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Abstract

The creation of complex virtual worlds has expanded from
the domain of designers and animators to that of general
users with no background in computer graphics. Exam-
ple applications are military simulations, urban planning,
landscape design, search and rescue simulations, and so-
cial media technologies such as “Second Life”. In many
cases the user wants to create content containing hundreds
or thousands of similar objects. Modelling and placing
each individual object is infeasible and new ways must be
found to allow users to easily specify the distribution of a
large number of objects.

In this paper we introduce a sketch-based approach for
crowd modelling, which is intuitive and suitable for dif-
ferent input devices such as mice, sketch pads, and touch
screens (Windows 7). We derive design requirements by
analysing real environments and by testing users’ abili-
ties to characterise crowds and collections/accumulations
of objects. Based on these requirements we formulate a
model-by-example approach in which users sketch a sam-
ple distribution of objects and our tool computes the com-
plete “population” of objects over a domain specified with
a sketched contour. In order to deal with different distri-
bution patterns we first characterise the input and then use
clustering and texture synthesis to replicate the character-
istics over the domain. Initial results demonstrate that the
tool gives plausible results for random, regular and clus-
tered input and that it can be used in a wide variety of
modelling applications.

1 Introduction

The use of virtual worlds and simulations is expanding
rapidly and is now including such diverse applications as
entertainment (games, movies), civil engineering, urban
planning, visual impact studies, landscape design, social
media, education and training, and military and civil de-
fense simulations. In many of these applications large
collections of objects are required such as crowds of peo-
ple, forests of trees, or cities with thousands of houses and
skyscrapers. Modelling and placing these objects by hand
is time consuming and cumbersome and new tools for this
process must be found.

Sketch-based interfaces for modelling are particu-
larly attractive since they are intuitive (pen-and-paper
metaphor), encourage creativity (Gross & Do 1996) and
enable users to concentrate on the overall problems rather
than details (Wong 1992). The past decade has seen a
tremendous increase in the design and use of sketch-based
interfaces, e.g., for 3D modelling (Igarashia et al. 1999,
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Joshi et al. 2010, Olsen et al. 2009), animation (Thorne
et al. 2004, Li et al. 2006, Takahashi et al. 2005, Davis
et al. 2003), gaming (Kloonigames Ltd. 2008), diagram-
ming and interface design (Coyette et al. 2007, Schmieder
etal. 2010, Plimmer et al. 2010), medical imaging (Ropin-
ski et al. 2008), and robotics (Skubic et al. 2005, Sakamoto
et al. 2009, Barber et al. 2010).

In this paper we investigate the use of sketch-based
interfaces for crowd modelling. The term “crowd” is
used here in a wider sense and refers to any large col-
lection/accumulation/aggregation of objects. We investi-
gate users’ mental model of “crowds” and determine ways
to characterise them. We then use these characteristics
to model crowds by sketching example distributions over
a user defined domain and then replicating the sketched
characteristics using cluster analysis and texture synthesis
techniques.

Section 2 reviews relevant previous work in sketch-
based modelling, crowd modelling and texture synthesis.
Section 3 derives the requirements for our application.
Section 4 presents the design of the system. We evaluate
our application in section 5 and conclude the paper with
section 6, which also gives an overview of future work.

2 Literature Review

2.1 Crowd Modelling

A large variety of publications exists on crowd modelling
and simulation. In general the authors are interested in
the behaviour of a crowd given an initial configuration.
The arguably most natural way to achieve this is to use an
agent-based method where each character is given its own
personal characteristics and goals. The concept has been
initially used to simulate groups of animals (Reynolds
1987), but also proved effective for simulating human
crowds (Funge et al. 1999, Sung et al. 2005). Agent-
based methods are the key concept of the popular “MAS-
SIVE” crowd simulator (Massive Software 2009), which
is used among others in movie production, traffic simula-
tions, and advertisements. In some situations more control
of global behaviour is necessary and mathematical, physi-
cally and statistically based methods have been employed.
Examples include Bayesian decision processes (Metoyer
& Hodgins 2004) and the use of partial differential equa-
tions from continuum mechanics for describing local and
global behaviour patterns of crowds (Treuille et al. 2006).

