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Abstract

A common problem in biomedical sciences is the in vivo identifi-
cation and analysis of anatomical structures. This paper introduces
several novel techniques to identify and visualize nerve fiber tracts
and different tissue types using diffusion-weighted magnetic res-
onance imaging data. Barycentric color maps allow an integrated
view of different types of diffusion anisotropy. Ellipsoid-based tex-
tures and Anisotropy Modulated Line Integral Convolution create
images segmented by tissue type and incorporating a texture rep-
resenting the 3D orientation of nerve fibers. Finally streamtubes
and hyperstreamlines represent the full 3D structure of nerve fiber
tracts and their inherent diffusion properties. The effectiveness of
the exploration approach and the new visualization techniques are
demonstrated by identifying various anatomical structures and fea-
tures from a diffusion tensor data set of a healthy brain.
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1 Introduction

Medical imaging is an essential tool for improving the diagnoses,
understanding and treatment of a large variety of diseases. This
paper presents techniques for obtaining in vivo information of the
brain anatomy by visualizing and systematically exploring Diffu-
sion Tensor Imaging (DTI) data. The diffusion tensor describes the
spatial distribution of water molecules originating at a common lo-
cation. Since the diffusion of water depends on the micro-structure
of the tissue, the diffusion tensor field can be used to visualize nerve
fibers and other tissues in the brain. The resulting images of the
brain anatomy can be used to advance research in surgical plan-
ning, cognitive sciences, and the diagnosis and treatment of various
white and gray matter disorders [Pierpaoli et al. 1996; Lim et al.
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1999; Barnea-Goraly et al. 2003]. Visualizing the nerve fiber struc-
ture also represents a valuable teaching tool.

Our approach starts with slice images familiar to the medical
specialist and progressively expands the dimension and abstraction
level of the representation in order to provide new insights into the
data. In particular we present four innovative techniques for the vi-
sualization of DTI data. Barycentric color maps allow an integrated
view of different types of diffusion anisotropy. Ellipsoid-based tex-
tures in combination with spherical or barycentric color maps in-
dicate the nerve fiber direction and different anisotropy properties
and tissue types. Anisotropy Modulated Line Integral Convolution
(AMLIC) creates images segmented by tissue type and incorporat-
ing a texture representing the 3D orientation of nerve fibers. Finally
streamtubes and hyperstreamlines visualize the complex 3D struc-
ture of nerve fiber tracts and their inherent diffusion properties.

All images in this paper were created with a toolkit we developed
specifically for visualizing biomedical data sets [Wünsche 2003b].

2 Diffusion Tensor Imaging

Diffusion tensor imaging (DTI), also known as diffusion-weighted
MRI imaging (DWI), is used to measure the intrinsic properties of
water diffusion in the brain by an orientation invariant quantity, the
diffusion tensor D [Basser et al. 1994; Basser 1995]. The eigenval-
ues and eigenvectors of the symmetric second-order tensor D define
the principal axes of a diffusion ellipsoid which expresses the spa-
tial distribution of water molecules originating at a point location
after an infinitesimal time period.

DTI almost completely suppresses effects due to water in the
blood vessels [Basser 2000] and can be used to measure the diffu-
sion of cerebral spinal fluid (CSF) and fluid inside of nerve cells.
The results of the measurement are the six components of the sym-
metric diffusion tensor D and the T2 weighted signal intensity in
the absence of diffusion sensitization. Images of water diffusion
can provide pathophysiological information complementary to T1
and T2 weighted MRI images. The technique is sensitive to move-
ments of the order of a few microns and is described in more detail
in [Basser and Pierpaoli 1996; Pierpaoli et al. 1996; Aronen et al.
1999].

In the brain DTI can be used to differentiate three types of struc-
tures. Fluid filled compartments are characterized by a very high
isotropic diffusion, i.e., the diffusion is similar in all directions. In
contrast nerve fibers restrict the diffusion to one direction only due
to the presence of cell membranes and myelin sheaths surround-
ing the axons. Fiber tracts, consisting of millions of parallel nerve
fibers, are therefore identified as areas of a high anisotropic diffu-
sion. The orientation of such fiber tracts is determined from the
principal directions of the diffusion tensor. Finally gray matter is
characterized by a low and nearly isotropic diffusion since the wa-
ter diffusion is restricted in all directions due to cell membranes
of intermingled cell bodies and their surrounding neuraglia. Con-
sequently DTI can be used to gain in vivo information about the
anatomy, microstructure and physiology of the brain.



