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Abstract

This paper explores the practical aspects associated
with visual-gecometric reconstruction of a complex 3D
scene from a sequence of unconstrained and uncali-
brated 2D images. These image sequences can be ac-
quired by a video camera or a handheld digital camera
without the need for camera calibration. Once sup-
plied with the input images, our system automatically
processes and produces a 3D model. We propose a
novel approach, which integrates uncalibrated Struc-
ture from Motion (SfM), shape-from-silhouette and
shape-from-correspondence, to create a quasi-dense
scene geometry of the observed scene. In the sec-
ond stage, surface and texture are applied onto the
generated scene geometry to produce the final 3D
modcl. The advantage of combining silhouette-based
and correspondence-based reconstruction approaches
is that the new hybrid system is able to deal with
both featureless objects and objects with concaved
regions. These classes of objects usually pose great
difficulty for shape-from-correspondence and shape-
from-silhouette approach. As the result, our approach
is capable of producing satisfactory results for a large
class of objects. Our approach does not require any
a priori information about camera and image acquisi-
tion parameters. We tested our algorithm using a
variety of datasets of objects with different scales,
textures and shapes acquired under different lighting
conditions. The results indicate that our algorithm is
stable and cnables inexpericnced users to casily cre-
ate complex 3D content using a standard consumer
level camera.

Keywords: image-based modelling, correspondence-
based reconstruction, silhouctte-based reconstruction

1 Introduction

There is an increasing amount of applications that
require high quality 3D representations, e.g. for
arts, commerce, virtual heritage, training. education,
computer games, virtual environments, documenta-
tion, exchanging information, and social networking
applications. Conventionally, 3D digital models are
constructed using modelling tools such as Maya,
3D Max or Blender. Although these applications
cnable graphic designers to construct highly realistic
and complex 3D models, they have a steep learning
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curve and often require a considerable amount of
training and artistic skills to use. These restrictions
render them unsuitable for non-professionals. The
introduction of specialised hardware, such as laser
scanners, has simplified the creation of models from
rcal physical objects. However, while many of these
systems dceliver highly accurate results, they are
usually extremely costly and often have restrictions
on the size and surface properties of objects in the
scene.  Consequently, there is a critical need to
improve on the status quo by making 3D content
creation available to a wider group of users.

In recent years image-based modelling has
emerged as a new approach to simplify 3D content
creation. In contrast to traditional geometry-based
modelling and hardware-heavy approaches, the
image-based modelling techniques confront the
formidable, and still unanswered, challenge of creat-
ing a comprchensive representation of 3D structure
and appearance of a scene from visual information
encoded in 2D still images. Image-based modelling
techniques are usually less accurate, but offer very
intuitive and low-cost methods for recreating 3D
scenes and models.

The ultimate goal of our work is to create
a low-cost system that allows users to obtain
3D reconstruction of the observed scene using a
consumer-grade camera. The idea behind the system
is very simple: Once supplied with the input images,
our system will automatically process and produce
a 3D model without any a priori information about
the scene to be reconstructed.

Reconstructing 3D scenes from a collection of 2D
photographic images requires knowing where each
photo was taken. A common approach to obtain
this information is to perform camera calibration
manually. However, this method requires a setup
and preparations that are usually too sophisticated
for inexperienced users. Furthermore, this method
places a restriction on the types of scenes that can
be reconstructed since it is not always feasible to
perform camera calibration for a large and complex
scene.  For this reason, for cach input image, our
algorithm needs to automatically estimate the
intrinsic and extrinsic parameters of the camera
being used and compute the 3D coordinates of a
sparse set of points in the scene (the scene geome-
try or point cloud). Surfaces and texture are then
applied to this point cloud to produce the final model.