Very few resources are available on how to create the
initial configuration of crowds and object collections. Pro-
fessional crowd simulation tools usually offer interfaces
for randomly generating crowds over a user defined do-
main by specifying the size and/or density of charac-
ters (WorldOfPolygons.com 2006). A spray interface for
distributing grass, trees and other objects over a terrain
has been presented by van der Linden (2001). Many
applications define the positions of large groups of ob-
jects using application specific physically or statistically
motivated techniques. For example, “Terragen” uses en-



vironmental parameters and directional controls to mod-
ify a fractal noise texture specifying the location of veg-
etation (Planetside Software, 2006). Procedural meth-
ods have been used for city simulations (Greuter et al.
2003). Diffusion-advection equations are useful for time-
dependent processes with distance constraints such as traf-
fic patterns (Garcia 2000).

2.2 Sketch-Based Modelling

Over the past decade a large variety of sketch-based
modelling applications has been devised. We are using
the crowd modelling software presented in this paper in
“LifeSketch”, a sketch-based framework for rapid proto-
typing of complex animated 3D environments (Yang &
Wiinsche 2010, Wiinsche et al. 2010).

The principal problem in sketch-based modelling of
3D objects is that the user specified sketch is two-
dimensional, whereas the modelled object is three-
dimensional. This necessitates the introduction of geomet-
ric constraints limiting the number of possible 3D shapes
corresponding to the 2D input sketch.

For the modelling of “blobby” shapes silhouettes, con-
tours, cross-sections and skeletons have been used as ge-
ometric constraints. For example, for the popular “Teddy
algorithm” users draw the outline of a 3D shape, which
is subsequently generated by sampling and triangulating
the contour, computing a skeleton, and rotating the sam-
ple points around the skeleton (Igarashia et al. 1999).
Karpenko et al. use implicit surfaces to “inflate” contours
to 3D bodies. As a result different sketched components
can be easily blended together (Karpenko et al. 2002).
Similar ideas are employed in ShapeShop (Schmidt et al.
2006) and MIBlob which uses implicit surfaces to inflate
contours traced in medical images (de Aradjo et al. 2004).

Two interesting application of silhouette-based algo-
rithms are garment and tree modelling. For tree mod-
elling the user sketches the outline of the crown of the
tree and the algorithm computes a fitting branching struc-
ture based on existing templates and a probabilistic dis-
tribution (Chen et al. 2008). Garments can be modelled
by sketching their outline and the algorithm automatically
fits them to the body shape (Turquin et al. 2007). Gain
et al. (2009) enable users to model 3D terrains by drawing
the silhouette, spine and bounding curves of both extrud-
ing (hills and mountains) and embedding landforms (river
courses and canyons). McCord et al. (2008) model orchids
by sketching the cross sections, outlines and deformations
of a flowers components.

The reviewed work demonstrates that sketch-based
modelling is a powerful and popular approach for proto-
typing 3D scenes. We are not aware of any sketch-based
interface for modelling crowds.

2.3 Texture Synthesis

The user study in the next section will demonstrate that
a “model-by-example” technique is a promising approach
for enabling users to design large and diverse crowds us-
ing just a few sketches. The underlying concept is simi-
lar to exemplar-based texture synthesis where a large im-
age is generated from a smaller example image (“exem-
plar”). We will employ such texture synthesis techniques
and hence present here a short overview of the most im-
portant methods.

A large variety of texture synthesis techniques exists,
but none is suitable to generate all types of textures. Proce-
dural techniques (Perlin 1985, Turk 1991, Witkin & Kass
1991, Worley 1996) are hard to control and, compared
to exemplar-based methods, limited in the variety of ma-
terials that can be modeled. They often work well for
stochastic textures and their applicability can be increased
by combining them with statistical sampling e.g., (Guo
et al. 2000).

Parametric exemplar-based methods, as proposed in
(Heeger & Bergen 1995, De Bonet 1997, Dischler et al.
1998, Portilla & Simoncelli 2000, Bar-Joseph et al. 2001),
rely on models of global statistical properties which serve
as constraint function while matching statistics of the in-
put and target texture. They are usually only successful in
synthesizing homogeneous and stochastic exemplars.