2.1 Derived Quantities

The matrix representation of a second-order tensor depends on the
coordinate system used (MRI coordinates). In order to describe in-
trinsic tissue properties variables independent of the patient’s posi-
tion must be derived. Examples are the three tensor invariants. An
important property of any 3-dimensional symmetric second-order
tensor T is that there always exist 3 eigenvalues λi and 3 mutually
perpendicular eigenvectors vi such that

Tvi = λivi i = 1, . . . ,3 (1)

The eigenvalues and eigenvectors of the diffusion tensor D define
the principal axes of a diffusion ellipsoid. To facilitate the definition
of new measures it is convenient to order the three eigenvalues of
the diffusion tensor D by size with λ1 being the biggest and λ3
being the smallest [Pierpaoli et al. 1996]. The maximum diffusivity
is then given by λmax = λ1.

The mean diffusivity is defined as the average eigenvalue of the
diffusion tensor and is efficiently computed by using the first tensor
invariant

λmean =
λ1+λ2+λ3

3
=

trace(D)
3

=
D11+D22+D33

3
(2)

Images of λmean show all brain tissue and fluid filled compartments.
Note that the computation does not require the computation of the
eigenvalues but involves merely averaging the diagonal elements of
the tensor matrix.

Another important measure is the anisotropy of the diffusion ten-
sor. We define it as

λaniso = trace((D−λmeanI)2)/λ 2
mean (3)

= ((D−λmeanI)T (D−λmeanI))/λ 2
mean

which was suggested to us by Peter Basser [Basser 2000]. Note that
the computation is efficient and does not require the computation
of the eigenvalues. The measure is used to identify regions where
λ1 >> λ2 ≥ λ3 and can be used to detect nerve fiber tracts.

Additional measures have been proposed by Westin et al. [Westin
et al. 1997]. The authors define a linear isotropy cl , a planar
isotropy cp, and an isotropy cs as

cl =
λ1 −λ2

λ1 +λ2 +λ3
(4)

cp =
2(λ2 −λ3)

λ1 +λ2 +λ3
(5)

cs =
3λ3

λ1 +λ2 +λ3
(6)

The measures fall in the range [0,1] and sum up to 1 and define
therefore a barycentric space of anisotropies.

2.2 Medical Applications

DTI imaging has been successfully applied to diagnose various dis-
eases. For stroke victims it has been shown that diffusion reduces in
the demarcated ischemic region within minutes whereas changes in
conventional T2 weighted MRI images become apparent only after
about three hours [Warach et al. 1992]. Assaf et al. report that DTI
images are also sensitive to the pathophysiological state of white
matter in brains diagnosed with Multiple Sclerosis [Assaf et al.
2002]. Zhang et al. note that the white matter regions adjacent to the
edema surrounding a metastasis are characterized by heterogene-
ity in the diffusion anisotropy [Zhang et al. 2002]. Barnea-Goraly
et al. show that regionally specific alterations of white matter in-
tegrity occur in patients with Fragile X Syndrome, a common form

of hereditary mental retardation [Barnea-Goraly et al. 2003]. DTI
has also been used to investigate the development of white matter
tracts in adolescents and adults [Li and Noseworthy 2002].

The above examples demonstrate the importance of diffusion
tensor imaging for medical diagnosis and research. It is important
to note that, since the resolution of DTI is limited, small fibers ad-
jacent to each other and branching fibers cannot be distinguished.
Recent research attempts to improve the standard diffusion tensor
model by using high angular resolution diffusion weighted acquisi-
tion [Ozarsland et al. 2001].

3 Previous Work

Diffusion tensor fields in the medical field have been originally vi-
sualized in two dimensions by representing a derived scalar mea-
sure over a data slice with a color map or a gray scale map [Pierpaoli
et al. 1996]. Subsequent research has examined the visualization
of directional tensor information over 2D slices via color mapping
[Jones et al. 1997; Pierpaoli 1997]. Peled et al. visualize a slice of
a diffusion tensor data set by indicating the in-plane component of
the principal diffusion with a blue line and the out-of-plane com-
ponents by colors ranging from green through yellow to red [Peled
et al. 1998].

An interesting visualization of DTI slice images has been devel-
oped by Laidlaw et al. who use concepts from oil painting [Laid-
law et al. 1998]. The projection of the principal diffusion direction
onto the image plane is encoded by the stroke direction and the
out-of-plane component by the saturation of the red color compo-
nent. Diffusion anisotropy is represented by the length/width ratio
and transparency of brush strokes and the magnitude of the diffu-
sion rate by the stroke texture frequency. Additional information is
given using the lightness of the under-painting and an underlying
checkerboard spacing.