Due to the sparseness of the scene geometry, prob-

lems such as surface artifacts, noise, and blurry tex-
tures might arise during the surface and texture re-

115



CRPIT Volume 135 - Computer Science 2013

construction processes. Most previous works ap-
proached these problems by constraining the types of
objects and requiring manual user inputs to aid their
systems in deducing the structure of the object to be
reconstructed. However, these requirements breach
our goal of creating an easy-to-use system and pro-
viding the capability of reconstructing any type of ob-
ject. We overcome these problems by using a hybrid
approach that integrates shape-from-correspondence
and shape-from-silhouette methods. The system will
perform 3D reconstruction using the following steps:

1. Camera parameter estimation

2. Initial point cloud generation from extracted key
features

3. Increase the density of the point cloud by exploit-
ing silhouette information

4. Reconstruct the object’s surface and texture to
produce the final model

The remainder of this paper is organised as follows.
After a description of the related work on image-based
modelling, a discussion about the algorithms used in
our system is presented in section 3. Results are dis-
cussed in section 4. Section 5 concludes and sum-
marises the paper and gives a brief outlook on direc-
tions for future research.

2 Related Work

Although there has been much interest and study of
3D modelling techniques over the last few decades,
robustly and automatically obtaining 3D models is
still a difficult task. For the past 30 years, creation of
artiticial 3D models using conventional graphics and
animation software such as Maya and 3D Max has
continued to be the most popular approach. To this
end, various tools have been proposed to assist the
human designer by using images of the object to be
modelled [THP08]. The reason why manual creation
of 3D models remains the prevalent approach despite
intensive study and research is that, in fact, there is
no computer vision or graphics technique that works
for every object. The difficulty in selecting the most
suitable 3D reconstruction technique that works for a
large class of objects justifies the abundant literature
that exists on this subject |Est04, REHO06].

Various multiple view reconstruction techniques
have been explored in recent years. Amongst them,
the most well-known and successful class of tech-
niques have been shape from silhouctte and shape
Jfrom correspondence.

The shape from silhouette class of algorithms
exploits silhouette information to create intersected
visual cones, which are subsequently used to derive
the 3D structure of an object. Shape from silhouette-
based methods are popular for shape estimation due
to their good approximation qualities for a large
number of objects, their stability with respect to the
object’s material properties and textures, as well as
their ease and speed of implementation. Exploiting
silhouctte information for 3D reconstruction was first
considered by Baumgart in 1974. In his pioncering
work [Bau74], the author computed polyhedral shape
approximations of a baby doll and a toy horse by
intersecting silhouette cones. Following Baumgart’s
work, many different variations of the shape from
silhouette paradigm have been studied and proposed.
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Aggarwal ¢t al  |[MAS83] proposed a mecthod
that used an intensity threshold-based segmentation
method to separate the object foreground and
background in each input image. A connected
component analysis of the segmented image produces
the silhouette. In order to compute the intersection
of different silhouette cones, the authors used a
run-length encoded. uniformly discretised volume.
The idea behind this is to consider each image point
as a statistical occupancy sensor. The point obser-
vations are then analysed to deduce where matter is
located in the observed scene. This is achieved by
discretising the scene into three dimensional voxels,
which arc then projected into silhouctte images. The
task is to mark the individual voxels as either “in”
or “out”. If the projection of a voxel belongs to the
foreground in all silhouette images, then the voxel is
labeled as “in” otherwise it is labeled as “out”. If a
voxel is labeled as “out”, it is excluded from further
computations of the object structure.

Matusik et al. [MBR'00] improve the efficency
of shape from silhouette techniques by taking ad-
vantages of epipolar geometry. In their method,
3D silhouette-intersection computation is reduced
to 2D by projecting onc silhoutte onto another.
The intersection is then carried out in image space.
Franco et al. |FB10| attecmpted to improve the
effciency of Matusik’s method and to produce a
water-tight model. Their method involves two main
steps. First, point clouds of the observed scene are
generated by back-projecting viewing edges of the
visual hull. Next, missing surface points are recov-
ered by exploiting local orientation and connectivity
rules. A final connection walkthrough is then carried
out to construct the planar contours for each face of
the polyhedron.

In recent years, various correspondence-based
techniques have been explored.  However, most of
these methods were designed to tackle reconstruction
problems related to a particular class of objects. As
a result, their use is often limited.

Fruh et al |FZ03] used a combination of aerial
imagery, ground colour, and LIDAR scan data to
create textured 3D models of an entire city. While
the proposed method produces visually acceptable
results, it suffers from a number of drawbacks that
render it impractical for consumer-level applications.
In particular, the method requires intensive use of
special hardware during the data acquisition step.
This includes a vehicle equipped with fast 2D laser
scanners and a digital camera to acquire texture data
for an entire city at the ground level and a LIDAR
optical remote sensor. Additionally, the required
manual selection of features and the correspondence
in different views is very tedious, error-prone, and
cannot be scaled up well.