Pixel-based methods (Efros & Leung 1999, Wei &
Levoy 2000, Ashikhmin 2001) generate one pixel of the
output texture at a time and hence offer a high level of
control. The algorithm proposed in (Lefebvre & Hoppe
2005, 2006) performs an iterative optimization to mini-
mize the difference of the synthesis result to the origi-
nal exemplar, where the distance is measured using the
sum of squared differences (SSD) of local neighborhoods.
Most pixel-based methods consider only a local neigh-
bourhood for generating new pixels in the output texture
and hence are unable to capture global structures and se-
mantics (e.g., a tomato having only one stem) (Manke &
Wiinsche 2010). Optimization-based approaches use lo-
cal similarity measures of pixel neighborhoods to define
a global texture energy function that is minimized (Kwa-
tra et al. 2005). One example is histogram equalisation to
ensure that input and output texture have the same colour
distribution (Kopf et al. 2007). The algorithm generates
very high quality results, but is considerable slower than
comparable pixel-based techniques (Kopf et al. 2007).

Patch-based methods paste random patches of the ex-
emplar into the output texture and optimize the transitions
between overlapping patches (Praun et al. 2000, Efros &
Freeman 2001, Kwatra et al. 2003). They can hence be
considered an extension of pixel-based methods. Since in
each step a patch is added to the texture they can often
capture local semantics better, but they offer less control
over the results (Wei et al. 2009). A special case of patch-
based methods are tiling-based techniques, such as “Wang
tiles” which uses carefully constructed square tiles with
matching boundaries which can then be used to generate
new textures (Cohen et al. 2003).

3 Requirement Analysis

3.1 Analysis of Real Environments

In order to find a suitable interface for specifying a large
variety of crowds and collections of objects we eval-
uated hundreds of images obtained with Google using
the keywords “crowd”, “herd”, “flock of birds”, “forest”,
“park”, “river boulders”, ‘“containers”, “city” and “vil-
lage”. We found that in all cases the overall look of the
crowd/collection could be characterised by the shape of its
domain (the occupied region) and the pattern how com-
ponents are distributed over it. The principal distribu-
tion patterns of objects are regular, random and clustered.
Each pattern has numerous subpatterns, e.g., “regular’ can
mean a regular grid (soldiers standing in line) or objects
lined up along a curve (houses along a street in a sub-
urb). We also found more complex patters, which could
be regarded as regular, and combinations of any of those
patterns. An example are flocks of geese where the main
shape formed by the geese is boomerang like, but some
geese are distributed seemingly randomly among them.

Based on this analysis a tool offering predefined crowd
patterns is too limited for out purposes and a “model-by-
example” approach is most promising, where the users
specifies an example distribution and the program repli-
cates this distribution in a natural manner.

3.2 Pre-Design Study

In order to determine how users characterise large crowds
and collections of objects with just a few strokes we per-
formed a user study.



Contour Type Stroke Distribution Pattern Undesired Inputs Resulting Number of Objects

C1 C2 C3 C4 C5 D1 D2 D3 D4 S G3 G4 || Mean | Median | Standard Deviation
Task 1 17.65 | 41.18 0 0 | 3529 || 82.35 | 17.65 5.88 0 17.65 | 11.76 | 29.41 100 | 219.82 269.54
Task 2 58.82 | 29.41 588 | 11.76 5.88 || 94.12 5.88 | 41.18 0 17.65 | 47.06 5.88 48 67.24 71.41
Task 3 82.35 | 11.76 5.88 0 0 5.88 | 94.12 5.88 | 17.65 5.88 0 | 17.65 110 170.88 184.56
Task 4 11.76 | 29.41 5.88 5.88 | 52.94 100 0 5.88 0 11.76 | 29.41 | 17.65 70 | 283.18 468.63
Task 5 47.06 | 2941 | 11.76 588 | 11.76 17.65 | 82.35 0 0 5.88 | 17.65 | 17.65 120 198.12 202.95
Task 6 5.88 | 3529 | 17.65 | 47.06 | 29.41 88.24 5.88 | 58.85 5.88 0 | 47.06 | 11.76 475 66.00 42.65
Task 7 3529 | 29.41 | 11.76 0 | 23.53 || 70.59 | 2941 | 11.76 0 || 5294 | 3529 | 11.76 19 48.65 78.16
Task 8 23.53 | 41.18 | 11.76 0 | 23.53 || 52.94 | 47.06 | 23.53 0 || 47.06 | 47.06 | 11.76 45 70.12 97.32
Task 9 41.18 | 3529 | 17.65 5.88 5.88 || 47.06 | 52.94 | 29.41 0 || 23.53 | 41.18 5.88 42 180.00 472.41
Task 10 || 29.41 | 29.41 5.88 5.88 | 35.29 || 41.18 | 58.82 | 23.53 0 || 3529 | 29.41 | 17.65 60 100.88 151.65
Task 11 17.65 | 41.18 5.88 5.88 | 35.29 100 0 | 17.65 0 || 23.53 | 29.41 0 75 146.47 197.30
Task 12 5.88 | 2941 | 2941 | 11.76 | 35.29 || 70.59 | 29.41 | 23.53 0 || 23.53 | 23.53 | 11.76 70 120.00 140.9
Task 13 5.88 | 47.06 | 17.65 0 | 2941 88.24 | 11.76 | 17.65 0 || 3529 | 52.94 | 17.65 12 24.18 30.08
Task 14 || 47.06 | 29.41 5.88 0 | 17.64 || 94.12 5.88 | 17.65 0 17.65 | 41.18 | 11.76 36 68.71 60.98
Task 15 || 52.94 | 17.65 | 17.65 5.88 | 11.76 11.76 | 88.24 | 11.76 0 || 29.41 | 3529 | 11.76 73 119 114.49
Task 16 11.76 | 23.53 5.88 0 | 47.06 || 94.12 5.88 | 17.65 0 || 3529 | 17.65 | 29.41 47 115.44 196.03
Task 17 || 23.53 | 11.76 5.88 0 | 52.94 || 88.24 5.88 | 17.65 0 || 5294 | 29.41 | 11.76 32 61.31 69.34
Task 18 5.88 | 3529 | 3529 | 23.53 | 17.65 82.35 5.88 | 64.71 5.88 || 29.41 | 41.18 | 17.65 42.5 66.29 72.95

