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Abstract

Medical imaging is an essential tool for improving the diagnoses, understanding
and treatment of a large variety of diseases. Over the last century technology has
advanced from the discovery of x-rays to a variety of 3D imaging tools such as
magnetic resonance imaging, computed tomography, positron emission tomography
and ultrasonography.

As a consequence the size and complexity of medical data sets has increased
tremendously making it ever more difficult to understand, analyze, compare and
communicate this data. Visualization is an attempt to simplify these tasks according
to the motto “An image says more than a thousand words”.

This thesis introduces a toolkit for visualizing biomedical data sets with a par-
ticular emphasis on second-order tensors, which are mathematically described by
matrices and can be used to express complex tissue properties such as material de-
formation and water diffusion. The toolkit has a modular design which facilitates
the comparison and exploration of multiple data sets. A novel field data structure
allows the interactive creation of new measures and boolean filters are introduced as
a universal visualization tool. Various new visualization methods are presented in-
cluding new colour mapping techniques, ellipsoid-based textures and a line integral
convolution texture for visualizing tensor fields.

To motivate the design and to assist in the use of the toolkit, guidelines for cre-
ating effective visualizations are derived by using perceptual concepts from cognitive
science. A new classification for visual attributes according to representational ac-
curacy, perceptual dimension and spatial requirements is presented and the results
are used to derive values for the information content and information density of
each attribute. A review and a classification of visualization icons completes the
theoretical background.

The thesis concludes with two case studies. In the first case study the toolkit is
used to visualize the strain tensor field in a healthy and a diseased human left ventri-
cle. New insight into the cardiac mechanics is obtained by applying and modifying
techniques traditionally used in solid mechanics and computational fluid dynamics.

The second case study explores ways to obtain in vivo information of the brain
anatomy by visualizing and systematically exploring Diffusion Tensor Imaging (DTI)
data. Three new techniques for the visualization of DTI data are presented: Barycen-
tric colour maps allow an integrated view of different types of diffusion anisotropy.
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Ellipsoid-based textures and Anisotropy Modulated Line Integral Convolution cre-
ate images segmented by tissue type and incorporating a texture representing the
3D orientation of nerve fibers. The effectiveness of the exploration approach and
the new visualization techniques are demonstrated by identifying various anatomical
structures and features from a diffusion tensor data set of a healthy brain.
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C.2 A vector v in world coordinates (x, y, z) and cylindrical coordinates
(r, θ, z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

D.1 Mathematical description of the 2D heat conduction problem . . . . 268

F.1 Prolate spheroidal coordinates ( c©2002 Eric W. Weisstein [Wei]) . . 298



List of Tables

4.1 A classification of common visual attributes . . . . . . . . . . . . . 84
4.2 Scalar icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3 Vector icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.4 Tensor icons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1 Myocardial volume of the healthy left ventricle at end-diastole and
end-systole computed using different integration methods . . . . . . 169

6.1 Myocardial volume (in cm3) of the healthy and the diseased left ven-
tricle at end-diastole (ED) and end-systole (ES) . . . . . . . . . . . 206

6.2 Ventricular volume (in cm3) of the healthy and the diseased left ven-
tricle at end-diastole (ED) and end-systole (ES), stroke volume (SV),
and ejection fraction (EF) . . . . . . . . . . . . . . . . . . . . . . . 208

6.3 Surface area (in cm2) of the endocardial and the epicardial surface of
the healthy and the diseased left ventricle at end-diastole (ED) and
end-systole (ES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.1 Parameter choices for the hyperstreamline images in figure 7.17 . . 245

xxi



xxii List of Tables



C H A P T E R 1

Introduction

1.1 Motivation

During the past 100 years medical imaging has advanced from Roentgen’s original
discovery of x-rays to a variety of 3D imaging tools such as magnetic resonance
imaging, computed tomography, positron emission tomography and ultrasonogra-
phy. Consequently the available medical data sets now comprise a diverse range
of measurements such as tissue densities, blood flow velocity, and material strain.
The development of mathematical models for organs and body parts has further
increased the range of available data.

The size and complexity of biomedical data sets makes it increasingly difficult
to understand, compare, analyze and communicate the data. Visualization is an
attempt to simplify these tasks according to the motto “An image says more than
a thousand words”. Representing complex material properties, such as strains, as a
single image improves the perception of features and patterns in the data, enables the
recognition of relationships between different measures and facilitates the navigation
through and interaction with complex and disparate sets of data.

The aim of this thesis is the development of a toolkit for visualizing biomed-
ical data sets with a particular emphasis on second-order tensor fields which are
a fundamental entity in engineering, physical sciences and biomedicine. Examples
are stresses and strains in solids and viscous stresses and velocity gradients in fluid
flows. Large amounts of tensor data are particularly difficult to interpret since an
n-dimensional second-order tensor has the same complexity as an n× n matrix. An
example for a biomedical tensor field is the strain field in the heart which describes
the deformation of the heart muscle. It has been reported that abnormalities in the
myocardial strain are visible before first symptoms of a heart attack occur [GZM97].
The goal of recording and visualizing cardiac data sets is to recognize and predict
heart diseases which remain the biggest killer in the western world [MYPF00]. Un-
derstanding the deformation behaviour of the heart represented by the myocardial
strain constitutes a major step towards this goal.

1



2 Introduction

1.2 Contributions

The research accomplished in this thesis contributes to the disciplines of scientific
visualization and biomedicine.

Chapter 4 summarizes results from cognitive science and offers guidelines for
creating effective visualizations by applying perceptual concepts. We extend the
traditional pipeline model for visualizing data to include two additional stages that
take place within the observer: visual perception by the visual system and cognition
by the human brain. An essential part of this model are visual attributes which
we classify according to representational accuracy, perceptual dimension and spatial
requirements. From these measures we obtain values for the information content
and information density of a visual attribute.

Chapter 4 also presents a survey and an extended classification of visualization
icons. By extracting the main visual attributes used for information mapping of
each icon an informal measure of the suitability of an icon for different visualization
tasks is obtained. The classifications for visual attributes and visualization icons
combined with additional guidelines proposed in this chapter provide the scientist
with a useful tool for selecting appropriate techniques for a given visualization task.

Chapter 5 presents a toolkit developed for exploring complex biomedical data
sets. The contributions of this part are threefold: we suggest a modular design which
facilitates the comparison and exploration of multiple data sets and visualizations.
We also introduce a novel field data structure which allows interactive creation of
new fields and we present boolean filters as a universal visualization tool. Our
design incorporates finite element data structures and allows the definition of tissue
properties in material coordinates, enables the selection of important structural
components of the modeled organ (such as the inside or outside surface of the heart)
and facilitates the computation of performance measures. We also suggest several
improvements to some common visualization icons, e.g., we introduce cyclical colour
maps and we describe tensor ellipsoids which encode the sign of an eigenvalue.

Chapter 6 and 7 present two case studies of practical importance. In the first case
study we apply numerical concepts and visualization techniques traditionally used in
solid mechanics and computational fluid dynamics to visualize models of a healthy
and a diseased human left ventricle. We obtain new insight into the mechanics of
the healthy and the diseased left ventricle and we facilitate the understanding of the
complex deformation of the heart muscle by creating novel visualizations. Previously
recorded results published as statistical data are confirmed and represented in an
effective visual form. We also suggest a new hypothesis explaining the pumping
behaviour of a left ventricle diagnosed with dilated cardiomyopathy.