Xiao et al. |[XFTT08] presented a semi-automatic
image-based approach to recover 3D structure of
facade models from a sequence of street view images.
The method combines a systematic and automatic
decomposition scheme of facades for analysis and
reconstruction. The decomposition is accomplished
by recursively splitting the complete fagades into
small scgments, while still preserving the overall
architectural structure. Users are required to provide
feedback on facade partitioning. This method
demonstrated excellent results.

Quan et al. |QTZT06] presented a method for
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modelling plants. In their method, segmentation is
performed in both image space (by manually select-
ing areas in input images) and in 3D space. Using
the segmented images and 3D data, the geometry of
each leal is recovered by setting a deformable leal
model. Users are also required to provide hints on
segmentation. The main disadvantage of this method
is that it requires full coverage of the observed model
(360 degree capture), which may not always be
possible in practice due to obstructions and space
limitations. Branches are modelled through a simple
user interface.

Tan et al. [TZW™'06, LQO2] introduced a method
for creating 3D models of natural-looking trees from
a collection of images. Due to the large leaf count,
small image footprint and widespread occlusions,
it is not possible to recover accurate geometric
representation for each leal. In order to overcome
this problem, the authors populate the manufactured
tree with leaf replicas from segmented input images
to reconstruct the overall tree shape.

3 Algorithms

Our proposed approach uses a coarse-to-fine strategy
where a rough model is first reconstructed and
then sequentially refined through a series of steps.
The approach consists of two main stages: scene
geometry extraction and visualisation. Both of these
stages are achieved by dividing the main problem
into a number of more manageable subproblems,
which can then be solved by separate modules. The
entire reconstruction process is illustrated in Figure 1.

The objective of the first stage is to recover the
scene geometry from the input images. This stage
begins with the camera parameters for each view be-
ing estimated. This is accomplished by the automatic
extraction of distinctive features and establishment
of point correspondences in stereo image pairs. We
then isolate all matching images, selecting those that
view a common subset of 3D points. Given a set
of matching images, a scene geometry (point cloud)
and camera pose can be estimated simultaneously
by Structure from Motion and subsequently refined
by Bundle Adjustment. Next. additional points
are added to the computed secene geometry hy
exploiting the silhouette information to produce
a morc complete geometry. In the final step, a
resampling technique is applied onto the point clouds
to produce the final scene geometry. In contrast to
an initial version of this algorithm [NWDL11| we
integrate silhouette information, which is used in the
point cloud generation and the surface reconstruction,

In the second stage, we tackle the problem of
how to transform the scene geometry recovered in
the preceding stage into a realistic representation of
the scene. This is accomplished by applying surfaces
and texture to the resulting scene geometry. The
outcome of this stage is a complete 3D representation
of the observed scene.

3.1 Camera Parameter Estimation

One key challenge in extracting 31 representation
of a scene from a sequence of 2D images is that
the process requires knowing where each photo
was taken and in what direction the camera was

1. image Acquisiion 2. Input Images

{

Camera Parameter Estimation

§

Initial Point Cloud Generation

4

Increase Point Cloud Density
by g Silhouette

5

Point Cloud Sampling

4, Point Clouds

L 3. 30 Reconstruction

L 7
. Texture Reconstruction

5. Surface Reconstruction
and Model Enhancement

Figure 1: Overview of our algorithm for reconstructing 3D
models from a set of unconstrained and uncalibrated images.

pointed (extrinsic parameters), as well as the internal
camera settings. such as zoom and focus (intrinsic
parameters), which influence how incoming light is
projected onto the retinal planc.

In order to recover such information, the system
will first detect and extract points of interest such
as corners (edges with gradients in multiple direc-
tions) in the input images. This is accomplished
using the SIFT feature detector |[Low06]. Feature
points extracted by SIFT are highly distinctive, and
invariant to different transformations and changes
in illumination, and additionally have a high in-
formation content [HLO7, BL05]. Once features
have been identified and extracted from all the
images, they are matched. This is known as the
corrcspondence problem.  Given a feature in an
image I;, what is the corresponding feature (the
projection of the same 3D feature) in the other image
I5. This can be solved by using a Euclidean distance
function to compare the two feature descriptors.
All the detected features in Is will be tested and
the one with minimum distance is selected [HQZHO8].