Table 1: Results of the pre-design user study.

The rows represent the tasks 1-18 and the first twelve columns the

percentage of participants using the type of contour, symbol and stroke distribution specified in subsection 3.2.2. The
last three columns specify the mean, median and standard deviation of the estimated number of strokes which would fill

the domain if continuing the user’s example distribution.

3.2.1 User Study Design

The users were given eighteen tasks and were asked for
each task to:

1. Indicate the area covered by the objects using a single
sketch.

2. Indicate the distribution of objects using a small re-
gion filled with around 5-20 short strokes indicating
how the whole area would be covered by the objects.

The users were told to do the sketching as fast as possible
(less than 20 seconds per task) and they were told to imag-
ine that somebody else would complete the placement of
all objects for them based on their sketch. The eighteen
tasks were:

1. Sketch a crowd of 1000s of people at a festival.

2. Sketch a group of 100s of student in the school yard
during a break between classes.

3. Sketch an army of 1000s of soldiers marching in a
parade.

4. Sketch a large natural forest with 10000s of trees.

5. Sketch a (human-planted) plantation forest with
10000s of trees.

6. Sketch a botanical garden with dozens of small areas
of trees, where each area contains at most 10 trees.

7. Sketch 100s of farms distributed over a wide area,
e.g., central Otago.

8. Sketch a small village with about 100 houses.

9. Sketch a large city area with 100s of Skyscrapers
(e.g., Manhattan).

10. Sketch a modern suburb with hundreds of houses.
11. Sketch a flock of 100s of sheep.

12. Sketch dozens of flocks of geese migrating to warmer
areas.

13. Sketch 100 tigers in a large jungle. Assume that
tigers are territorial, i.e., they like to keep a large area
for themselves.

14. Sketch 100s of toys lying in a child’s room.

15. Sketch hundreds of containers stored in a port.

16. Sketch 1000s of sea shells on a beach.
17. Sketch 100s or large boulders in a river bed.

18. Sketch dozens of small island groups in the South
Pacific Ocean. Each island group should have at most
8 islands.

3.2.2 Results

The study had 17 participants, 8 male, 8 female and for
one participant the gender was not specified. Two of the
participants were in the 15-20 age bracket, 13 between 20-
30 years old, and two 30-40 years old. All but one of the
participants were either university students or had com-
pleted a university degree. The fields of study/occupation
were Computer Science (10), Chemistry (2), Mathematics
(2), Commerce (1), Science (1) and Education (1).