The second case study presents visualizations of Diffusion Tensor Imaging (DTI)
data. We propose (concurrently with another research group) a new method to ex-
tract and visualize nerve fiber tracts in the brain by using streamline integration.
The nerve fibers tracts are visualized by streamtubes with a constant diameter or
by hyperstreamlines which encode additionally the cellular water diffusion trans-
verse to the fiber tract direction. Three additional novel visualization techniques
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are presented: Barycentric colour maps allow an integrated view of different types
of diffusion anisotropy; ellipsoid-based textures indicate diffusion direction and allow
differentiation of tissue types but suffer from a lack of visual continuity; Anisotropy
Modulated Line Integral Convolution (AMLIC) creates an image segmented by tis-
sue type where white matter regions incorporate a texture which indicates the 3D
orientation of nerve fiber tracts. The quality of our exploration approach and new vi-
sualization techniques is demonstrated by identifying various anatomical structures
and features in a diffusion tensor data set of a healthy brain.

1.3 Thesis Overview
This thesis is divided into three parts. The first part comprises the chapters 2–
4 and gives background information necessary for the understanding of this thesis
from the fields of continuum mechanics, anatomy and physiology, medical imaging,
bioengineering and scientific visualization. The second part consists of chapter 5
and introduces a visualization toolkit specifically designed for biomedical models
and data sets. The capabilities of this toolkit are demonstrated in the third part of
this work which comprises chapter 6 and 7 and contains case studies of biomedical
data sets of the heart and the brain, respectively.

Chapter 2 introduces the finite element method which is frequently used to create
biomedical models. We concentrate on the finite element representation of objects,
i.e., the description of the object geometry and associated data fields by sample
values and interpolation functions. The application of finite element analysis, i.e.,
finding a numerical solution to a set of partial differential equations governing the
behaviour of a model, is inconsequential for the visualization process and is instead
explained in appendix D. An important aspect of finite element modelling in the
context of this thesis is the concept of material coordinates which are inherent to the
modeled object and deform with it. As part of this opening chapter we also introduce
the notions of stress and strain which are examples of second-order tensors and occur
frequently in biological tissues.

Chapter 3 introduces two biomedical structures, the heart and the brain, which
are used in the case studies presented later in this thesis. For each organ we describe
its anatomy and where relevant its functioning, followed by a description of the cor-
responding biomedical models and associated data sets. The chapter is important
in the context of this thesis for several reasons: it improves the understanding of the
subsequent case studies and it enables the reader to compare visualization results
with the actual organ anatomy and physiology. Furthermore the chapter helps to
motivate the design and it helps to identify the required functionality of a visual-
ization environment for biomedical structures. Finally the chapter introduces two
examples of biomedical tensor data whose visualization is one of the main objectives
of this work.

Chapter 4 is the final chapter of the introductory part of this thesis and it re-
views the current state of the art of scientific visualization with an emphasis on
tensor field visualization. The chapter starts with an overview of challenges encoun-
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tered when visualizing multidimensional data and presents a summary of perceptual
issues relevant for the design of a visualization. The next section introduces data
transformation as a tool to simplify, expand, or modify data in order to make it
more suitable for the visualization process. It is followed by a survey of existing
visualization techniques for scalar, vector, and tensor fields. Methods which are im-
portant in the context of this thesis are dealt with in more detail. We conclude with
a classification of visualization algorithms and summarize issues relevant for com-
bining multiple visualization techniques into an effective visualization of a complex
data set.

Chapter 5 constitutes the second and main part of this thesis. It describes an
integrated visualization environment which we developed to investigate tensor field
visualization methods. Although just a prototype implementation, the environment
is a powerful visualization toolkit that allows the user to visualize complex biomed-
ical data sets. In addition the application makes it possible to investigate and
compare existing and novel visualization concepts. The chapter commences with
an introduction of the top-level design of the toolkit and a description of the novel
field data structure employed. Subsequently we explain various tools for user inter-
action, colour map design and the placement of visualization icons. We conclude
with a summary of implemented visualization algorithms and tools for improving
interaction with and perception of the data.

The final part of this work presents case studies of two biomedical data sets.
In chapter 6 we evaluate the deformation of a healthy and a diseased human left
ventricle. We present and explain various visualizations of the model and introduce
methods for the efficient computation of performance measures from the finite el-
ement representation. We conclude with a discussion of our results and mention
avenues for future research.

In chapter 7 we visualize the brain anatomy using Diffusion Tensor Imaging
(DTI) data. Our approach starts with slice images familiar to the medical specialist
and progressively expands the dimension and abstraction level of the representation
in order to provide new insight into the data. The quality of our exploration approach
and new visualization techniques are demonstrated by identifying various anatomical
structures of the healthy brain.



C H A P T E R 2

Strain, Stress, and Finite Element
Modelling

During the past decade physically based modelling has emerged as an important
new technique in biomedicine and computer science. An important subfield is the
modelling of elastic bodies as used, for example, in computer animation [PW96]
and surgical simulation [SBM+94, KGPG96, CDA99]. A mathematical description
of elastic bodies is given by the theory of elasticity, the study of the deformation
of a solid body under loading together with the resulting stresses and strains. The
resulting mathematical models can be solved numerically using the finite element
method (FEM).

This thesis explores the visualization of biomedical structures represented by
finite element models. Consequently we are mainly interested in the finite element
(FE) representation of objects, i.e., the description of their geometry and data fields
by sample values and interpolation functions. Also important in the context of
this thesis is the concept of material coordinates which are inherent to the modeled
object and deform with it.

This chapter first introduces mathematical notations and definitions used in this
thesis. Next we give a short introduction into strains, stresses and the theory of
elasticity suitable for the computer scientist without an engineering background.
Then follows an introduction to the FEM with a particular emphasis on the FE
approximation of objects. The mathematical equations underlying the FE model
and the employed solution procedures are summarized briefly and their application
is demonstrated by two examples in appendix D.

The concepts introduced in this chapter are incorporated in the design of our
visualization environment and are used in the case studies in chapter 6 and 7.

5
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2.1 Notations and Definitions

Vectors are written in small bold letters and matrices in bold capital letters or small
bold Greek letters. The components of a vector u are ui, . . . , un, or, if necessary to
avoid confusion, ux, uy, uz (in three dimensions). The components of a matrix M
are mij (i, j = 1, . . . , n) so that the matrix M can also be expressed as (mij).

If the basis vectors of a vector space are constant, i.e., they have a fixed length
and direction, the basis is called Cartesian. If the basis vectors are additionally unit
and orthogonal the basis system is called rectangular Cartesian or just Cartesian.
Unless stated otherwise we use a rectangular Cartesian coordinate system with the
basis vectors ei, i = 1, . . . , n. Vectors are by default taken to be column vectors.
The vector p from the origin to an arbitrary point

x =




x1
...

xn




is given by

p =
n∑

i=0

xiei (2.1)

The absolute value is denoted by | · |, the determinant of a matrix by det or

| · |, the Euclidean norm by || · || and the gradient operator by ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)T
.

Matrix transposition is indicated by T . Hence uTv is the dot product of the vectors
u and v and ∇T is the divergence operator, i.e., ∇T f = ∂f1

∂x1
+ . . .+ ∂fn

∂xn
. Furthermore

uvT = W defines the outer product of two vectors where wij = uivj .

2.1.1 Tensors

A k-th rank tensor (or tensor of order k) in n-space is a set of nk quantities which
obey certain rules of transformation when the coordinate axes are rotated [App98,
Wei]. A scalar is a tensor of order zero and a vector is a tensor of order one.