More recently researchers have concentrated their efforts onto
the 3D reconstruction and visualization of nerve fiber tracts. Xue
et al. track nerve fibers by propagating a line from the center of
a voxel along the direction of the maximum eigenvector until it
exits the voxel [Xue et al. 1999]. Poupon et al. [Poupon et al.
1998] track white matter fibers using a Markovian model and the
assumption that fiber tracts can not end in white matter. In a later
paper the authors use knowledge of the low curvature of most fas-
cicles and track them using a bending-energy minimizing scheme
[Poupon et al. 2000]. In a previous paper we showed that fiber tracts
can be visualized with streamtubes and hyperstreamlines [Wünsche
and Lobb 2001].

Kindlmann et al. [Kindlmann and Weinstein 1999; Kindlmann
et al. 2000] visualize the 3D geometry of the diffusion tensor field
using a direct volume rendering technique with the color, lighting
and opacity assignment governed by the underlying tensor field.
Colors are determined by transforming a constant input vector with
the tensor and by using the result to index a Hue-ball which is a 2D
spherical color map. The hue of the resulting color reflects the prin-
cipal diffusion direction and the saturation the diffusion anisotropy.
Fiber tracts show up as regions of slowly varying saturated color.

4 Visualizations

4.1 Color Mapped Surfaces

Traditionally MRI data is displayed as a set of slices parallel to one
of the coordinate planes. The optimal presentation of MRI slice
images for improved perception of information has been researched
by [van der Heyden et al. 1998].

As a basic example for color mapping consider figure 1 which
shows nine equidistant horizontal slices through the brain from top



Figure 1: Horizontal slices (with numbers) color mapped with the
diffusion anisotropy.

to bottom color mapped with the diffusion anisotropy λanisotropy
defined by equation 4. The images are ordered from left to right
and top to bottom.

White matter is indicated by saturated blue with the corpus callo-
sum and some parts of the internal capsule colored red and yellow.
Both gray matter and CSF have a very low anisotropy and are hence
colored in black-blue.

It can be seen that naive use of color mapping does not differen-
tiate anatomical structures from the background which makes the
interpretation and analysis of the visualization difficult. For the re-
mainder of this paper we classify background voxels by identifying
an appropriate cut-off value from the histogram of the mean diffu-
sivity of the image data set.

Fine structures and symmetries can be revealed by using cyclical
color maps. Figure 2 (a) visualizes the mean diffusivity. Note that
the contour density and contour normal direction of the resulting
surface texture indicate the magnitude and direction of the mean
diffusivity. The regions with a high mean diffusion gradient (high
contour density) visible in the center and the periphery of the brain
indicate fluid filled compartments.

Part (b) of the figure visualizes the diffusion anisotropy. Compar-
ing the isocontours in white matter regions in the left and right brain
hemisphere it can be seen that the anisotropy is almost symmetric in
the anterior side of the brain but is slightly asymmetric in the pos-
terior side with higher values for the left hemisphere. This result is
in contrast to findings by [Peled et al. 1998] and could indicate that
the white matter regions in the left hemisphere are more compact
and therefore the fibers are more aligned [Faull 2000]. This hypoth-
esis is consistent with the fact that the left hemisphere contains an
additional brain region responsible for verbal abilities.

We believe that cyclical color maps as demonstrated above might
be especially useful when examining degenerative white matter dis-
eases [Lim et al. 1999; Highley et al. 1999; Thompson et al. 2001].

Regions of gray matter, white matter, and CSF can be displayed
simultaneously using the segmentation function

Figure 2: Horizontal slice (number 20) with the mean diffusivity
(a) and the diffusion anisotropy (b) visualized using cyclical color
maps (right).

λs =




1 if λaniso ≥ 0.25 and 5∗10−6<λmean<10−3

2 if λmean ≥ 10−3

3 if λaniso < 0.25 and 5∗10−6<λmean<10−3

0 otherwise

The conditions for the values 1,2, and 3 reflect the characteriza-
tion of tissue types explained in section 2 and are chosen so that
they indicate white matter, CSF and gray matter, respectively. The
values are similar to the ones suggested by Pierpaoli et al. [Pier-
paoli et al. 1996]. Figure 3 (a) shows the resulting segmentation
using the colors red, green and blue, respectively. In contrast to the
previous images this image allows the identification of the thala-
mus as the two blue regions between the lateral ventricle in green
and the internal capsule in red.

Regions of predominant linear anisotropic, planar anisotropic
and isotropic diffusion are identified by using a barycentric color
map which visualizes the measures defined by equations 4–6.