For each question we recorded the type of contour
specifying the domain and the distribution of strokes. The
main types of contours we discovered were:

C1 Rectangular contour

C2 Circular/ellipsoidal contour
C3 No contour

C4 Contours for cluster

CS Irregular contour

Note that these characterisations are neither complete nor
mutually exclusive. For example, triangular contours,
which were use once by one participant, are not covered
by any of the above cases. Contours for clusters can be
combined with any of the other contour types.

The main stroke distribution patterns were

D1 Random strokes/symbols
D2 Regular strokes/symbols

D3 Clustered strokes/symbols
recorded as above)

(regular/irregular

D4 Clusters, but no strokes indicating positions within
clusters (regular/irregular recorded as above)

In addition we found that many participants used symbols
(S) instead of strokes, especially when indicating large ob-
jects such as houses and farms. We also recorded when
participants filled most (G4) or all of the domain (G3)
with strokes/symbols. The results of the study are sum-
marised in table 1.



It can be seen that most users prefer to sketch a rectan-
gular or circular/ellipsoidal domain. The main exceptions
were task 4, 16 and 17, which all refer to natural objects
(natural forest, beach and river). In contrast human made
objects, such as a crowd of people or a village were usu-
ally sketched with a rectangular or circular shape, even
though in reality they inhibit highly irregular domains.

A potential problem is that many users also use con-
tours to indicate clusters. The use of contours for this pur-
pose varies widely between scenarios. For example, for
the botanical garden almost 80% of partcipants sketching
clusters surrounded them with extra contours. In other
cases such as task 18 (island groups) less than 30% of
participants sketching clusters surrounded them with extra
contours. The main difference is that real garden beds are
usually clearly differentiated from the surrounding area,
whereas island groups have no boundary to the surround-
ing ocean.

In five instances users did not use closed contours. All
of these cases occurred for task 17 (river). For task 16
(beach) one user only drew a single curve to outline the
beach/water boundary as illustrated in figure 2 (i). Both
cases are problematic since the domain of the intended
collection of objects is not clearly defined and hence it
would be difficult to complete for another user or com-
puter algorithm. In two cases (task 1 and task 2) users
drew a contour within another contour, e.g., to indicate a
stage which is free of the audience.

In summary users do not seem to have a good mental
model of the shape of the domain occupied by a collec-
tion of objects. Users created the most realistic contours
for domains with clearly defined boundaries and scenes
they are likley to have seen numerous times, e.g., an army
of marching soldiers. In general users showed a reluc-
tance to sketch irregular domains. Even for a natural for-
est more than 40% of users chose a rectangular or circu-
lar domain. In order to enable users to come up with the
best crowd model an application should allow changes of
crowd contours and recognise any erroneously drawn con-
tours. At the very least clear visual feedback needs to be
given on the recognised domain contour and the resulting
object distribution.

In terms of sketched stroke distribution patterns table 1
suggests that in most cases users make appropriate choices
between regular and irregular distributions. For example,
100% of users use an irregular pattern for the natural forst
and 82% a regular pattern for the plantation forest. In con-
trast, the use of clusters seems to be less intuitive. Even
in cases where clusters were explicitly specified, such as
tasks 6 and 18, less than 65% os participants sketch clus-
ters of strokes. However, for task 4 where no word in-
dicates the use of clusters more than 41% intuitively use
them. In 16 instances users drew only two clusters which
is not sufficient to determine the 2D arrangement of clus-
ters. There were also 16 instances of users drawing some
clusters of size one, so any synthesis method devised by
us must allow such clusters.

In summary most users are able to intuitively choose
between regular and irregular distributions. The use of
clusters seems to be less intuitive and hence, like before,
it is important to give clear visual hints how a synthesized
distribution is related to the sketched example distribution.

Observing the three rightmost columns of table 1 we
can see that most participants do not have a good feeling
for the size and density of an example distribution required
to achieve a certain number of objects over a domain. The
number of objects specified in the eighteen tasks varied
between 100s and 10000s whereas the estimated number
of objects resulting from user input usually varied between
50 and 300.

However, there is a strong correlation between the den-
sity of objects in reality and in the sketched distribution.
Humans in a crowd and trees in a forests stand close to-
gether and consequently participants drew strikes close to-
gether resulting in a large estimated number of objects.

In contrast tigers in a jungle or farms in New Zealand
have large distances between individual objects, and con-
sequently participants left large spaces between strokes re-
sulting in much less objects than required. Note that from
a logical perspective the sketch density should only de-
pend on the required number of objects since a sketch only
indicates a position in space and not the size of an object.
We suspect that this problem can be partially alleviated by
drawing points instead of strokes. The main reason for
using strokes in the user study was that it is intuitive for
pen-and-paper input and it is easier to recognise than small
dots.