This thesis discusses the visualization of second-order tensors which are linear
transformations between vectors and are represented by matrices. In the following
unless stated otherwise the term tensor refers to a second-order tensor. Examples
for tensors are stresses and strains which are explained in the next sections.

An important property of an n-dimensional symmetric second-order tensor T is
that there always exist n eigenvalues λi and n mutually perpendicular eigenvectors
vi such that

Tvi = λivi i = 1, . . . , n (2.2)

The above equations can be rewritten as

(T − λiI)vi = 0 i = 1, . . . , n



2.1 Notations and Definitions 7

The resulting linear system of equations has non-trivial solutions if and only if the
matrix (T − λiI) is invertible. Hence the eigenvectors of the tensors are given by
the roots of the characteristic polynomial

det (T − λI) = 0

The matrix representation of a tensor is dependent on the reference coordinate
system used. Suppose {e1, e2, e3} and {ê1, ê2, ê3} are unit vectors spanning two
Cartesian coordinate systems (i.e., the unit vectors are orthonormal). The com-
ponents of a tensor T with respect to {e1, e2, e3} are expressed with respect to
{ê1, ê2, ê3} by the transformation [LRK86]

T̂ = QTTQ (2.3)

where Q = (qij) is the coordinate transformation matrix defined through the equa-
tions

êi = Qei i = 1, . . . , 3

Note that

qij = qij eT
i ei =

∑
j

qij eT
i ej = eT

i Qej = eT
i êj = cos(ei, êj)

since eT
i ej = δij .

Several coordinate system independent measures can be derived from a tensor.
In three dimensions these measures include the tensor invariants [LRK86]:

I1 = trace(T) = T11 + T22 + T33 (2.4)

I2 =

∣∣∣∣∣ T11 T12

T21 T22

∣∣∣∣∣+
∣∣∣∣∣ T11 T13

T31 T33

∣∣∣∣∣+
∣∣∣∣∣ T22 T23

T32 T33

∣∣∣∣∣ (2.5)

I3 = |T| (2.6)

The three tensor invariants are the coefficients of the cubic equation

λ3 + I1λ
2 + I2λ + I3 = 0

whose solutions are the eigenvalues of T.
Note that the first tensor invariant can also be expressed as I1 = λ1 + λ2 + λ3.

For a proof choose the eigenvectors of the tensor as a reference coordinate system.
Representing the tensor in the resulting coordinate system gives a matrix with zero
off-diagonal elements and the eigenvalues as diagonal elements.

If we represent the tensor by an ellipsoid with the lengths and directions of
its principal axes given by the eigenvalues and eigenvectors then the first tensor
invariant is proportional to the average of the axis lengths, the third invariant is
proportional to the ellipsoid volume and the second invariant can be interpreted as
a surface measure [Ale00].
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2.2 Curvilinear Coordinates
While many modeling problems are formulated in three-dimensional Cartesian space,
some problems, especially those involving curved geometric bodies, are better posed
in a non-Cartesian curvilinear coordinate system. This subsection introduces curvi-
linear coordinate systems and shows how to transform between them and Cartesian
coordinates.

Given an n-dimensional rectangular Cartesian space, a point p is given by a set of
rectangular Cartesian coordinates (r1, . . . , rn). A new set of coordinates (q1, . . . , qn)
can be defined by the transformation

qi = qi(r1, . . . , rn) i = 1, . . . , n

If the Jacobian does not vanish, i.e.,

|J| =

∣∣∣∣∣∂qi

∂rj

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

∂q1

∂r1
· · · ∂q1

∂rn
...

. . .
...

∂qn

∂r1

... ∂qn

∂rn

∣∣∣∣∣∣∣∣∣
�= 0 (i, j = 1, . . . , n)

an inverse transformation

rj = rj(q1, . . . , qn) j = 1, . . . , n

does exists [Heu81, p. 300] with (
∂rj

∂qi
) = J−1.

If qi is changed and qj (j �= i) is held constant then the vector r will vary
along a curve. This curve is called the coordinate curve for qi. When the above
transformation is linear the new coordinate system is again Cartesian, though not
necessarily orthogonal or normalized. When the above transformation is non-linear
the new coordinate system is called curvilinear [Bat82]. An example of curvilinear
coordinates is explained in detail in appendix C.2.

The position vector p can now be represented as a function of the new coordinates

p = p(q1, . . . , qn)

The partial derivatives
∂p

∂qi

≡ êi i = 1, . . . , n

are tangent vectors of the coordinate curves qi. The vectors êi form a basis, the
so-called unitary system, for the coordinates (q1, . . . , qn). In general the vectors are
neither orthogonal nor normalized and using equation 2.1 can be expressed in terms
of the Cartesian basis as

êi =
∂p

∂qi
=

n∑
j=1

∂rj

∂qi
ej (2.7)

Consequently a vector

v̂ =
n∑

i=1

v̂iêi
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expressed in curvilinear coordinates can be written with respect to the original basis
as

v̂ =
n∑

i=1

v̂iêi =
n∑

i=1

v̂i


 n∑

j=1

∂rj

∂qi
ej


 =

n∑
j=1

n∑
i=1

∂rj

∂qi
v̂iej =

n∑
j=1

v̄jej

where

v̄j =
n∑

i=1

∂rj

∂qi

v̂i

are the components of the vector in Cartesian coordinates. In matrix form this
simplifies to

v̄ = J−1v̂ (2.8)

An example of the representation of a vector with respect to different coordinate
systems is given in subsection C.2.1.

Similarly a second-order tensor

T̂ =
n∑

i=1

n∑
j=1

t̂ij êiêj

expressed in curvilinear coordinates is written with respect to the Cartesian basis as

T̂ =
n∑

i=1

n∑
j=1

t̂ij

(
n∑

k=1

∂rk

∂qi
ek

)(
n∑

l=1

∂rl

∂qj
el

)
=

n∑
k=1

n∑
l=1

t̄klekel

where

t̄kl =
n∑

i=1

n∑
j=1

t̂ij
∂rk

∂qi

∂rl

∂qj

are the components of the tensor in Cartesian coordinates. In matrix form this
simplifies to

T̄ = J−1T̂(J−1)T (2.9)

2.3 Linear Elasticity

2.3.1 Displacement and Strain

An elastic body under an applied load deforms into a new shape. The theory of
linear elasticity provides a mathematical description for the displacement the body
undergoes. For a one-dimensional example consider a thin rubber band as pictured
in figure 2.1. Two arbitrary points P and Q are marked at the positions x and
x+ δx, respectively. After deformation these points move to the positions x+u and
x + u + δx + δu, respectively, where u is called the displacement. The total length
increase (displacement) between these points is δu. The strain is now defined as the
increase per unit length, i.e., it is the displacement gradient, which in one dimension
is defined as

εx = lim
δx→0

δu

δx
=

du

dx
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xx

ux+u

b)

a) x

x

P

P’

Q

Q’

Figure 2.1. A rubberband before (a) and after (b) stretching.

In higher dimensions the situation is more complicated. Figure 2.2 shows a body
before and after deformation. Under deformation the points P and Q move to
position x′ = x + u(x) and x′ + dx′ = x + dx + u(x + dx), respectively, where u is
called the displacement field.

x

x
P

Q (x
’

(x)

d

u )xd+

P’

x’

u

Q’

dx

Figure 2.2. A body before and after deformation.