A barycentric color map is constructed by assigning three dif-
ferent colors to the vertices of a triangle and by interpolating these
colors for each point P inside the triangle ∆ABC using the barycen-
tric coordinates

α =
area(∆PBC)
area(∆ABC)

, β =
area(∆PCA)
area(∆ABC)

, γ =
area(∆PAB)
area(∆ABC)

The barycentric coordinates define the weights of a convex sum of
the triangle vertices which is equal to P, i.e., αA + βB + γC = P
where 0 ≤ α ,β ,γ ≤ 1 and α +β + γ = 1. The measures defined by
equations 4–6 define a barycentric space of anisotropies and there-
fore can be visualized by mapping them onto the barycentric color
map.

Figure 3 (b) indicates that the diffusion is predominantly lin-
ear in the genu (1) and splenium (2) of the corpus callosum and
in the internal capsule (3), and more planar in the optic radiation
(4) and in the more peripheral white matter regions. A higher linear
anisotropy indicates a higher alignment of nerve fibers.

4.2 Anatomical Landmarks

The identification of anatomical structures can be facilitated by
inserting easily recognizable features, so-called anatomical land-
marks, into the 3D visualization. Two suitable structure are the
ventricles and the eyes shown in figure 4 as smoothly shaded red
and green isosurfaces, respectively.



Figure 3: Horizontal slice (number 20) colored using a segmentation function (a) and a barycentric color map (b). In (a) red, green and blue
indicate white matter, CSF and gray matter, respectively.

Figure 4: The eye balls (green) and the ventricles (red) represented
as isosurfaces of the mean diffusivity. (1) anterior horn, (2) pos-
terior horn and (3) inferior horn of the lateral ventricle, (4) fourth
ventricle and (5) third ventricle.

The ventricles are approximated by the 1700 ∗ 10−6mm/s-
isosurface of the mean diffusivity. Since the brain is surrounded
by CSF, isosurfaces are also computed for fluid filled fissures and
sulci between the brain and the skull and the ventricles must be
extracted using a postprocessing step [Wünsche 2003a].

The eye balls are filled with a clear jelly (aqueous humor) and
are consequently characterized by a very high isotropic diffusiv-
ity; in our case we use the 3500 ∗ 10−6mm/s-isosurface of the
mean diffusivity. The cavity in the front of each eye ball indicates
the position of the lens. The dimensions of the left eye ball are
23.8mm×24.4mm×23mm which corresponds well with results re-
ported in the literature (an average diameter of 24mm and an aver-
age axial length of 25mm including the cornea) [Wandell n. d.].

Note that planar sections of the brain, such as the horizontal
plane bisecting the eyes and the vertical plane dividing the brain
hemispheres, also show the eyes and the ventricles. However, color
mapped slices do not show the full 3D geometry of anatomical
structures, they occlude one half of the brain and they do not aid
the depth perception as is the case when using a shaded 3D struc-
tures such as the ventricles.

4.3 Introducing Local Tensor Information

4.3.1 Ellipsoid-based Textures

Informative textures can be created by color mapping diffusion el-
lipsoids with directional information and/or anisotropy measures.
Textures are perceptually characterized by the spatial frequency,
contrast and orientation of texture components [Schiffman 1996;
Ware and Knight 1995]. In order to make use of the pattern recog-
nition capabilities of the human visual system we use a dense dis-
tribution of color mapped diffusion ellipsoids and scale them such
that they overlap in regions of high mean diffusivities. As a result
regions of CSF exhibit an irregular pattern consisting of the visible
sections of overlapping ellipsoids, white matter regions are charac-
terized by regularly arranged long cigar shaped ellipsoids aligned
along the nerve fiber tracts, and gray matter regions are represented
by small approximately spherical ellipsoids. We encode additional
information and further differentiate the textural appearance of re-
gions with different tissue type by color mapping the ellipsoids.

White matter regions and the direction of nerve fiber tracts are
emphasized by using the spherical color map shown in figure 5
(a). The hue, saturation and brightness of the color spectrum vary
along the circumferential, longitudinal and radial directions of the
sphere, respectively. We encode the direction of the maximum dif-
fusivity by computing its spherical coordinates and by associating
them with the hue and saturation of the color map. The diffusion
anisotropy λanisotropy is mapped onto the brightness parameter of
the color spectrum.

The results of applying this color map to an ellipsoid-based tex-
ture are illustrated in figure 5. The visualization represents a hori-
zontal slice through the brain. The color mapped ellipsoids are il-
luminated using ambient, diffuse and specular illumination (b) and
ambient and diffuse illumination (c). The images on the right show
a detail view of the images on the left.

