
Measuring IPv4 – IPv6 translation techniques
Technical Report 2012-001

Department of Computer Science
The University of Auckland

January 2012
Se-young Yu

syu051@aucklanduni.ac.nz

Brian E. Carpenter
brian@cs.auckland.ac.nz

ABSTRACT
This document reviews currently proposed IPv4-IPv6 translation
techniques and describes a simple performance study of three
open-source IPv4-IPv6 translators. The purpose of this document
is to introduce the fundamental ideas behind NAT-PT, NAT64 and
HTTP proxy and to measure the performance effect on round-trip
time of using these translators in a simple network with up to 100
simultaneous connections.

Categories and Subject Descriptors
C.2.6 [Computer-communication Networks]: Internetworking –
routers.

General Terms
Measurement, Performance, Experimentation.

Keywords
IPv6, NAT-PT, NAT64.

1. INTRODUCTION
Each device connected to the Internet needs at least one Internet
Protocol (IP) address, used to route packets destined to the device
or originated from the device.

 The current IPv4 [2] uses a 32-bit address space which can hold
up to four billion (232) addresses at most. Due to constant growth,
the global IPv4 address pool is almost exhausted [1].

IPv6 [3] has slowly started to be deployed, replacing IPv4 with a
128-bit address space. It allows a theoretical maximum of 3.4 ×
1038 addresses and it is expected to solve the address shortage
problem. However, IPv6 is not backward compatible with IPv4.

We expect a long transition period, during which IPv4 and IPv6
must coexist in the Internet. During this time, various IPv4-IPv6
coexistence techniques such as tunnels will play a critical role. At
some time, IPv6-only hosts will appear in large numbers, but
many existing servers will support only IPv4. Most coexistence
techniques will not help in this case: only some kind of translation
of the packet stream will allow an IPv6-only client to
communicate with an IPv4-only server. This paper is focused on
these translation techniques.

We will present efficiency comparisons between three different
IPv4-IPv6 translation techniques which have been defined and
implemented. We are not aware of any other published

measurement studies of this topic. In Section 2, we describe the
fundamental algorithms of NAT-PT, Stateful NAT64 and HTTP
Proxy. In section 3, we describe an experimental environment to
measure simple translation efficiency and how it scales up with
increasing numbers of connections. In sections 4 and 5, we
present and discuss results from the experiments.

2. TRANSLATION TECHNIQUES
2.1 A. Network Address Translation –
Port Translation
Basic Network Address Translation (NAT) translates an IPv4
address and a port number to a different IPv4 address and port
number, in order to allow multiple client devices to share a single
IPv4 address. Network Address Translation – Protocol
Translation (NAT-PT) [4] similarly assigns a shared IPv4 address,
and a translated port number, to an IPv6 client that uses NAT-PT
to connect to a remote IPv4-only server. Each IPv6 client is
assigned an IPv4 address and a translated port number when it
starts a new flow through the NAT-PT. The IPv6 header from the
client is translated into an IPv4 header, using the assigned address
and port number, and the resulting packet is sent to the destination.
Any IPv4 response packet from the server is also translated back
to an IPv6 packet through NAT-PT, using the address and port
information stored from the previous translation. If no IPv6
address information is found for such an IPv4 packet, the packet
is silently discarded.

NAT-PT also includes dynamic translation of DNS queries and
responses, but this does not affect the results given in this paper.

2.2 B. Stateful NAT64
Stateful NAT64 [5] formally replaces NAT-PT as an IETF
Proposed Standard. Stateful NAT64 (often abbreviated as
NAT64) uses a similar packet translation mechanism to NAT-PT,
and requires a Binding Information Base and a Session table to
maintain information about each session between IPv4 and IPv6
hosts (see Fig. 1 for an example). A Binding Information Base
entry stores IPv6 address, port, shared IPv4 address and port of an
IPv6 node. The session table entry stores two 5-tuples of packet
headers, summarizing session information about the
communicating nodes in both IPv4 and IPv6 forms.
NAT64 also uses a shared IPv4 address to proxy for an IPv6 host
when establishing a session with an IPv4 host. The translation
procedure is very similar to NAT-PT in Section A above. In place
of a DNS translator, NAT64 requires an associated DNS64 server,
which synthesizes DNS responses rather than translating them;

this too does not affect the results in this paper. The other
differences from NAT-PT are clarifications based on practical
experience. They give no grounds to anticipate substantial
changes in performance.

2.3 C. HTTP Proxy
An HTTP proxy [6] running in a dual-stack (IPv4 plus IPv6) host
can be used to convert an IPv4 HTTP message into IPv6 or vice
versa. The HTTP proxy mediates an HTTP session between IPv4
and IPv6 nodes by establishing a session to each node. When it
receives an HTTP packet from either host destined to the other, it
rebuilds an HTTP packet with the same HTTP content but using a
different IP version. Logically, the original packet is not
translated but recreated as a different packet with the same HTTP
content.