If the points are only an infinitesimal distance apart the vector between the
deformed points

dx′ = dx + u(x + dx) − u(x)

can be written as [LRK86]

dx′ = dx + (∇u)dx
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where the second-order tensor

∇u =




∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3


 (2.10)

is known as the displacement gradient.
It can be seen that if ∇u = 0 then dx′ = dx and the motion in the neighborhood

of point P is that of a rigid body translation. The information about the material
deformation around P is contained in ∇u. It is desirable to define an entity which
contains only information about deformation, but not about rotation. To do this
consider two material vectors dx1 and dx2 issuing from point P . Their dot product
after transformation is ([LRK86])

(dx′
1)

T dx′
2 = dxT

1 dx2 + 2dxT
1 E∗dx2

where the symmetric second-order tensor

E∗ =
1

2

(
(∇u) + (∇u)T + (∇u)T (∇u)

)

is the Lagrangian strain tensor. Note that if E∗ = 0 the lengths and angles be-
tween the material vectors dx1 and dx2 remain unchanged, i.e., the deformation ∇u
around point P is a rigid body transformation (i.e., rotation or translation). The
components of E∗ are

E∗
ij =

1

2

(
∂ui

∂xj
+

∂uj

∂xi
+

3∑
k=1

∂uk

∂xi

∂uk

∂xj

)

For small deformations the displacement gradients ∂ui/∂xj are small and the quadratic
term of E∗ can be neglected giving the strain tensor ε with the components

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(2.11)

Lai et al. show [LRK86] that in this case εii can be interpreted as the unit elongation
(increase per unit length) of a material element in the xi direction. The components
εii are called the normal strains. Furthermore the terms 2εij , i �= j can be interpreted
as the decrease in angle in radians between two material vectors initially in the xi

and xj directions and are known as total shear strains. The components εij are
known as average shear strains or just shear strains [eFu].

Figure 2.3 illustrates these concepts. In the left part of the figure an infinitesimal
quadratic area in the xy-plane has been strained without change of area. The
changes in length perpendicular to the given material direction are ∂u2/∂x1 and
∂u1/∂x2, respectively. By rotating the element as shown on the right hand side
it can be seen that the deformation has been a simple shear, i.e., the deformation
is equivalent to a translation in x1-direction by an amount proportional to the x2-
coordinate followed by a rotation. The decrease in angle between the axes of the
infinitesimal square element is approximately 2ε12.
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Figure 2.3. An infinitesimal quadratic area in the xy-plane has been strained without
change of area (left). Rotating the element (right) shows that the deformation is equivalent
to a translation in x1-direction by an amount proportional to the x2-coordinate followed
by a rotation. The decrease in angle between the axes of the infinitesimal square element
is approximately 2ε12.

Note that by definition the strain tensor ε is symmetric so that equation 2.2
holds. The eigenvectors v1, v2, and v3 of ε are the principal directions of the strain,
i.e., the directions in which there is no shear strain. The eigenvalues λ1, λ2, and
λ3 are the principal strains and give the unit elongations in the principal directions.
The maximum, medium, and minimum eigenvalue are called the maximum, medium,
and minimum principal strain, respectively.

2.3.2 Stress

The previous subsection gave a purely kinematic description of the motion and
deformation of an elastic body without considering the internal and external forces
causing it. Internal forces are body forces1 acting throughout the body and external
forces are surface forces acting on a real or imagined surface separating the body.
The surface force at a point of the surface is described by a stress vector.

Consider a plane S with normal n through a point P of the elastic body as shown
in figure 2.4. Let ∆f be the force acting on a small area ∆A containing P . The
stress vector tn in P is defined as

tn = lim
∆A→0

∆f

∆A

In classical continuum theory the resulting stress vector is the same for all surfaces
through point P with a tangent plane S at P . It can be shown ([LRK86]) that

1Body forces are forces that act on all particles in a body as a result of some external body
or effect not in direct contact with the body under consideration. An example of this is the
gravitational force exerted on a body. This type of force is defined as a force intensity per unit
mass or per unit volume at a point in the continuum. Hence, when, for example, considering
gravity the body force (per unit mass) is the gravitational acceleration g.



2.3 Linear Elasticity 13

A∆

f

SP

n
∆

Figure 2.4. Definition of a stress vector.

independent of the choice of S

tn = σn

where the linear operator σ is the stress tensor in P .
To interpret the components of the stress tensor σ consider an infinitesimal small

axis-aligned cube as shown in figure 2.5.

x3

σ11

σ31
σ21

x1

x2

Figure 2.5. The Stress components σ11, σ21, and σ31 are interpreted as components of a
force acting on the surface orthogonal to e1 (shaded) of an infinitesimal small axis-aligned
unit cube.

The stress tensor components σ11, σ21, and σ31 are the components of the stress
vector te1 , i.e., they are the components of the force acting on an infinitesimal
surface orthogonal to e1. The other components of σ are interpreted similarly. The
diagonal elements σ11, σ22, and σ33 are called the normal stresses and the off-diagonal
elements σ12, σ13, σ23, σ21, σ31, and σ32 are called the shear stresses. By using the
conservation of angular momentum equation it can be shown [HB96] that σ is in
fact symmetric2, i.e., σ12 = σ21, σ13 = σ31, σ23 = σ32.

2This is not the case if there are body moments per unit volume such as for a polarized
anisotropic dielectric solid [LRK86].
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In this thesis we concentrate on the visualization of strain tensors and diffusion
tensors which are always symmetric. In section 5.9 we use as an example the stress
field in a plate under an uniaxial load for which the resulting stress tensors are also
symmetric.

As for the strain tensor the three eigenvectors of the symmetric stress tensor
σ give the principal directions of the stress and the eigenvalues give the principal
stresses. Each principal direction gives the normal direction of a plane on which the
shear stresses are zero and the normal stress is the principal stress.

2.3.3 Model of a Linear Elastic Solid

Every continuum in motion must fulfill Newton’s laws of motion. For steady state so-
lutions the continuum doesn’t experience acceleration and the second law of motion
reduces to the equilibrium equations

n∑
j=1

∂σij

∂xj
+ ρgi =

n∑
j=1

∂σij

∂xj
+ fi = 0 i=1,. . . ,n (2.12)

where σ is the stress tensor, g is the body force per unit mass, ρ is the mass density
and n is the number of dimensions [Bur87]. The product of body force per unit
mass and mass density is often referred to as internal load f.

The above system of equations is valid for every continuum. However, in order
to describe the response of a specific material under a specific loading additional
material parameters are necessary.

Figure 2.6 shows a slender cylinder with length l, diameter d, and cross-sectional
area A under a uniaxial load p. If the length of the cylinder increases linearly with
the applied load and the diameter decreases linearly with it the body is called a
linear elastic solid.

pd
A

l

p

Figure 2.6. A slender cylinder of a linear-elastic material under a uniaxial load.

In order to define material properties, material behaviour which is independent
of the specimen size must be identified. Appropriate measures are the axial stress

σa =
p

A

the axial strain

εa =
∆l

l
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and the lateral strain

εd =
∆d

d

Two material coefficients can now be derived. The Young’s modulus (or, modulus of
elasticity) defines the ratio of axial stress to axial strain under uniaxial loading

E =
σa

εa

and the Poisson’s ratio defines the ratio of lateral strain to axial strain

ν =
εd

εa

For some materials (e.g., fibrous materials) the Young’s modulus and Poisson’s
ratio might depend on the orientation of the cylindrical test specimen with respect
to the material microstructure. In this case the material is said to be anisotropic
with respect to its elastic properties. Otherwise the material is isotropic with re-
spect to its elastic properties. If the elastic properties are the same over the whole
material it is said to be homogeneous, whereas if the elastic properties vary from one
neighbourhood to another the material is said to be inhomogeneous.