Once all interest points have been found. we
match them across views and estimate the camera
parameters and 3D coordinates of the matched
points simultaneously using the Structure from
Motion (SfM) technique. Structure from Motion
designates the computation of the camera poses and
scene geometry (3D points) simultancously from a sct
of images and their feature correspondences. More
precisely, SfM can be formulated as an optimisation
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problem, where the goal is to determine the configu-
ration of cameras and 3D points that, when related
through the equations of perspective projection, best
agree with the detected feature correspondences.
This computation is carried out by exploiting a
constraint between correspondences and the physical
configuration of the two cameras. This is a powerful
constraint, as two 3D rays chosen at random are
very unlikely to pass close to one another. Given
enough point correspondences between two images,
the geometry of the system is sufficiently constrained
to determine the camera poses (up to scale). The
key to the success of this procedure is that successive
images must not vary significantly, i.e. must contain
overlapping visual features,

Our solution takes an incremental approach, in
which a pair of images is selected to initialise the se-
quence. This initial pair should have a large num-
ber of matches, but must also have a large baseline.
This is to ensure that the 3D coordinates of observed
points are well-conditioned. The remaining images
are added to the optimisation one at a time ordered
by the number of matches |[REH06, SSS06]. The Bun-
dle Adjustment technique 1s followed to refine and im-
prove the obtained solution. The accuracy of the re-
construction depends eritically on the final step. Fig-
ure 2 demonstrates a scene geometry created using
Structure from Motion and Bundle Adjustment.

i ‘]ﬂ 3
.(: ‘;._'&.f i
-

Iigure 2: Two views of the scene geometry generated from 37
input images,

3.2 Scene Geometry Enhancement

At this stage, we have successfully acquired both
camera parameters and scene geometry. As the
scene geometry is derived from distintive features of
the input images, they are often sparse. In order
to produce a more complete and comprehensive
model, the obtained scene geometry needs to he
enhanced. This can be accomplished by exploiting
the silhouette information of the observed scene to
generate additional 3D points.

The process is as follows: First, silhouette in-
formation of the observed scene in each view is
extracted using the Marching Squares algorithm
[Lor95] producing sets of silhouette points. Each of
these sets represents an exhaustive point-by-point
isoline list of every pixel which constitutes a sil-
houette contour. To define a silhouette using an
enormous contour point set will inevitably upsurge
the computational expense. To avoid this, silhouette
data must be preprocessed to reduce the number
of silhouette contour points. We achieve this by
first performing a Delaunay triangulation of the
contour points. The output triangular mesh frame-
work is then fed to a mesh simpification algorithm
[Mel98] to decrease the number of triangles, which in
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turn effectively reduces the number of contour points.

Each set of contour points together with the
camera centre of that view defines a viewing cone,
whose apex is located at the camera’s optical centre.
FEach viewing cone consists of a number of cone
lines. A cone line represents a 3D line formed by
a silhouette contour point and the camera’s optical
centre. The polyhedral visual hull information can
be obtained by calculating the intersection of these
viewing cones. However, 3D polygon intersection
is non-trivial and often computationally expensive.
Matusik et al. |MBR'00] proved that equivalent
results can be obtained by the following steps:

Assume that we want to compute the intersection
of silhoutte A and B.

1. Projecting cach cone line of the viewing cone A
onto the silhoutte B.

2. Calculate the intersection of the projected line
and the silhouette B in 2D.

3. Lifting the computed intersection points from 2D
to 3D yields a set of 3D points, which defines a
face of the polyhedral visual hull.

Projecting a cone line onto another silhou-
ette As each of these rays (cone lines) is defined
by the camera’s optical centre and the projecting ray

0 45;, the projection of a ray onto the image B is
computed as follows:

Projecting the camera’s optical centre of A onto
B (epipole of B)
o
| 1)

qg] is the 3 x 4 projection

eg =Pp

where Pp = |@5.
matrix of BB,
Projecting the point D; at the infinity of the pro-

jecting ray O 45; onto B
Da Q;'s; E

These two points define a 2D line on image
B, which will subsequently be used to compute
intersections.