It can be seen that specular illumination makes it difficult to dif-
ferentiate tissue types since specular highlights dominate the image
and obscure the ellipsoid color and the texture pattern generated
by overlapping/non-overlapping ellipsoids. Using ambient illumi-
nation only results in the best differentiation between tissue types:
gray matter appears black, CSF appears as regions with large over-
lapping darkly colored ellipsoids and white matter is represented
by elongated ellipsoids with a highly saturated color. However, us-
ing ambient illumination only makes it difficult to perceive the 3D



Figure 5: (a) A spherical color map with hue, saturation and bright-
ness varying along the circumferential, longitudinal and radial di-
rection of the sphere, respectively. The illustration shows the sur-
faces of the color map formed by choosing a constant brightness
parameter of 1.0 (left) and 0.5 (right).
The fiber tract direction over a horizontal slice through the brain is
visualized with an ellipsoid-based texture based on the above color
map and by illuminating it using ambient, diffuse and specular illu-
mination (b) or ambient and diffuse illumination (c). The images on
the right show an enlargement of the region containing the splenium
of the corpus callosum.

shape of individual ellipsoids. Using ambient and diffuse illumina-
tion as in (c) combines both good shape perception and good dif-
ferentiation of tissue types. Alternative ellipsoid based textures are
suggested in [Wünsche 2004].

4.3.2 Anisotropy Modulated Line Integral Convolution

Disadvantages of the ellipsoid-based textures are that ellipsoids vi-
sualize the diffusion direction and hence the nerve fiber direction
only at individual points, that the 3D shape of ellipsoids can be hard
to perceive, and that there is little perceptual continuity between el-
lipsoids aligned along a nerve fiber tract. As an improved method
for visualizing the fiber direction in DTI slice images we propose
Anisotropy Modulated Line Integral Convolution (AMLIC). A 2D
AMLIC texture can be described in simple words as a blend of a
Line Integral Convolution (LIC) texture of the maximum diffusion
direction with the color mapped mean diffusivity.

Line Integral Convolution (LIC), originally proposed by Cabral
and Leedom [Cabral and Leedom 1993], is an effective method to
visualize vector fields by using curvilinear filters to locally blur an
input noise texture I along a vector field v.

An AMLIC texture is created by first computing the LIC tex-
ture from the maximum diffusion direction. As explained in the in-
troduction nerve fiber tracts are characterized by a relatively high
and anisotropic diffusion in the fiber direction. It is therefore
possible to extract nerve fiber tracts as streamlines by integrat-
ing in the direction of the maximum diffusivity in regions of high
anisotropy [Basser 2000]. The LIC texture is defined by convolving
a white noise texture with the maximum diffusion direction. This is
achieved by tracing through the center of each output texture pixel
a short streamline along the maximum diffusion direction projected
onto the image plane. The intensity of the output texture pixel is the
sum of the intensities of the input texture pixels along that stream-
line weighted with the integral of the convolution kernel which in
our case is a simple box filter. The length of the convolution ker-
nel at a pixel is proportional to the angle between the maximum
diffusion direction and the textured surface. Since anisotropic dif-
fusion can also be registered due to noise or eddy currents in fluid
filled compartments the maximum diffusivity at any step during the
streamline integration must exceed a certain predefined limit and
the streamline must exceed a specified minimum length and must
be sufficiently smooth.

The LIC texture is color mapped with the diffusion anisotropy
and for each pixel a blending factor monotonically increasing with
the diffusion anisotropy is defined. We obtained good results by
using a power function with the exponent 0.2. More details are
found in [Wünsche 2003a]. The LIC texture is blended with the
color mapped mean diffusivity using the OpenGL “GL BLEND”
operation [Woo et al. 1997]. The texture color of pixel (i, j) is then
given by

Oi j = αi jCi j +(1−αi j)Di j // the output texture color

where

Ci j = Li jc(λaniso(i, j)) // the LIC texture

// color mapped with the diffusion
// anisotropy at pixel centers

Li j // the LIC texture obtained from the

// principal diffusion direction
Di j = d(λmean(i, j)) // a texture representing

// the color mapped mean diffusivity
c(t),d(t) // color spectra indexed with t ∈ [tmin, tmax]
αi j = (λaniso(i, j))0.2 // a blending factor

// monotonically increasing with
// the diffusion anisotropy



Figure 6: Fiber tract direction over a horizontal slice through the brain visualized using anisotropy modulated line integral convolution
(AMLIC). The nerve fibers in the splenium of the corpus callosum (1) are parallel to the image plane whereas nerve fibers in the posterior
limb of the internal capsule (2) are almost vertical to it.

