV) for deployment in New
Zealand and abroad. The UAV will be used primarily
for reconnaissance of surrounding areas. It utilises a
camera that relays images back to its operators. The
images not only provide reconnaissance information
but are also used for controlling the aircraft remotely.

In order to improve the control of the UAV and in
order perform simulations and training an interface is
needed which displays the aircraft in a virtual three
dimensional (3D) environment. Currently the DTA
uses a roadmap-like 2D display to control the flight
path of the UAV. This is not satisfactory for mission
critical deployments.

In this paper we present an interface which visualizes
the UAV in terrain generated from data provided by
the Joint Geospatial Facility (JGSF) and Geographic
Information Systems (GIS). Our tool makes it
possible to view the terrain from the UAV camera
position in order to match real images with the virtual
terrain. The virtual terrain can be augmented with
additional information such as roads and buildings
which is important for simulating battlefield scenarios.
In addition a general view of the UAV can be selected
and positional and flight information is displayed in
order to facilitate the remote control of the aircraft.

2 Flight Simulators
After consultation with the project leaders it was
decided that instead of creating a 3D simulator from
scratch it would more appropriate to use an already
existing platform, such as a flight simulator, as a
terrain engine. The decision was made to use a flight
simulator rather than a game engine because flight
simulators offer more advanced controls for aerial
vehicles and popular flight simulators, such as
FlightGear and Microsoft Flight Simulator, have
scenery from all around the world available that can
be used for training purposes.

The following constraints have to be met by the flight
simulator: the UAV data needs to be plugged into the
flight simulator so that the correct position and
orientation of the aircraft can be displayed (including
roll, pitch, yaw and altitude). It must be possible to
convert real terrain data from the JGSF and GISs from
their original form (i.e. Digital Elevation Maps
(DEM) and Vector Product Formats (VPF)) into the
terrain format used by the flight simulator. It must be
possible to augment the terrain with features including
roads, rivers, lakes and cities to provide a realistic 3D
environment.

Initial research narrowed the possible choices for a
flight simulator down to FlightGear and Microsoft
Flight Simulator 2002 (MSFS). In making our choice
we considered their usability, extendibility, graphics
rendering quality, and tools available for scenery
generation.

Microsoft Flight Simulator 2002 is a proprietary flight
simulator developed by Microsoft Corporation. It is
supported by commercial plug-ins that can be
purchased online. The main interfaces that can be
used for interaction use Direct X [1,2]. FlightGear is
an Open-Source flight simulator developed in C/C++
under Linux and distributed to most systems,
including Microsoft Windows [3].

We chose FlightGear because of its usability,
specifically in terms of network play. It allows the
slaving of an instance of FlightGear from another
instance by sending packets of information using an
exposed C++ interface class (FGNetFDM). By
altering the fields in this class and then sending it to
an instance of FlightGear we can control the aircraft.

A second advantage of FlightGear is that its graphics
output is superior to MSFS and higher resolution
terrains are available (3-arcsec scenery ≡ 100m
resolution). Finally several excellent tools are
available for FlightGear, specifically for terrain
generation. In particular the open source project
Terragear [4] was commenced for developing scenery
for FlightGear. Scenery can be represented as Digital
Elevation Maps (DEM) or by Vector Product Formats
(VPF) which are supported by geographical
associations around the world. In contrast the BGL
terrain format used by the MSFS terrain engine is a
proprietary format and no tools seem to be available
for converting common terrain formats into BGL
scenery files. Two other useful FlightGear tools for
military simulations are Atlas, which provides a 2D
map with moving map pointer for FlightGear; and the
Flight Gear Scenery Designer project, which provides
a way of generating terrain data from maps including
placement of 3D objects and the use of photos for
scenery.

3 System Design
Figure 1 shows an overview of our system. The UAV
interface receives flight data and images from the
UAV via a wireless connection. Several instances of
FlightGear can be connected to the interface showing
different views of the data. For example, one instance
can show the terrain from the camera position for use
by military planners and strategists, whereas another
instance can show a 3rd person view of the UAV in
order to facilitate its remote control.

The design of the UAV interface is illustrated in
figure 2. The “UAV Poller” handles the polling of the
UAV (using self-defined packet-based
communication), the processing of the packets and
then the delivery of formatted data to FlightGear.
Communication with the UAV is handled via serial
port, but the code is modular enough so that any
future communication medium (e.g. USB, Firewire)
can be used. The self defined packets are small and
contain a few ASCII characters that are used as values
depending on the packet header. Packets also have

checksum fields to test the integrity of the packet [5].
Faulty packets are detected and discarded. A more
detailed description of the system design is found in
[6].

We use Terragear to compile terrain data into scenery
files for FlightGear using the following steps:

I. Convert the raw data into ASCII files for
processing.

II. Cut the resultant data into tiles and convert
them into polygonal digital elevation maps
(DEM) (we use the tools ‘demcop’ and
‘hgtchop’).

Figure 1: UAV System Overview.

Wireless Communication

Network Communication

UAV

UAV Interface

FlightGear FlightGear

Figure 2: UAV Interface Design.

III. Generate the scenery objects and textures for
the terrain. Using the tool ‘tgvpf’ we can
generates different layers of scenery, such as
landmass, farmland, towns, cities, lakes and
roads.

IV. Combine the DEM, textures and scenery
objects into tiles for FlightGear.

We found that the scenery generation takes several
hours even for simple terrains. In future we will use a
client-server architecture to create realistic and
accurate 3D terrains of New Zealand and other
operational areas from non-publicly available high
resolution data provided by the Royal New Zealand
Navy (RNZN) through the JGSF. The JGSF data has
a resolution of 20m which is considerably higher than
the 100m resolution of publicly available data.