&;ZPB

Line-Silhouette Intersection The naive
approach of computing intersections of a line and
a silhouette requires the traversal of each pair of
silhouette contour points and performing a line-line
intersection with the given line. This method,
however, proves to be very ineflicient. We use
an alternative method [15], which is based on the
observation that all projected rays intersect at one
common point, the epipole. This makes it possible
to subdivide the reference image into partitions so
that each projected ray will intersect all the edges
and only the edges in that partition. This way we
only have to traverse edges in a particular partition
when computing interscctions.  The algorithm to
partition the reference image into regions is as follows:

First, the epipole of the reference image B is
computed by projecting the camera’s optical centre
of A onto B. Each silhouette contour point along
with the epipole forms a line segment. The slopes
of all the line segments are stored in a sorted list
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in ascending order. Two consccutive line segments
in the list create a partition or a bin. Each bin is
defined by a minimum and maximum slope value
(min and ty,q:) and a set of edges associated with it.

To determine the set of edges allocated to each
bin, we traverse through the silhoutte contour points
while maintaining a list of edges in the current bin.
When a contour point is examined, we eliminate
from the current bin all edges ending at that contour
point and append all edges starting at that contour
point. A start of an edge is characterised as the edge
end point that has a smaller slope value.

The intersections of a given line and a silhouette
can be determined by first examining the slope of the
input line segment to establish the bin to which the
line segment belongs. Once the corresponding bin is
found, we iterate through the edges assigned to that
bin and perform line-to-line intersection. The result
of this stage is a collection of 2D intersection points.

2D points to 3D points Given a 2D in-
tersection point in the reference image, we want
to compute the corresponding 3D point of this
point. This is accomplished by shooting a ray
from the camecra’s optical centre of the reference
image through the intersection point and compute
the intersection point of the newly created 3D
rays with the original 3D ray. The intersection
point of the two 3D ray is the 3D point we want to
find. Figure 3 shows an example of the lifting process.

Figure 3: Lifting 2D points to 3D points.

A problem arises when the two rays do not
interscct as a result of noise.  We can handle this
by finding the point with the smallest distance to
the two rays using a Least Sguare method. Figure 4
illustrates the newly generated 3D points of the dog
dataset. These point clouds together with those of
the previous stage form a much more comprehensive
geometric representation of the observed scene.

3.3 Surface and Texture Reconstruction

The final step is to reconstruct surfaces from the
obtained point clouds. Surface reconstruction is
the process of automated generation of a smooth
surface that closely approximates the underlying 3D
models from which the point clouds were sampled.
The reconstructed surface is usually represented
by a polygon mesh. Many sophisticated surface
reconstructions have been proposed and extensively
studied. In our system, we employ the Poisson sur-
face reconstruction algorithm |[KBHO6] for remeshing

Figure 4: Additional 3D points generated by exploiting the
silhouette information.

the surface.

The Poisson reconstruction method [Boll(] ex-
tracts surfaces by taking advantage of the integral
rclationship between oriented points sampled from
the surface of an unknown model and the indicator
function y of the model. The indicator function is
defined as 1 at points that lie inside the model and
as 0 for points that lie outside the model.

Formally, the problem can be formulated as:
Given an oriented point set P = {s1,82,....85},
where a point sample s; consists of a position p and
an inward facing normal n and is assumed to lie
on or near the surface M of an unknown model
M. The aim is to create a smooth and watertight
approximation to the original surface by computing
the indicator function x of the model and then
cxtract an appropriate isosurface |Boll0].

This i1s accomplished by first deriving a relation-
ship between an integral of the normal field over the
surface and the gradient of the model’s indicator
function. The gradient of the indicator function
is defined as a vector field that is zero almost
everywhere as the indicator function is constant
practically everywhere except at points near the
surface, where it points in the direction of the inward
surface normal. Hence, the input oriented point
samples can be thought of as samples of the gradient
of the indicator function [Boll0, Kaz05]. An example
of Poisson Surface reconstruction is shown in Figure

Figure 5: Poisson reconstruction. The input point samples are
on the left, while the reconstructed mesh is shown on the right.