The resulting texture has three properties: regions of high
anisotropy feature a LIC like texture which indicates the 3D nerve
fiber direction. Long texture elements indicate nerve fibers tangen-
tial to the textured surface whereas very short point-like texture el-
ements indicate nerve fibers almost orthogonal to the textured sur-
face. Regions which are not textured have a low anisotropy and
therefore represent either gray matter or cerebral spinal fluid. If
an appropriate color map is chosen (we found that three equally
distributed colors over the range of scalar values of the mean diffu-
sivity work well) then gray matter is indicated by the color(s) asso-
ciated with low values of the mean diffusivity and CSF is indicated
by the color(s) associated with high values of the mean diffusivity.

Note that by blending the LIC texture and the color mapped
mean diffusivity we take into account the fact that there is no clear-
cut boundary between white matter and gray matter. The result-
ing visualization therefore has advantages over image segmentation
methods.

An example is given in figure 6. The cyan and green regions rep-
resent areas of high mean diffusivity and low anisotropy and there-
fore indicate fluid filled compartments. The whitish regions repre-
sent areas of low anisotropy and low mean diffusivity and therefore
indicate gray matter. Textured regions exhibit a high anisotropy and
indicate white matter. Very long texture components indicate fiber
tracts parallel to the image plane, e.g., in the splenium of the corpus
callosum (1). In contrast a noise-like texture with very short texture
components indicates fiber tracts almost orthogonal to the image
plane, e.g., in the posterior limb of the internal capsule (2).

4.4 Extracting Nerve Fiber Tracts

4.4.1 Streamlines & Streamtubes

As explained previously nerve fiber tracts are characterized by a
relatively high and anisotropic diffusion in the fiber direction. It is
therefore possible to extract nerve fiber tracts as streamlines by in-
tegrating in the direction of the maximum diffusivity in regions of
high anisotropy. Since similar diffusion properties can also be reg-

istered due to noise or eddy currents in fluid filled compartments the
anisotropy and maximum diffusivity at any step during the stream-
line integration must exceed certain predefined limits (we call this
requirement the “integration condition”) and the streamline must
exceed a specified minimum length.

Figure 7: Fiber tracts visualized using streamtubes color mapped
with the diffusion anisotropy. The image shows in clockwise direc-
tion starting from the left the top, front and back side of the brain.

Representing the tracked fibers by simple streamlines results in
images where the exact 3D geometry is difficult to understand since
depth cues due to shading and overlay are missing. A vastly im-



proved visualization is obtained by using streamtubes which are
formed by fitting a cylinder with constant radius around the stream-
line. Figure 7 shows an example which was generated by using the
start point condition λanisotropy ≥ 0.7 and λ1 ≥ 1000 and the inte-
gration condition λanisotropy ≥ 0.3 and λ1 ≥ 750. In order to obtain
a dense image 2×2×2 start points per grid cell of the DTI data set
were chosen. Visual cluttering was avoided by limiting the maxi-
mum number of streamtubes intersecting a grid cell to eight. The
step size used was 0.75mm and the minimum streamline length was
35mm. Subsubsection 4.4.3 contains a discussion of the choice of
parameters.

4.4.2 Hyperstreamlines

Streamlines and streamtubes contain only information about the
major diffusion direction. More information can be visualized by
using hyperstreamlines whose cross section represents the trans-
verse diffusion in fiber tracts [Wünsche and Lobb 2001]. Note that
it’s not necessary to normalize the hyperstreamlines such that the
maximum diameter is constant as done in [Zhang et al. 2003].

Figure 8 depicts the nerve fiber tracts in the brain visualized with
hyperstreamlines. Perception of the 3D geometry is improved by
inserting the eyes and the ventricles as anatomical landmarks as ex-
plained in subsection 4.2. The images were generated using one
start point per grid cell of the DTI data set with a start point condi-
tion of λanisotropy ≥ 0.7 and λ1 ≥ 1000 and an integration condition
of λanisotropy ≥ 0.3 and λ1 ≥ 750. Only one streamline per grid
cell of the DTI data set was allowed and a step size of 0.75mm and
a minimum length of 35mm were used for the computation. The
hyperstreamlines are color mapped with the maximum diffusivity.

Figure 8: Nerve fiber tracts visualized by hyperstreamlines color
mapped with the maximum diffusivity: 1-Corona radiata, 2-Corpus
callosum, 3-Splenium of the corpus callosum, 4-Internal capsule,
5-Cerebral peduncles. The images shows the left (a), back (b), top
(c) and front (d) side of the brain.

Comparing the visualization with photographs and drawings
from the literature [England and Wakely 1991; Guyton 1987; Han-
away et al. 1998] makes it possible to identify the main fiber tracts
as indicated in the image. The results were verified by consulting a
neuroanatomist.