For a linear elastic material the relationship between stress and strain is a linear
one, i.e.,

σij =
n∑

k=1

n∑
l=1

CijklE
∗
kl

or assuming small deformations

σij =
n∑

k=1

n∑
l=1

Cijklεkl (2.13)

where the fourth-order tensor C is known as the elasticity tensor.
Since σ and ε are symmetric it can be shown that C contains 36 degrees of

freedom, i.e., 36 material constants are necessary to completely describe the elasticity
tensor [LRK86]. The stress-strain relationship simplifies considerably if the material
is isotropic. In this case the elasticity tensor is isotropic, i.e., the tensor is invariant
under orthogonal transformations (see glossary) and equation 2.13 can be shown to
reduce to

σ = λ(ε11 + ε22 + ε33)I + 2µε (2.14)

i.e., the stress-strain relationship is fully described by two material constants λ and
µ [LRK86]. The material constants, known as Lamé’s constants, can be expressed in
terms of the previously introduced Young’s modulus and Poisson’s ratio as follows

λ =
νE

(1 + ν)(1 − 2ν)

µ =
E

2(1 + ν)
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Assuming an isotropic material equation 2.13 (Hooke’s law) simplifies to


σ11

σ22

σ33

σ12

σ23

σ13




=
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν







ε11

ε22

ε33

ε12

ε23

ε13




or in matrix form
σ = Cε (2.15)

where the stress and strain components are represented in vector form as

σT =
(

σ11 σ22 σ33 σ12 σ23 σ13

)
and

εT =
(

ε11 ε22 ε33 ε12 ε23 ε13

)
respectively, and the matrix representation of the elasticity tensor is

C =
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν




The finite element modeller implemented during the course of this thesis allows
the user to simulate isotropic linear elastic materials under small deformations. Typ-
ical examples of such materials are metals and rubber. Even though biological ma-
terials are usually highly anisotropic and have a non-linear stress-strain relationship,
the previously described idealized material properties have been used for biomedi-
cal applications such as real-time surgery simulation [BNC96] and the modelling of
bones [Yet89, chapter 14].

2.4 The Finite Element Method
The Finite Element Method (FEM) became popular in the 1960’s as a tool to solve
problems in structural mechanics numerically using computers. Solutions are ob-
tained by numerically solving partial differential equations predicting the response
of physical systems subjected to external influences [Bur87]. A solution is computed
by subdividing the domain of the physical system into a finite element (FE) mesh
and by approximating the governing differential equations by integral expressions
over mesh elements.

Over the last two decades the FEM has become increasingly popular and is now
an accepted tool in the fields of biomedicine (bioengineering) and computer graph-
ics (modelling and animation). Applications include surgical simulation [SBM+94],
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muscle modelling [CZ92], cloth modeling [EDC96], scattered data modelling [XZ00]
and facial animation [Lif].

This thesis is concerned with the visualization of finite element models of biomed-
ical structures. Two such models are introduced in the next chapter. Since the
visualization process only requires knowledge of the representation of the object ge-
ometry and the associated data fields this section emphasizes the FE approximation
and interpolation rather than the methods of solving the equations. Another fea-
ture of the FE method important in this thesis is the definition of so-called material
coordinates which reflect the geometry and/or physical properties of the modelled
object and deform with it.

This section first introduces concepts used in the FEM. Then follows an in-
troduction to the FE discretization and a description of various FE interpolation
functions used to approximate the geometry and data fields of a model. The sub-
sequent subsections introduce the concepts of world and material coordinates and
contain an overview of numerical integration techniques used for the evaluation of
FE integrals. We conclude this section with a short overview of the FE solution
process. A more detailed explanation of the FE solution process using two examples
is given in appendix D. An introduction to the FEM suitable for non-experts is
found in [HP02, Bur87, HB96].

2.4.1 Concepts
Burnett introduces the following four concepts in any FE problem [Bur87]:

• The system is an object composed of various materials whose properties are
described by material parameters.

• The governing equations define the behaviour of the system and consist usu-
ally of differential equations expressing conservation principles of some physical
property or variational principles such as the minimization of a physical prop-
erty. They may also include constitutive equations which contain physical
properties of the materials that constitute the system. The free3 variable or
variables in the governing equations represent the unknown FE solution. In the
following we assume that governing equation contains just one free variable.

• The domain of the problem is the space over which the free variable is defined.
Usually the domain is the region of space occupied by the system and/or the
time interval over which the system changes its state.

• Loading conditions are externally originating physical quantities that interact
with the system and cause its state to change. Loads acting in the interior of
the domain are called interior loads and are part of the governing equations.

3In Engineering a quantity which is varied in an experiment is often referred to as indepen-
dent variable [ERC]. Chapter 4 will use a different definition of the term independent variable in
conjunction with the visualization of multidimensional data sets. We use instead the terms free
variable or unknown variable for the varied quantity.
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Loads acting on the boundary of the domain are called boundary loads and
form separate equations called boundary conditions.

The solution of the FE problem is a solution for the free variable which fulfills the
governing equations and the boundary conditions over the domain.

Figure 2.7 explains the above terminology with an example: The system is a
thin metal rod which is connected on the left side to a heat source with a constant
temperature of T = 30◦C and on the right side to an energy source with a heat flux
(transfer of energy) of q = 100W/m2. The domain is the interval [0, 2] on the x-axis.
The governing equation is

− ∂

∂x

(
k
∂T

∂x

)
= 0

where k = 10Wm−1◦C−1 is the thermal conductivity of the metal and the unknown
or free variable is the temperature T . Finally the system has no internal loads and
it has the boundary conditions

T = 30 at x = 0

q = −k
∂T

∂x
= 100 at x = 2
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Figure 2.7. Mathematical description of the 1D heat conduction problem.

2.4.2 Finite Element Approximation

A finite element approximation involves discretizing the domain into a finite element
mesh and representing the solution u(x) for the free variable by values at the nodes
of the mesh. The solution is extended over the entire domain by interpolating the
nodal values of an element using element basis functions. Instead of defining element
basis functions for each element it is convenient to define a parent element and to
define a mapping between it and the element.

As an example consider the metal rod in figure 2.7. In order to use a common
notation for the unknown we denote the temperature distribution with u(x) and its
finite element approximation with ũ(x). Figure 2.8 shows the rod approximated by
three elements e1, . . . , e3 with the nodes n1, . . . , n4, which have the nodal coordinates
x1, . . . , x4 and the nodal values u1, . . . , u4, respectively. Each element ej has two local

nodes n
(ej)
1 and n

(ej)
2 which are associated with their corresponding global node ni
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Figure 2.8. Finite Element Approximation of the metal rod in figure 2.7 and the corre-
sponding connectivity matrix.

by a connectivity matrix i = ∆(j, k) where i is the global node index, j the element

index, and k the local node index. Similarly we have local nodal coordinates x
(ej)
k and

local nodal values u
(ej)
k . Each element ej is associated with a parent element defined

by the [0, 1] interval in the ξ parameter space, i.e., ξ(0) = x
(ej )
1 and ξ(1) = x

(ej)
2 .

Any point in the domain then has a (global) world coordinate x and an associated ξ-
coordinate (material coordinate or element coordinate) ξ. If the same basis functions
are used for the geometry and the unknown variables the mapping x(ξ) from material
to world coordinates is called isoparametric mapping.