After the surface reconstruction phase, the re-
sulting model is a shaded and textureless polygonal
mesh. Such a representation is usually not an accu-
rate reflection of the objeet in the input images. A
more tealistic representation is obtained by creating
a surface texture from the colour information in the
input images. In texture reconstruction, each vertex
of the polygonal mesh has the RGB colour of the
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corresponding vertex in the attached point clouds.
The resulting triangle mesh with vertex colours is
rendered using Gouraud shading. Since the triangle
mesh is very dense, the colour interpolation over
triangles gives acceptable results.

4 Results

We evaluated our system using a wide range of data
sets at different scales of both indoor and outdoor
scenes.  In most test cases, the system produces
qualitatively good results, The geometrics recovered
using our system appear to retain high resemblance
to that of the original models even for objects
with smooth, uniform and limited-feature surfaces
or concave regions. Datasets with both smooth,
uniform surfaces and concave regions often resulted
in an unsatisfied geometry since the silhouettes did
not contain sufficient geometry information, and
there were too few unambiguous features to allow full
surface reconstruction. The size of our test datasets
varies from as few as 6 images to hundreds of images,
which were all taken with a simple handheld camera.

Owl Dataset The first dataset consists of 32

images (3648 x 2736 pixcls) taken from arbitrary
view directions using a normal consumer-level SONY
DSC-W180 camera of a paper model of an Owl
Three of the 32 input images are shown in Figure 6.
This Owl object is highly decorated with texture. On
average, each image contains over 53,000 features,
which would aid the reconstruction greatly.

Figure 6: Owl dataset input images.

The resulting reconstructed model, illustrated in
figure 7, is of excellent quality. The overall shape,
along with details such as feathers, and the texture of
the original model are reconstructed with no visual
difference to the original model. This is due to the
high number of distinct features of the original object.
The resulting model has 678,210 faces in total. The
process took approximately 3 hours and 30 minutes
to complete on an Intel Quad Core i7 with 6GB RAM.

Lady Statue Dataset This dataset consists of
17 images taken from the frontside of a black copper
statue. The backside was not accessible. The images
were taken with the same camera as in the previous
case and under very complex lighting conditions.

Some of the images which were used for the
reconstruction are shown in Figure 8. The resolution
of cach image in this datasct is 3648 x 2736 pixcls.
Notice that the surface of the model contains few
texture details.

The reconstructed model has 268,892 faces and
is of moderate quality (Figure 9). This result is
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Figure 8: Two of sevenleen inpul images of the Lady model
taken al the Auckland Art Gallery.

surprisingly good considering the relatively low
number of input images and the lack of distinct
visual features for correspondence matching. The
geometry was predominantly obtained from the
silhouette information. This shows that our system
is capable of producing good results for feature-poor
models and few input images.

The reconstructed texture shows several sig-
nificant differences to the original model. This is
caused by changes in lighting conditions within the
gallary. Some white patches also appear around
the head region of the reconstructed model due to
the lack of images from that particular dircction.
The current systems only computes surface colours,
rather than material properties, and hence works
best for diffuse surfaces and lighting conditions
resulting in few isolated highlights. The recon-
struction process required approximately 1 hour and
47 minutes on an Intel Quad Core i7 with 6GB RAM.

Bunny Dataset This data set comprises
49 images (2592 x 1944 pixels) taken from many
different views of a bunny model using a normal
consumer-level SONY DSC-W180 camera. The
original model has a very bumpy surface, which is
extremely difficult to reconstruct (Figure 10). The
objective of this test is to determine if the system
can effectively deal with rough surfaces and high
illumination variations due to surface roughness and
self shadowing.
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Figure 9: 3D reconstruction of the Lady Statue.

Iigure 10: T'wo of 31 input images of a bunny model.

The reconstruction result (shown in Figure 11)
is of very good quality. The final model, which is
composed of 528,637 faces, bears a high resemblance
to the original object.

This result demonstrates that our approach is
able to recover realistic 3D models of shapes with
complex surface geometries. The overall computation
time is approximately 4 hours and 40 minutes on an
Intel Quad Core i7 with 6GB RAM.

IFigure 11: 3D Reconstructed model of the Bunny dataset.