Many users filled most or all of the domain with the
example distribution especially for task 6 (botanical gar-
den), task 13 (tigers) and task 18 (small islands). Again it
seems that a large size of objects or large distances inbe-
tween objects encourages users to keep large gaps between
strokes.

Another unexpected result was that many users used
shapes and symbols to indicate objects, especially where
the object had a large spatial extend such as in task 7
(farms), task 8 (houses), and task 17 (large boulders).

Figure 1 demonstrates examples of expected sketch in-
put and figure 2 illustrates unexpected results.

3.3 Summary

The analysis of real environments and the pre-design study
suggest that a feasible way to define a large variety of
crowds and collections of objects is by defining its do-
main and an example distribution. The program must be
able to differentiate between different types of distribu-
tions, such as regular, irregular and clustered, and must
be able to replicate the characteristics of any such pattern
without merely repeating it. Replicating the characteris-
tics means that the relative positions, directions, inherent
patterns, cluster sizes, and distribution densities should be
similar, but not necessarily completely identical. For ex-
ample, when modelling groups of students it would look
unnatural if all groups have only, say, two different sizes.

The original input pattern must be part of the final dis-
tribution since the user defined point locations might have
an important meaning and removing them might be con-
fusing.

The example distribution is best defined by simple
mouse clicks rather than strokes, since our pre-user study
indicates that users associate stroke size with object size,
which can influence the user’s perception of scale (i.e.,
the distance between strokes). Clicking on points is also
slightly more efficient and less cumbersome than drawing
strokes. The program must be stable, i.e., not crash with
unexpected input, and the visual feedback should indicate
to the user how the input should be modified if the result
is not the desired one.

4 Design

The problem of generating a distribution of objects over
a domain based on an example distribution is similar to
the exemplar-based texture synthesis problem, i.e., to al-
gorithmically construct a large image from a given smaller
image such that image characteristics are preserved. The
current state of the art in that field is summarised in (Wei
et al. 2009).

We can consider the example point distribution input
by the user as a black-and-white input texture where black
dots represent object locations. The problem then reduces
to synthesising a new texture over the rest of the domain.
Several difficulties arise:

e Most texture synthesis techniques are only good for
certain types of textures, e.g., regular textures or
stochastic textures.



Figure 1: Examples of expected user input: (a) Task 3 - marching soldiers form a regular pattern within a rectangular
shape. (b) Task 2 - students aggregate in small groups in a school yard with some individual students. (c) Task 4 - a
natural forest has an irregular shape and trees are distributed densely and randomly within it.

Figure 2: Examples of unexpected user input: (a) Task 6 - Extra contours for each cluster of trees. (b) Task 8 - A circular
contour for a village and rectangular symbols for houses. (c) Task 15 - Connected symbols to indicate containers in a
port (d) Task 1 - The sketched example distribution fills most of the region and its shape has an intended meaning (i.e.,
people aggregating around a stage). Objects are indicated by crosses instead of strokes. (e) Task 13 - Sparsely distributed
strokes filling the whole region indicate tigers in a jungle [strokes have been redrawn digitally to enhance visibility]. (f)
Task 1 - Shape of a crowd is described using a contour with a hole. (g) Task 12 - Regular stroke distribution along a curve
and clusters overlapping in multiple coordinate directions [strokes have been redrawn digitally to enhance visibility]. (h)
Task 5 - Intended regular pattern, but stroke number varies and rows are horizontally offset. (i) Task 16 - Beach region
not clearly specified and the area to be occupied by seashells is undefined [strokes have been redrawn digitally to enhance
visibility].



e It is difficult to reproduce the characteristics of an
input texture with clusters since this would require
a very large neighbourhood for any similarity mea-
sure used in the synthesis. This would dramatically
slow down the synthesis process. Global optimiza-
tion techniques might alleviate this problem, but are
too slow (Kopf et al. 2007). In order to enable in-
teractive modelling the texture synthesis techniques
must be performed in near real-time.

o If we use an exemplar-based method, what is a suit-
able input texture?

o The texture synthesis must leave the original user in-
put unchanged

e Most leading texture synthesis techniques are ex-
tremely complex and non-trivial to implement, so
ideally we would like to employ an open source
method.