Linear Lagrange Basis Functions

A simple approximation ũ(e) of the temperature distribution over the element e is
obtained by connecting the element nodal values with line segments. Mathematically
this is expressed as an interpolation of the nodal values using Linear Lagrange basis
functions φi

ũ(e)(ξ) =
n∑

i=1

u
(e)
i φi(ξ) (2.16)

where n = 2 and
φ1(ξ) = 1 − ξ φ2(ξ) = ξ (2.17)

The world coordinates of the corresponding values are obtained analogously by in-
terpolating the element nodal coordinates

x̃(e)(ξ) =
n∑

i=1

x
(e)
i φi(ξ)

The basis functions, displayed in figure 2.9, have the property that φ1(0) = 1

and φ2(0) = 0. Hence ũ(e)(0) = u
(e)
1 and x̃(e)(0) = x

(e)
1 . Similarly φ1(1) = 0 and

φ2(1) = 1 such that ũ(e)(1) = u
(e)
2 and x̃(e)(1) = x

(e)
2 . As a result the interpolation is

C0 continuous across element boundaries if nodes are shared between neighbouring
elements.
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0.2 0.4 0.6 0.8 1
ξ

0.2

0.4

0.6

0.8

1

φ1 φ2

Figure 2.9. Linear Lagrange basis
functions.
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Figure 2.10. Piecewise linear
Lagrange interpolation (solid) of a
quartic function (dashed).

As an example consider the linear Lagrange interpolation of the function u(x) =
16−27x+18x2−5x3 +0.5x4 with the nodal coordinates xi = i, i = 1, . . . , 4 and the
nodal values ui = u(i). Figure 2.10 shows the original function as a dashed curve
and the piecewise linear interpolation as a solid polyline.

Cubic Hermite Basis Functions

A smoother approximation than with the linear Lagrange interpolation is achieved
by using a cubic Hermite interpolation. The interpolation requires in addition to the
element nodal values ui and coordinates xi also the corresponding first derivatives(

du
dξ

)
i
and

(
dx
dξ

)
i
. If nodal values and derivatives are shared between elements the in-

terpolation is C1 continuous across element boundaries. The resulting interpolation
function is

ũ(e)(ξ) =
n∑

i=1


u

(e)
i φ0

i (ξ) +

(
du

dξ

)(e)

i

φ1
i (ξ)


 (2.18)

where n = 2. The element basis functions

φ0
1(ξ) = 1 − 3ξ2 + 2ξ3 φ0

2(ξ) = ξ2 (3 − 2ξ)

φ1
1(ξ) = ξ (ξ − 1)2 φ1

2(ξ) = ξ2 (ξ − 1)
(2.19)

are displayed in figure 2.11. The subscript gives the node index and the superscript
indicates whether the basis function is associated with a nodal value (0) or a nodal
derivative (1).

Note that the basis functions have the properties

φj
i (0) =

{
1 if i = 1, j = 0
0 otherwise

, φj
i (1) =

{
1 if i = 2, j = 0
0 otherwise

dφj
i

dξ

∣∣∣∣∣
ξ=0

=

{
1 if i = 1, j = 1
0 otherwise

,
dφj

i

dξ

∣∣∣∣∣
ξ=1

=

{
1 if i = 2, j = 1
0 otherwise
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and therefore both nodal values and nodal derivatives are interpolated, i.e.,

ũ(e)(0) = u
(e)
1 , ũ(e)(1) = u

(e)
2

dũ

dξ

∣∣∣∣∣
ξ=0

=

(
du

dξ

)(e)

1

,
dũ

dξ

∣∣∣∣∣
ξ=1

=

(
du

dξ

)(e)

2
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Figure 2.11. Cubic Hermite basis
functions.
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Figure 2.12. Piecewise cubic Her-
mite interpolation (solid) of a quar-
tic polynomial (dashed).

The smoother approximation of the cubic Hermite interpolation is demonstrated
by taking again the function u(x) = 16 − 27x + 18x2 − 5x3 + 0.5x4 as an example.
As previously the coordinates are xi = i, i = 1, . . . , 4 and the nodal values are
ui = u(i). In addition the interpolation requires the nodal derivatives

(
du
dξ

)
i
= du

dξ

∣∣∣
x=i

.

Figure 2.12 shows the original function as a dashed curve and the interpolated
function as a solid curve.

The definition of the cubic Hermite interpolation presented above requires that
the nodal derivatives are given with respect to the ξ-coordinates. This is inconvenient
in some applications since a shared node might need different nodal derivatives for
each element in order to achieve C1 continuity across neighboring elements.

As an example consider the function u(x) = x2 over the element domains Ω(e1) =
[0, 1] and Ω(e2) = [1, 3]. The global node n2 with the coordinate x2 = 1 corresponds to

the local nodes n
(e1)
2 and n

(e2)
1 . Introducing an isoparametric mapping gives u(e1)(ξ) =

ξ2 and u(e2)(ξ) = (2ξ + 1)2 where 0 ≤ ξ ≤ 1. The derivatives are du(e1)

dξ
= 2ξ and

du(e2)

dξ
= 4(2ξ + 1) so that at the common node

(
du

dξ

)(e1)

2

= 2 �= 4 =

(
du

dξ

)(e2)

1

A more useful formulation in practice is to define global nodal derivatives
(

du
ds

)
I
,

where s is an arc length parameter from the isoparametric mapping and I is the
global node index. The corresponding element nodal derivatives are then computed
as (

du

dξ

)(e)

i

=

(
du

ds

)
I

(
ds

dξ

)(e)

i
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where
(

ds
dξ

)(e)

i
is an element scale factor which scales the arc length derivative of the

global node I to the ξ-coordinate derivative of the element node i.
The idea is demonstrated using the previous example. Using the arc length

parameterizations s = ξ and s = 2ξ + 1 for the elements e1 and e2, respectively,
yields the global nodal derivative

(
du
ds

)
1

= 2 for the common node. The local nodal

derivatives are computed as

(
du

dξ

)(e1)

2

=

(
du

ds

)
2

(
ds

dξ

)(e1)

2

= 2 ∗ 1 = 2

(
du

dξ

)(e2)

1

=

(
du

ds

)
2

(
ds

dξ

)(e2)

1

= 2 ∗ 2 = 4

The finite element modeller incorporated into our visualization toolkit imple-
ments both finite elements with local and elements with global nodal derivatives.

Multidimensional Basis Functions

Multidimensional finite elements are constructed as products of the underlying 1D
elements. The domain of the parent element is formed from the product of the 1D
parent element domains and the basis functions are defined as the tensor product of
the corresponding 1D basis functions.

0.2 0.4 0.6 0.8 1
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0.4
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1

ξ2

Figure 2.13. The parent
element for a 2D isopara-
metric quadrilateral.
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Figure 2.14. Bilinear element in world co-
ordinates.

As an example consider a bilinear Lagrange element. The parent element is the
unit square shown in figure 2.13. The nLL = nLnL = 4 basis functions of the bilinear
Lagrange element are the tensor products of the nL = 2 basis functions of the linear
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Lagrange element given in equation 2.17, i.e.,

φ1(ξ1, ξ2) = φ1(ξ1)φ1(ξ2) = (1 − ξ1)(1 − ξ2)
φ2(ξ1, ξ2) = φ2(ξ1)φ1(ξ2) = ξ1(1 − ξ2)
φ3(ξ1, ξ2) = φ1(ξ1)φ2(ξ2) = (1 − ξ1)ξ2

φ4(ξ1, ξ2) = φ2(ξ1)φ2(ξ2) = ξ1ξ2

(2.20)

and are shown in figure 2.15.
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Figure 2.15. Bilinear Lagrange basis functions.