Cat Dataset This data set was obtained from
a ceramic statue of a cat. There are 44 images with
a resolution of 2592 x 1944 pixels. This object
has a very shiny, reflective, smooth and uniform
surface. These surface characteristices pose a major
problem for correspondence-based methods as very
few features are awvailable. Added to that, the
observed object’s surface also contains a number
of concave regions, which also cause problems for
silhouette-based methods. Three of the 44 input
images are presented in Figure 12.

Figure 12: Input images of the Cat dataset.

The visual quality of the reconstruction is not
satisfactory. While the object is recognisable, im-
portant features such as the eves and ears are not
reconstructed well, and the colour distribution varies
from the original object.

This reconstruction results (Figure 13) demon-
strate that our approach is able to recover 3D
geometry even for models with shiny, reflective and
uniform surfaces, but problems cxist with concave
regions. The overall computation time was approx-
imately 2 hours and 55 minutes on an Intel Quad
Core 17 with 6GB RAM.

Figure 13: 3D reconstruction of the Cat model.

Comparison with Commercial Systems

Over the past 2-3 years a couple of prototypes
of commercial systems have emerged, which are
currently at various stages of user testing. While
none of the commercial systems has published any in-
formation about the utilised approach, we performed
an analysis, which suggest that most of them use pre-
dominantly a silhouctte-based approach [NWDL12].
In this section we provide a short comparison of
our novel hybrid approach with some of the most
promising alternative image-based modelling systems
(123D Catch and Agisoft) currently in development.

In order to evaluate these systems, we used a
repository of over 40 objects. After initial tests
using different objects we selected one object which
reflected the main shortcomings of all tested algo-
rithms. For this test, 44 input images of the above
cat model were supplied to these systems. 'The
reconstruction results from these two systems arc
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shown in Figure 14 and 15.

Iigure 14: 3D reconstruction of the Cat model using Agisoft
System.

Agisaft’s model is almost unrecognisable. The
reconstruction is very incomplete and retains no
visual resemblance to the original object. Large
portions of the object geometry are missing. This is
mostly due to the fact that the system is not able to
register views when there is only a limited number
of features in the input images. Additionally, the
reconstructed textures are also inadequate with many
black patches covering the reconstructed surfaces.

125D Catch produces morc a complete geometry
of the reconstructed model. The resulting model still
somewhat reflects the structure of the original object.
Compared to our reconstruction result, the recon-
structed geometry appears much rougher. Regions
around the back, the head and the tail of the recon-
structed model are mostly distorted.

Figure 15: 3D reconstruction of the Cat model using the 123D
Catch System.

5 Conclusion and Future Work
Our research was motivated by the observation that

there is an increasing demand for virtual 3D models.
Existing modelling packages, such as Blender and
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Maya, cnable the construction of realistic and com-
plex 3D models, but have a steep learning curve and
require a high level of artistic skills. Additionally,
their use is very time-consuming and often involves
tedious manual manipulation of meshes. The use
of specialised hardware for 31 model reconstruction
(laser scanners) makes it possible for inexperienced
users to acquire 3D digital models. However, such
hardware is very expensive and limited in its ap-
plications. DBased on this, we concluded that the
most promising approach for a general, affordable
content creation process is to use an image-based
modelling approach using images obtained with a
consumer-level uncalibrated camera.

We demonstrated our system’s ability to pro-
duce qualitatively good results for a wide range of
objects including those with smooth, uniform, and
textureless surfaces or containing concave regions.
The system has also demonstrated its robustness in
the case that there are illumination variations and
shadows in the input images.

Problems, such as missing textures in some
regions, still exist with the resulting 3D models.
This is caused by insufficient input images of those
regions.  We aim to overcome this problem by
cmploying image in-painting and cxemplar-based
texture synthesis techniques.

Although we have demonstrated that our system
can create 3D content inexpensively and conveniently,
the high computation cost partially offsets its advan-
tages. For example, our system takes approximately
2 hours to process 17 images, and roughly 5 hours for
31 images on a Intel Quad Core i7 with 6GB RAM.
The computational cost rises quadratically with the
number of input images. For the current state-of-the-
art of hardware technology, real time processing is
impossible on consumer-level machines. However, we
can reduce the processing time considerably by par-
allelising the computations as much as possible and
executing them on the GPU.
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