In order to resolve these problems our algorithm uses
the following steps:

1. Perform a cluster analysis and determine the number
of clusters in the user’s input

2. If the user input contains only one cluster then de-
termine whether it is regular or stochastic, extract a
suitable exemplar, and call a suitable exemplar-based
texture synthesis method.

3. If the user input contains multiple clusters, then de-
termine the properties of each cluster and the distri-
bution of clusters and synthesise additional clusters
with similar characteristics.

We now explain the varies steps of this algorithm in
more detail.

4.1 Cluster analysis

In order to determine the number of clusters in the user in-
put we employ a cluster analysis algorithms and calculate
the size and distribution of clusters. A complication oc-
curs due to the fact that the user input can contain clusters
of size one (see figure 1 (b)).

4.1.1 K-means and K-means++ Algorithm

The arguably most popular algorithm used in scien-
tific and industrial applications is the k-means algorithm
(Arthur & Vassilvitskii 2007), which aims to partition n
observations into k clusters in which each observation be-
longs to the cluster with the nearest centre. We use the
Lloyd-algorithm which initially chooses k points as the
initial centres (means) of the clusters. In each iteration
the remaining points are assigned to the closest centres
and for each thus created cluster a new mean is calculated,
usually as arithmetic mean of the clustered points. The it-
eration continues until the centres (means) do not change
anymore. The resulting algorithm minimises the squared
error function

k
=YY X j— il *
%
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of the distances between cluster points and cluster centers.
Here S;,i =1,...,k are the k-clusters and ||X; — ]| is the
distance measure between a data point X; and the cluster
centre y;. For each cluster the new centre is computed
The results of the k-means algorithm are influenced by
three key parameters: The number of clusters k, the dis-
tance metric employed (usually Euclidean distance) and
the initial choice of cluster centres. When the amount

of data is small, as in our case, the initial positions sig-
nificantly effect outcomes. Another potential problem is
that each point has the same weight factor and as a result
the arithmetic mean is not robust when clusters are mixed
with single points as illustrated in figure 1 (b). Possible
improvements are discussed in (Xu & Wunsch II 2005).

The speed and accuracy of the k-means algorithm can
be improved by carefully choosing centres in the initialisa-
tion using a probability function which takes into account
the shortest distance of a potential centre point to the clos-
est center already chosen (Arthur & Vassilvitskii 2007).
This gives points far away from existing centres a higher
probability to be chosen. The thus resulting K-Means++
algorithm has been proven to be superior both in theory
and practice (Shindler 2008) and has been successfully ap-
plied in geography applications (Lee et al. 2008).

4.1.2 Determining the Correct Number of Clusters

Based on surveys of existing clustering algorithms (Xu &
Waunsch II 2005, Shindler 2008) we decided that the k-
means++ algorithm using the Lloyds k-means algorithm is
the best solution to deal with differently sized and shaped
clusters and isolated points.

An important question in our application is the number
of clusters in the initial user input. This is not known a pri-
ori and, in fact, there might be no definite answer as indi-
cated in some of the images of figure 2. Some references
in the literature recommend to estimate cluster numbers
using k-Fold Cross-Validation (Statsoft Ltd. 2010).

In our case we believe that this technique is not suit-
able based on the limited input size and, in most cases,
low number of clusters. In particular, in many cases the
input will consist of a single cluster and identifying such
cases correctly is critical. We choose instead an infor-
mation theoretical approach which is similar to Sugar &
James (2003). In the original article the authors aim to
be able to differentiate overlapping clusters with different
density distributions. In our case we assume that users
always sketch clusters such that their boundaries do not
overlap. We hence compute the optimal number of clus-
ters by computing the k-means++ algorithm for any num-
ber for 1 < k < n where n is the number of input points.
For each clusterisation we define a minimum spanning
tree. The optimal value of k is found if the tree edges
between clusters are longer than the edges within clusters
(see figure 3). While the resulting clustering might not be
optimal in a mathematical sense, we found that it best re-
flects the way users draw clusters (see section 3). If the
tree edges are all roughly similarly long for small values
of k, then we consider the input to represent a single clus-
ter.