Close to the eye balls three groups of hyperstreamlines can be
differentiated and are indicated in figure 8 (d) by arrows. The ar-
row on the left denotes the optic nerve whereas the top and bottom
arrow indicate the opthalmic division and the maxilliary division of
the trigeminal nerve (cranial nerve V), which conducts sensory im-
pulses from the cornea and the skin. The oculomotor nerve, which
controls the eye muscle, is not visible presumably because of its
relatively small diameter. The location of the optic nerve is more
inward than expected from the literature [Guyton 1987, p.41].

It is interesting to note that the image shows groups of hyper-
streamlines for each nerve even though the nerves have a relatively
small diameter. This is most likely due to branching of the nerves
and the presence of the ciliary ganglion. Note that the maximum
diffusivity indicated by the color mapping is considerably higher in
the eye region than in all other white matter regions except for some
parts of the corpus callosum.

In order to better differentiate features stricter conditions for the
definition of hyperstreamlines can be used which results in fewer
streamlines concentrated along the major nerve fiber tracts. Fig-
ure 9 shows a posterior, superior, and posterior left lateral view
of a visualization obtained by using the same visualization pa-
rameters as in the previous image except that the starting condi-
tion for streamline integration was changed to λanisotropy ≥ 1.0 and
λ1 ≥ 1000. The hyperstreamlines are color mapped with the diffu-
sion anisotropy.

Figure 9: Close up views of a visualization of fiber tracts using
hyperstreamlines color mapped with the diffusion anisotropy: 1-
cingulum, 2-fornix, 3-middle cerebellar peduncle, 4-posterior limb
of the internal capsule, 5-splenium of the corpus callosum.

The image indicates an approximately cylindrical anisotropy in
most regions. Noticeable exceptions are the posterior limb of the
internal capsule (4) and the splenium of the corpus callosum (5)
where the minimum diffusivity is significantly reduced and the
maximum diffusivity is increased which yields a high diffusion
anisotropy.

Several interesting features can be identified from the figure. The
hyperstreamline indicated by (2) inferior to the corpus callosum and
bending downward is the fornix which takes part in the integrative
function of the brain and terminates in the hippocampus. Superior
to the corpus callosum is the cingulum (1) which connects the cin-
gular jarus with the temporal lobe and the hippocampus. The pons
is identified by the presence of the middle cerebellar peduncle (3)
which wraps around the pyramidal tract.

The color coding of the hyperstreamlines in figure 8 and 9 indi-



cates that the mean diffusivity and the diffusion anisotropy usually
don’t vary much even though the packing density of nerve fibers
in different white matter regions can vary by up to a factor of five
(60000− 70000/mm2 in the pyramidal tract and 338000/mm2 in
the corpus callosum [Pierpaoli et al. 1996]).

4.4.3 Influence of parameters

Choosing the parameters for the streamline computation involves
a compromise between the amount of information displayed, vi-
sual cluttering and the amount of noise and artifacts in the image.
As mentioned previously noise and artifacts due to eddy currents
can be minimized by specifying a suitable minimum length for the
streamlines. Care must be taken that the specified value is not too
high since otherwise short fiber tracts such as the ones in the vicin-
ity of the eye are eliminated. We found that a minimum length
of 35mm removed most of the short hyperstreamlines in the pe-
ripheral regions of the brain but had no noticeable influence on the
anatomical features identified. Figure 10 shows two visualizations
generated with a minimum length of 23mm (a) and 35mm (b).

Figure 10: Hyperstreamlines generated using the parameters in ta-
ble 1.

Other important parameters are the choice of the start points for
the computation and the integration condition along the trajectory
of the hyperstreamline.

In the previously presented images the start points for fiber track-
ing were the centers of all grid cells of the DTI image data set which
fulfill a given start point condition. The start point condition has to
guarantee that streamlines are only generated inside of fiber tracts
and we therefore specify both a minimum anisotropy and a mini-
mum maximum diffusivity. The second restriction is necessary to
eliminate “anisotropic noise”. The integration condition must guar-
antee that the streamline stays inside the fiber tract but has to allow
for fluctuations in the anisotropy and maximum diffusivity due to
noise. Consistency is best maintained by defining the integration
condition as a weak form of the start point condition. Making the
integration condition too strong results in streamlines with multiple
gaps which often do not fulfill the minimum length criteria. Too
weak a condition, on the other hand, generates few, if any, addi-
tional fiber tracts, but rather leads to visual cluttering.