3. EXPERIMENT ENVIRONMENT
The purpose of this experiment is to understand performance
differences between the three techniques described above. We
built a simple client – server network with IPv4-IPv6 translators
deployed in a dual-stack host in the middle (Fig. 2). We sent
HTTP packets from the client to the server and back through the
translators, with various numbers of simultaneous connections,
and measured the Round Trip Time of the packets returned. The
packets themselves had two different sizes, referred to as “small”
and “large”.

3.1 Machines involved
There are three nodes involved in this experiment, an IPv6 client,
an IPv4-IPv6 translator and a simple web server. All three were
PCs running Linux and appropriate open source software.

The IPv6 client is set to send various sizes of HTTP packets to the
simple web server and measures the Round-Trip Time (RTT)
between an HTTP message sent and an HTTP reply received from
the web server; this is of course distinct from the underlying TCP
RTT. The client normally has only IPv6 enabled and is connected
to our IPv6-only network.

The IPv4-IPv6 translator sits in the middle between the client and
web server. It is normally connected with the client via an IPv6

interface and the server via an IPv4 interface, so it is able to
communicate with both nodes. The translator performs IPv4-IPv6
packet translation by intercepting all the packets that enter one
interface and sending translated packets to the other interface. In
the tests using native IPv4 or IPv6, this device acts as a regular IP
router.

The simple web server receives each HTTP packet sent from the
client through the translator and sends an HTTP reply packet back
to the client.

The client, translator and HTTP server each has Ubuntu 9.1
karmic (kernel 2.6.31-16) as its operating system. The client has
an Intel Core 2 Duo E8400 CPU with 3GHz, 3.2GB DDR2
memory and Intel 82567-LM-3 Gigabit network connection
controller card. The translator and HTTP server both have an Intel
Atom 330 CPU with 1.60GHz, 2GB DDR2 memory and a
Realtek RTL8111/8168B PCI Gigabit Ethernet controller card.

3.2 Measurements
• The client sends two different packets for each set of
experiments. One is a small HTTP request packet with size 107
bytes and another is a large HTTP request using an HTTP POST
header with 1200 bytes of random characters in the contents,
which makes an overall packet size of 1382 bytes.

• The client establishes 1 to 100 simultaneous connections with
the server for each set of experiments. Each connection is used to
send 10000 identical HTTP request packets and receive 10000
HTTP responses each time.

• The translators used in this experiment are naptd [7] from
Lukasz Tomicki, Ecdysis from Viagenie [8] and Apache HTTP
proxy server [9]. These translators implemented NAT-PT [4],
NAT64 [5] and HTTP proxy [6] respectively and each was used
for a set of experiments. The performance of these translators was
measured and compared both with each other and with native
IPv4 and IPv6 connections.

Figure 1. Basic translation of Stateful NAT64

• The web server serves two different HTTP responses. One is a
small HTTP response containing a single-character string “a” and
another is a large HTTP response with a random string of length
1083. Both types of response are used for each experiment.

3.3 Domain name service handling
We deployed a DNS-ALG translator for NAT-PT, a DNS64
synthesizing resolver [10] for NAT64, and a BIND9 DNS server
for the Apache HTTP proxy server. The client sends a DNS
lookup for the web server when it needs to discover its IP address.
The DNS request is sent to the central machine containing the
translator, and the relevant DNS record is hard coded in the DNS
server in this machine, with no further lookup required. The DNS
response packet is captured by DNS-ALG or DNS64 as

applicable and an IPv6 response is created by translation (DNS-
ALG) or synthesis (DNS64). In the case of the HTTP proxy, DNS
lookup is performed from the proxy server, not the client. This
can make a small difference in the performance measurement of
the translator, since the other two translation techniques do not
require the machine where the translator is installed to initiate
DNS lookup. However, the DNS response is always cached after
the initial lookup, so the single DNS lookup has negligible impact
on the average RTT measured over 10000 tests.

4. EXPERIMENT AND RESULTS
During the experiment we have measured performance of the
three IPv4-IPv6 translators, as well as of native IPv4 and IPv6
connections, with all other conditions held constant, giving a total
of five sets of results, each ranging up to 100 simultaneous
connections carrying 10000 HTTP transactions.

Note that we use the terms NAT-PT and NAT64 to represent the
naptd and Ecdysis NAT64 implementations. However, we did not
compare the intrinsic efficiency of the NAT-PT and NAT64
specifications, but only of the selected open source
implementations.

4.1 Experiment Procedure
1) For each set, the client sends one DNS lookup for the web
server to the DNS server, which is the dual-stack machine with
translator. In case of the HTTP proxy server, this DNS lookup is
performed by the proxy server, therefore no DNS lookup is
performed by the client nor is the DNS answer sent to the client;
otherwise the DNS answer is sent back to the client from the DNS
server’s local record.