4 User Interface
The graphical user interface (GUI) of the UAV
interface displays information received from the UAV
and sent through to FlightGear (see figure 3). The
FGNetFDM interface class allows the updating of
many variables within FlightGear. This includes
altitude, speed, direction and of course location. We
can also enter values for the battery capacity and other
flight instrument data into FlightGear, but there is no
specific way of displaying this information in
FlightGear.

An additional interface is used to specify the socket
configuration. Since the UAV is currently still in
development we use a simulator (HawkSim)
developed by the DTA. Figure 4 shows the output
data of the simulator in raw form. In our simulations
the HawkSim was queried every 20ms to obtain UAV
data.

Additional interfaces for selecting aircraft models and
for loading terrains are available through the
FlightGear simulator.

5 Results
Initial test results for our simulation interface are
promising and we were able to simulate UAV
reconnaissance missions over local terrain. Figure 5
shows the UAV over the Hobsonville Aerodrome
(RNZAF) with the Auckland harbour in the
background. Since the model of the UAV is classified
we use instead a model of a Schweizer 2-33 which is
most similar to the UAV in terms of size and shape.
In our tests we queried the HawkSim simulator every
20ms to obtain UAV data. The FlightGear instance
updated itself every 20 ms (50 Hz) however there was
still some lagging on the display. This could be due to
the UAV simulator, giving approximate data. It could
also be attributed to slow hardware and network
connections.

The purpose of this application of FlightGear is to
enable a broad dissemination of UAV information to
personnel in the navy. The information will be sent to
battlefield commanders in order to facilitate the
strategic planning and execution of missions.

6 Conclusion
Integrating the UAV into FlightGear was a success.
The FlightGear instance flew according to the data
that it received from the UAV and gave the correct
position and orientation. The application is a small
step towards a 3D environment to aid command and
control. Further research needs to be carried out
before commencing large scale projects; however,
current feedback indicates that the New Zealand
forces consider this research worthwhile.

Figure 3: The UAV Serial Interface.

Figure 4: The UAV Simulator Interface.

7 Future Work
At the moment the UAV is the only unit plugged into
display software which enables commanders to get a
picture of the battlefield. FlightGear was used in this
application because the UAV is an aircraft and it was
easier to use a flight simulator that already deals with
aircraft rather than software that can generate troops,
armoured vehicles and so on. Future projects will try
to incorporate troop movements into this interface.
Current research indicates that this could be achieved
using the “external flight dynamics model” which
provides multiple user support. Ground troops could
hence be represented as aircrafts at zero altitude.
Currently the implementation uses this feature to
simulate shadows of an aircraft cast onto the ground.

In the next phase of this project we will investigate
how the UAV interface can be integrated into the
Virtual Maritime Systems Architecture (VMSA)
which is used in virtual battleground scenarios
conducted by New Zealand, Australia, Great Britain,
Canada and the USA [7].

Computer graphics applications (specifically games)
already deal with similar issues. As an example,
Ground Control 2 [8] already has unit generation and
map generation software (see figure 6). It also
provides network interfaces so that multiple players
can participate in a simulation. The ultimate aim is to
achieve Network Centric Warfare (NCW) [9] where
all data about units is centrally available and can be
displayed within our simulator on demand.

8 Acknowledgements
We would like to thank Matt Hopkins from the
Defence Technology Agency for his help and endless
enthusiasm, Sally Garrett and the Joint Geospatial
Facility for supplying us with terrain data, Microsoft
Corporation New Zealand for donating a copy of the
MS Flight Simulator and last but not least the
developers of FlightGear and Terragear for their
information and help.

 Figure 5: The UAV flying over the Hobsonville Aerodrome (RNZAF) with the Auckland harbour in

the background.

9 References
[1] Microsoft Corporation, Microsoft Flight

Simulator SDK, URL: http://www.microsoft.
com/games/flightsimulator/fs2002_download
s_sdk.asp.

[2] T. Gregor and D. Gregor, Scenery Hall of
 Fame homepage – MS Flight Simulator 2002
 tutorial, URL: http://www.scenery.org/tutor
 ials_fs2k2_SDK.htm.

[3] FlightGear homepage, URL: http://www.

flightgear.org.

[4] TerraGear homepage, URL: http://terragear.
 org/.

[5] Phil Strong, The Defence Technology
 Agency (DTA) UAV Uplink and Downlink
 Specification (classified information).

[6] B. Cervin and C. Mills, A 3D Interface for an
 Unmanned Aerial Vehicle, SE Stage 4
 Project report, Department of Software
 Engineering, University of Auckland,
 Auckland, New Zealand, October 2004.

[7] Shane A. Canney, Virtual Maritime System
 Architecture Description Document Issue
 2.00, Virtual Maritime System Document
 00034, Defence Science and Technology
 Organisation, Australia, 2002.

[8] Massive Entertainment, Ground Control 2
 homepage, URL: http://www.groundcontrol2
 .com/modules/news.

[9] David S. Alberts, John J. Garstka, Richard E.
 Hayes, David A. Signori; Understanding
 Information Age Warfare, Command Control
 Research Program (CCRP) Publications,
 United States of America Department of
 Defense, August 2001, URL: http://www.
 dodccrp.org/publications/pdf/Alberts_UIAW
 .pdf.

 Figure 6: Screenshot of the game ‘Ground Control 2’ [8].