Figure 10 shows as an example the images generated with the pa-
rameter choices in table 1. The hyperstreamlines are color mapped
with the maximum diffusivity. Part (b) and (c) of the figure demon-
strate that increasing the minimum anisotropy at the start point from
0.6 to 1.0 removes the trigeminal nerve, most of the superior lon-
gitudinal fasciculus and the cingulum and optic nerve in the right
hemisphere. Part (d) of the figure demonstrates that increasing the
anisotropy instead to 0.7 and introducing additionally a minimum
value for the maximum diffusivity maintains all previously identi-
fied fiber tracts but removes artifacts in the peripheral brain regions
not eliminated by the minimum length condition. The nerve fiber
tracts in the vicinity of the eye are most sensitive to variations of
the start point and integration condition.

Note that we do not use a curvature criterion for tracking nerve
fiber tracts as done in [Poupon et al. 2000]. Our examples demon-
strate that this is not necessary and the restriction might be counter-
productive when visualizing diseased or abnormal neuroanatomy.

Start point condition Integration condition min. length
a) λanisotropy ≥ 0.6 λanisotropy ≥ 0.2 23mm
b) λanisotropy ≥ 0.6 λanisotropy ≥ 0.3 35mm
c) λanisotropy ≥ 1.0 λanisotropy ≥ 0.3 35mm
d) λanisotropy ≥ 0.7 and λanisotropy ≥ 0.3 and 35mm

λ1 ≥ 1000.0 λ1 ≥ 1000.0

Table 1: Parameter choices for the images in figure 10.

5 Conclusion

Visualizing the diffusion tensor field in the brain gives an in vivo
view of anatomical structures which was previously unobtainable.
Using an incremental approach starting with color mapped slices
and extending to 2 1

2 D and 3D techniques diffusion data can be sys-
tematically explored.

New insight into diffusion tensor data is gained using barycen-
tric color maps which show the distribution of anisotropies over a
region and indicate possible fiber tract crossings. Cyclical color
maps reveal structure in scalar fields and by using them we found
an interesting asymmetry in the diffusion anisotropy.

Ellipsoid-based textures provide a visualization of fiber direction
and tissue types or anisotropy properties. A high amount of infor-
mation can be encoded into slice images using anisotropy modu-
lated line integral convolution. The technique does not only in-
dicate three dimensional fiber direction but also provides a visual
segmentation of tissue types.

Using streamtubes and hyperstreamlines makes it possible to ob-
tain high quality 3D visualizations of the nerve fiber structure. We
were able to demonstrate that the major principal pathways in the
brain can be extracted and readily identified. Care must be taken
when choosing the appropriate visualization parameters.

In contrast to Zhang et al. [Zhang et al. 2003] we do not nor-
malize the transverse diffusivities encoded in hyperstreamlines and
therefore we represent additional information. We also employ
different methods for the selection of streamlines and we perform
the fiber tracking using a simple, fast and flexible general purpose
streamline tracking algorithm implemented within our visualization
toolkit [Wünsche 2003b; Wünsche 2003a].

The understanding of the complicated geometry of a fiber tract
visualization can be improved by inserting anatomical landmarks.
We listed several examples of landmarks and showed how they can
be generated interactively with our visualization toolkit.



6 Future Research

In future we intend to use our visualization toolkit for the explo-
ration of various white matter diseases. Current research indicates
that DTI is superior to traditional MRI imaging and using our ad-
vanced visualization methods might help to better understand the
development of various white matter diseases and the anatomical
abnormalities in neurological disorders such as schizophrenia. Ide-
ally we would like to obtain a series of data sets taken over time
which makes it possible to create an animated visualization of the
progress of a neurodegenerative disease.

We are also interested in qualitatively comparing our general
purpose streamline tracking algorithms with specialized methods
based on Markov-chain models and diffusion-advection processes.

Finally we want to visualize simultaneously a DTI data set and
the corresponding functional MRI (fMRI) data set. By using vi-
sualization methods similar to the one suggested by Worsley et al.
[Worsley et al. 1996] it would be possible to simultaneously display
anatomical and functional information. Functional MRI shows re-
gions of activity in the brain due to the detection of metabolic pro-
cesses characterized by a change in the blood oxygen level [Ny-
comed Amersham Ltd. 1999]. Improved very fast MR imaging
sequences allow simultaneous fMRI and DTI [Aronen et al. 1999].
This technique would be especially helpful when understanding re-
generative processes in the brain for which little is known about
the relationship between anatomical and functional regeneration
[Horner and Gage 2000].

Other functional brain imaging techniques have been presented
that allow the measurement of electrophysiological, hemodynamic,
and neurochemical processes that underlie normal and pathological
brain function [Baillet et al. 2001]. Initial work on the integration of
MRI, fMRI, and EEG and MEG source reconstruction techniques is
presented in [Wagner and Fuchs 2001] and we would like to further
progress this exciting research.
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