As in equation 2.16 the nodal values are interpolated as

ũ(e)(ξ) =
n∑

i=1

u
(e)
i φi(ξ) (2.21)

where n = 4 and ξ = (ξ1, ξ2)
T are the material coordinates. The world coordinates

are interpolated analogously, i.e.,

x̃(e)(ξ) =
n∑

i=1

x
(e)
i φi(ξ) (2.22)
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where x = (x1, x2)
T and x

(e)
i are the 2D element nodal coordinates of the element e.

Figure 2.14 shows an example for a bilinear element in world coordinates.
Using the same procedure as for the bilinear Lagrange element it is also possible

to define bicubic Hermite elements. The parent element is again the unit square
shown in figure 2.13 and the nHH = nHnH = 16 basis functions of the element are
the tensor products of the nH = 4 basis functions of the cubic Hermite element, i.e.,

φ0,0
1 (ξ1, ξ2) = φ0

1(ξ1)φ
0
1(ξ2) = (1 − 3ξ2

1 + 2ξ3
1) (1 − 3ξ2

2 + 2ξ3
2)

φ0,0
2 (ξ1, ξ2) = φ0

2(ξ1)φ
0
1(ξ2) = ξ2

1 (3 − 2ξ1) (1 − 3ξ2
2 + 2ξ3

2)

φ0,0
3 (ξ1, ξ2) = φ0

1(ξ1)φ
0
2(ξ2) = (1 − 3ξ2

1 + 2ξ3
1) ξ2

2 (3 − 2ξ2)

φ0,0
4 (ξ1, ξ2) = φ0

2(ξ1)φ
0
2(ξ2) = ξ2

1 (3 − 2ξ1) ξ2
2 (3 − 2ξ2)

φ0,1
1 (ξ1, ξ2) = φ0

1(ξ1)φ
1
1(ξ2) = (1 − 3ξ2

1 + 2ξ3
1) ξ2 (ξ2 − 1)2

φ0,1
2 (ξ1, ξ2) = φ0

2(ξ1)φ
1
1(ξ2) = ξ2

1 (3 − 2ξ1) ξ2 (ξ2 − 1)2

φ0,1
3 (ξ1, ξ2) = φ0

1(ξ1)φ
1
2(ξ2) = (1 − 3ξ2

1 + 2ξ3
1) ξ2

2 (ξ2 − 1)

φ0,1
4 (ξ1, ξ2) = φ0

2(ξ1)φ
1
2(ξ2) = ξ2

1 (3 − 2ξ1) ξ2
2 (ξ2 − 1)

φ1,0
1 (ξ1, ξ2) = φ1

1(ξ1)φ
0
1(ξ2) = ξ1 (ξ1 − 1)2 (1 − 3ξ2

2 + 2ξ3
2)

φ1,0
2 (ξ1, ξ2) = φ1

2(ξ1)φ
0
1(ξ2) = ξ2

1 (ξ1 − 1) (1 − 3ξ2
2 + 2ξ3

2)

φ1,0
3 (ξ1, ξ2) = φ1

1(ξ1)φ
0
2(ξ2) = ξ1 (ξ1 − 1)2 ξ2

2 (3 − 2ξ2)

φ1,0
4 (ξ1, ξ2) = φ1

2(ξ1)φ
0
2(ξ2) = ξ2

1 (ξ1 − 1) ξ2
2 (3 − 2ξ2)

φ1,1
1 (ξ1, ξ2) = φ1

1(ξ1)φ
1
1(ξ2) = ξ1 (ξ1 − 1)2 ξ2 (ξ2 − 1)2

φ1,1
2 (ξ1, ξ2) = φ1

2(ξ1)φ
1
1(ξ2) = ξ2

1 (ξ1 − 1) ξ2 (ξ2 − 1)2

φ1,1
3 (ξ1, ξ2) = φ1

1(ξ1)φ
1
2(ξ2) = ξ1 (ξ1 − 1)2 ξ2

2 (ξ2 − 1)

φ1,1
4 (ξ1, ξ2) = φ1

2(ξ1)φ
1
2(ξ2) = ξ2

1 (ξ1 − 1) ξ2
2 (ξ2 − 1)

The nodal values are interpolated as

ũ(ξ1, ξ2) =
n∑

i=1


u

(e)
i φ0,0

i (ξ1, ξ2) +

(
∂u

∂ξ1

)(e)

i

φ1,0
i (ξ1, ξ2)

+

(
∂u

∂ξ2

)(e)

i

φ0,1
i (ξ1, ξ2) +

(
∂2u

∂ξ1∂ξ2

)(e)

i

φ1,1
i (ξ1, ξ2)




where n = 4. Note that in addition to the partial derivatives in the ξ1 and ξ2-
directions at the element nodes the bicubic interpolation requires the mixed partial

derivative
(

∂2u
∂ξ1∂ξ2

)(e)

i
at each node. An example of a bicubic element in world coor-

dinates is shown in figure 2.16
As in the 1D case it is again more practical to define global nodal derivatives(

∂u
∂s1

)
I
,
(

∂u
∂s2

)
I
, and

(
∂2u

∂s1∂s2

)
I
, where s1 and s2 are the arc lengths in the ξ1 and

ξ2 directions and I is the global node index. The corresponding element nodal
derivatives are then computed as(

∂u

∂ξ1

)(e)

i

=

(
∂u

∂s1

)
I

(
ds1

dξ1

)(e)

i(
∂u

∂ξ2

)(e)

i

=

(
∂u

∂s2

)
I

(
ds2

dξ2

)(e)

i
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Figure 2.16. Bicubic Hermite element in world coordinates.

(
∂2u

∂ξ1∂ξ2

)(e)

i

=

(
∂2u

∂s1∂s2

)
I

(
ds1

dξ1

)(e)

i

(
ds2

dξ2

)(e)

i

where
(

ds1

dξ1

)(e)

i
and

(
ds2

dξ2

)(e)

i
are again the element scale factors.

The definition of higher order elements and mixed elements, e.g., linear Lagrange
cubic Hermite elements, proceeds analogously to the presented examples.

2.4.3 Isoparametric Mapping

The previous subsection introduced the mapping of a unit square in ξ-coordinates
to a finite element in world coordinates. The resulting isoparametric map was moti-
vated by the goal to define the element basis function only once for a parent element.
A further advantage of ξ-coordinates is that the coordinate system deforms with
the material and as such allows representation of data values with respect to the
deformed material. In many instances it is convenient to switch between world co-
ordinates (x-coordinates) and material coordinates (ξ-coordinates). This subsection
gives an overview of the mathematical principles involved. For simplicity we omit
the element indices ‘(e)’ and the tilde-symbols indicating approximation functions.

Coordinate Transformation of a Point

Assuming a point in material coordinates ξ the corresponding world coordinates x
are obtained by the isoparametric map

x(ξ) =
n∑

i=1

x̄iφi(ξ) (2.23)

where x̄i are the nodal coordinates. An example is the bilinear interpolation given
by equation 2.22. Vice versa material coordinates can be computed from the world
coordinates by using numerical approximation techniques such as a multidimensional
Newton mesh [PVTF92].
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Partial Derivatives with Respect to World and Material Coordinates

In most FE applications data quantities are defined by nodal values and are inter-
polated over the finite elements. For example, a scalar quantity u defined by the
nodal values ui is interpolated as

u(ξ) =
n∑

i=1

uiφi(ξ)

The partial derivatives of u can be computed directly from the interpolation function
as

∂u

∂ξj
=

n∑
i=1

ui
∂φi

∂ξj
(2.24)

The derivatives ∂φi

∂ξj
of the basis functions are generally given as predefined analytic

functions. The derivatives with respect to the world coordinate system are defined
as

∂u

∂xj
=

n∑
i=1

∂u

∂ξi

∂ξi

∂xj

where ∂u
∂ξi

is defined as in equation 2.24 and the partial derivatives
∂ξj

∂xi
are the compo-

nents of the inverse of the Jacobian of the isoparametric mapping in equation 2.23

J =

(
∂xi

∂ξj

)
=




∂x1

∂ξ1

∂x1

∂ξ2

. . .
∂x1

∂ξn

∂x2

∂ξ1

∂x2

∂ξ2
. . .