4.2 Replicating an Input Point Distribution

After the correct number of clusters has been determined,
it must be decided whether the user input is regular or
stochastic. We do this by analysing the orientation of
the edges of the minimum spanning tree. If the edges
area aligned similarly, e.g., roughly horizontal and verti-
cal, than the distribution is considered regular. If the tree
edges have no predominant pattern than the distribution is
considered irregular.

For a regular input distribution we choose the small-
est enclosing square and use the thus created texture im-
age as exemplar for a Wang tiling texture synthesis algo-
rithm (Cohen et al. 2003). The algorithm finds the small-
est repetitive texture, and simply tiles them together. We
found that this algorithm preserves structures in the input
texture well. A drawback reported in the literature is that
repetitive patterns can be recognised for more stochastic
input textures (Zhang & Kim 2007). Since we only em-
ploy the algorithm for near regular inputs this does not
seem to represent a problem.



Figure 3: Tllustration of the algorithm determining the optimal number of clusters. The k-means++ algorithm will be
called with 1 < k < n, where n is the number of input points. For each clusterisation we define a minimum spanning tree.
The optimal value of k is found if the tree edges between clusters are longer than the edges within clusters. In the above
figure the optimal value would be k = 5.

- OX]

Figure 4: Left: Sketch of a tree and of a clustered point distribution. Right: The synthesised point distribution and the
resulting scene of a landscape with small “patches” of trees.

Figure 5: Left: Sketch of a tree and of a regular point distribution. Right: The synthesised point distribution and the
resulting scene of a landscape with a forest plantation.

Figure 6: Left: Sketch of a tree and of an irregular point distribution and a domain for the synthesized points. Right: The
synthesised point distribution and the resulting scene of a landscape with a natural forest.



For irregular distributions we choose the exemplar tex-
ture analogously, but then apply a Chaos Mosaic algo-
rithm (Guo et al. 2000).

For a clustered input we compute the mean and stan-
dard deviation of the size of all clusters and of the dis-
tances of the points in them to the respective centers. We
then generate new clusters based on these probability dis-
tributions. The clusters are then randomly placed subject
to a minimum distance criterion. Currently we are unable
to replicate regular clusters, but might be able to do that
by utilising the previous described texture synthesis algo-
rithms and then extracting appropriately sized patches.

5 Results

We have implemented the above described algorithms us-
ing Microsoft Visual C++ and OpenGL. So far we have
only integrated the generation of sketched tree objects
with our crowd generation software. Work is underway
on the full integration of “LifeSketch” in order to allow
generation of large collections of arbitrary objects such
as buildings and characters. Figures 4—6 demonstrate that
our application gives realistic results for regular, irregular
and clustered input. All textures are synthesised in real-
time.

More work is necessary to generalise the synthesis al-
gorithms, i.e., to allow clusters with regular point distri-
butions, and to deal with structured input which is not in-
herently regular as illustrated in image 2 (g). Also the
structure of clusters should be considered, i.e., to allow
regularly arranged clusters. This could be achieved by
considering cluster centres as input texture and then first
synthesising locations of new clusters and then their actual
shape.

6 Conclusion and Future Work

We have presented a user study evaluating the representa-
tion of different types of crowds and collections of objects
using sketch input. The results demonstrate that a dif-
ferentiation into regular, irregular and clustered patterns
is intuitive and effective. Problems exist with abstracting
size of objects and their spatial distribution: when dealing
with small objects which are widely spaced users tend to
draw widely spaced sketches even though a sketch repre-
sents just a location in space. Our tool uses point input and
further studies need to explore whether the same problem
will exist when using our “LifeSketch” software.

Based on the results of the users study we designed a
novel algorithm for synthesising large point distributions
from sketched user input. The algorithm uses a combina-
tion of a minimum spanning tree algorithm, k-means++ al-
gorithm, and probabilistic approach for characterising ex-
ample point distributions. New point distributions are gen-
erated using different texture synthesis algorithms which
take into account the inherent structure of the input tex-
tures. Preliminary results suggests that a wide variety of
complex environments containing large collections of ob-
jects can be modelled that way.

More work needs to be done to increase the range of
reproducible input distribution patterns. Also we want to
fully integrate our crowd modelling software into “LifeS-
ketch” and perform user testing to determine its effective-
ness, intuitiveness and ease-of-use. We are keen to use
the same tasks as in section 3 and to investigate whether
users produce the same sketch input as on paper and how
an interactive approach assists with generating the desired
results.
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