∂x2

∂ξn

...
...

. . .
...

∂xn

∂ξ1

∂xn

∂ξ2
. . .

∂xn

∂ξn




,

(
∂ξj

∂xi

)
= J−1 (2.25)

The introduced concepts can be generalised for vector and tensor quantities.
Note, however, that a component based interpolation of vectors and tensors is not
necessarily the most suitable one and alternative techniques have been suggested
[AB99].

Coordinate Transformation of Vector and Tensor Quantities

Depending on the intended application it can be convenient to specify a quantity in
either material or world coordinates. Material coordinates are often more computa-
tional efficient and provide a relationship between data values and underlying geom-
etry. World coordinates are usually more convenient from a visualization standpoint.
Whereas scalar quantities are coordinate system independent the representation of
vector and tensor quantities depends on the coordinate system used.
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Section 2.1 introduced the transformation of vector and tensor quantities be-
tween two coordinate systems. Using equation 2.8 the representations of a vector in
material coordinates ṽ and in world coordinates v are converted into each other by

v = Jṽ , ṽ = J−1v (2.26)

Similarly using equation 2.9 the corresponding formulas for converting tensors are

T = JT̃JT , T̃ = J−1T(J−1)T (2.27)

Note that if the determinant of the Jacobian is zero, i.e., if the finite element is
degenerate (e.g., two vertices have the same coordinates), the reverse transformations
do not exist.

2.4.4 Gaussian Quadrature

Solving a FE problem requires the solution of complex integral equations involv-
ing the finite element basis functions (see appendix D). Similar integrals are en-
countered when computing model properties such as volume and surface areas (see
subsection 5.8.2). Our visualization toolkit was specifically designed for FE mod-
els of biomedical structures and the computation and visualization of such derived
information is a useful feature. An efficient evaluation of FE integrals is therefore
desirable.

A popular method to evaluate integrals arising in 2D and 3D finite element
problems is the Gaussian quadrature (Gauss-Legendre quadrature). The idea behind
it is to approximate the integral of a function f over a range [0, 1] by weighted
samples of f(ξ) taken at points ξ1, . . . , ξn. If f is a polynomial of degree 2n−1 then
it has 2n coefficients. It is possible to choose n weights wi and n gauss points ξi such
that the approximation is exact [Bur87], i.e.,

∫ 1

0
f(ξ) dξ =

n∑
i=1

wif(ξi)

As an example take n = 2: We are looking for wi, ξi, i = 1, 2, such that

∫ 1

0
f(ξ) dξ = w1f(ξ1) + w2f(ξ2) (2.28)

where f(ξ) = a0 + a1ξ
1 + a2ξ

2 + a3ξ
3. Expanding the left hand side of equation 2.28

∫ 1

0
f(ξ) dξ =

3∑
i=0

ai

∫ 1

0
ξi dξ

and applying equation 2.28 to each term yields a set of four equations

∫ 1

0
ξi dξ =

1

i + 1
= w1ξ

i
1 + w2ξ

i
2, i=0,. . . ,3
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which is satisfied by

w1,2 =
1

2
, ξ1,2 =

1

2
∓ 1

2
√

3

Similar calculations can be done to obtain the gauss points and weights for higher

order polynomials [Bur87, Bat82, AS65]. The corresponding values for a 5th degree
polynomial are [HP02]

w1,3 =
5

18
, ξ1,3 =

1

2
∓ 1

2

√
3

5

w2 =
4

9
, ξ2 =

1

2

The Gaussian integration is extended to multi-dimensional integration by defin-
ing gauss points whose components contain all combinations of the corresponding 1D
gauss points with the corresponding weights multiplied (product rule). For example,
choosing two gauss points in each coordinate direction results in the following 2D
gauss points and weights

w11 = w12 = w21 = w22 =
1

4

ξ11 =


 1

2
− 1

2
√

3
1
2
− 1

2
√

3


 , ξ12 =


 1

2
− 1

2
√

3
1
2

+ 1
2
√

3




ξ21 =


 1

2
+ 1

2
√

3
1
2
− 1

2
√

3


 , ξ22 =


 1

2
+ 1

2
√

3
1
2

+ 1
2
√

3




The number of gauss points in each coordinate direction depends on the complex-
ity of the element integrals to be evaluated. A complication in multi-dimensional
problems is that the element integrals are often not polynomial due to the partial
derivatives of the ξ parameter. Also the quadrature error has to be balanced against
the discretization error. In general two gauss points are used in coordinate directions
with quadratic basis functions and three gauss points in coordinate directions with
cubic basis function [HP02]. Guidelines for choosing a suitable type of Gaussian
integration are given by Burnett [Bur87] and Bahte [Bat82].

2.4.5 Solving a FE Problem

So far this chapter has described the finite element approximation of the model
geometry and associated data fields. The actual solution process for a FE problem
is not directly relevant in the context of this thesis since it usually does not influence
the visualization process.

We have however implemented a complete FE modeller and employed it for the
creation of various physical models used to test and demonstrate our visualization
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environment. The following paragraphs give a short overview of the FE solution
process.

A FE problem is solved by performing the following basic steps: First the do-
main is subdivided into smaller regions called finite elements. The shapes of the
elements are limited to a certain type depending on the particular type of FEM
chosen. Each type of element has a parent element and an associated set of basis
functions (see subsection 2.4.2). Note that several different element types can be
used simultaneously as long as they are compatible with each other.

The governing equation of the FE problem is then transformed into algebraic
equations such that the equations are algebraically identical for each element of
the same type. The terms of the element equations are numerically evaluated and
assembled into an element stiffness matrix and an element load vector representing a
linear system of equations (the so-called element equations or element system). The
resulting matrices and vectors are assembled into one global stiffness matrix and
global load vector which form a global system. The global system, which is a linear
system of equations, is modified according to the imposed boundary conditions. The
resulting equations describe the modeled system over the discretized given domain
and are called the global system after imposing boundary conditions. The global
system can be solved directly, e.g., by a Conjugate Gradient method [PVTF92], to
yield the required solution.

For the interested reader the solution process is demonstrated by two examples in
the appendix D. The first example describes a 2D heat conduction problem and was
chosen for its simplicity. The second example describes a linear elastic solid under
an applied load and is formulated in vector notation so that it can be immediately
extended to higher dimensions. The 3D version of this example was employed to
model a plate with a hole under an uniaxial load, which is used in chapter 5 for
demonstrating various features of our visualization toolkit.

The enclosed CD contains an object-oriented FE modeller programmed by us us-
ing Microsoft Visual C++ 6.0 [Gre97]. The application implements generalised
2D and 3D versions of the FE problems discussed in appendix D. The graphical
user interface was designed using OpenGL [WND97] and FLTK, a LGPL’d C++
graphical user interface toolkit for X (UNIX), OpenGL, and WIN32 [Spi].



30 Strain, Stress, and Finite Element Modelling