2) The client establishes a single TCP connection to the web
server through the IPv4-IPv6 translator after it receives the DNS
answer. (In the native IP tests, the TCP connection is via the
router.)
3) When the connection is established, the client sends a small
HTTP request for a web page to the web server using IPv6. This
packet is translated in the middle by IPv4-IPv6 translator and sent
to the web server.
4) A small HTTP response from the web server is also translated
and sent back to the client and the time between the HTTP request
sent and the HTTP response received is recorded.
5) For each connection, 10000 HTTP requests are sent and the

time is recorded for each HTTP request and response.
6) After a single connection, two simultaneous connections are
established and do the same procedure from 2) to 5).
7) Increase number of simultaneous connections to 3, 4, 5, 10, 20,
30, 50, and 100 and do the same procedure from 2) to 5).
8) Keep the HTTP request size small while changing the HTTP
response size to large, and otherwise do the same procedure from
2) to 7).
9) Change the HTTP request size to large and HTTP response size
to small, and otherwise do the same procedure from 2) to 7).
10) Disable the IPv4-IPv6 translators and enable IPv4 only in all
three machines involved. Do the same procedure from 2) to 9)
with native IPv4 connection.
11) Disable IPv4 and enable IPv6 only in all three machines
involved and do the same procedure from 2) to 9) with native
IPv6 connection.
12) Collect RTT data based on the procedure above for each
IPv4-IPv6 translator and for the native connections.
13) Classify the results based on the request/response sizes.
Fig. 3, 4 and 5 show the results for a range of conditions. Each
figure shows boxplots, indicating in µs the median RTT as well as
its statistical range, for native IP and the three translation methods.
For each boxplot, dots represent each RTT measured from the
translator on the bottom of X-axis. The upper quartile, median and
lower quartile for each translator is represented as a solid box. We
report the observed variations in RTT in percentage terms; the
significance of these changes in practice is discussed in section 5.

Figure 2. Network structure of the experiment

Figure 3. Boxplot of RTT vs Translator with small request / small response

4.2 Small HTTP request, Small HTTP
response (Fig. 3)
There appear to be noticeable differences between the average
RTT of IPv4-IPv6 translators and native connections.
Among the translators, NAT64 gave the shortest median RTT for
both single connections and any number of simultaneous
connections. It is, however, 46% slower than the median RTT of
native IPv6 with a single connection. The median RTT of NAT64
increased steadily with the number of simultaneous connections,
up to 20 simultaneous connections. The median RTT of NAT-PT
increased rapidly with the number of simultaneous connections,
even though the RTT of NAT-PT with few connections is similar
to the RTT of NAT64. The variability of the RTT of NAT-PT

also increased rapidly with the number of simultaneous
connections. With 100 simultaneous connections, the median
RTT of NAT-PT is 140% more than the median RTT of a native
IPv6 connection. The median RTT of the HTTP proxy is also
similar to NAT64 with a small number of simultaneous
connections, and increases steadily as the number of connections
increases. Above 50 simultaneous connections the median RTT of
HTTP proxy settles down. The median RTT of the HTTP proxy
with 100 simultaneous connections is 99% more than the median
RTT of native IPv6 connection.
The median RTTs of native IPv6 and IPv4 connection do not
differ much for any number of simultaneous connections. The
median RTT of native IPv4 is only slightly faster than IPv6.

Figure 4. Boxplot of RTT vs Translator with small request /large response

Figure 5. Boxplot of RTT vs Translator with large request / small response

4.3 Small HTTP request, Large HTTP
response (Fig. 4)
With a large response size, we find a similar pattern of RTT
values to section IV.B. We observe a noticeable difference of
median RTT between native connections and translators.
Among the translators, NAT64 gives the lowest median RTT for
any number of simultaneous connections. Compared to native
IPv6 connection, NAT64 was only 46% slower when there was a
single connection and 50% slower when there were 100
simultaneous connections. For NAT-PT, increasing the number of
simultaneous connections caused the median RTT and variation to
increase considerably compared to other translators, even though
the median RTT of a single connection was similar to that for
NAT64. Compared to a native IPv6 connection, the median RTT
of NAT-PT was 140% greater when there were 100 simultaneous
connections. The HTTP proxy showed a similar median RTT as
in section IV.B. It showed 99% greater median RTT compared to
the native IPv6 connection when there were 100 simultaneous
connections.

4.4 Large HTTP request, small HTTP
response (Fig. 5)
With a large request size we have observed an interesting pattern
of the median RTT of NAT64. With a small number of
simultaneous connections, the median RTT of NAT64 is the
largest among the three translators. The median RTT of NAT64
with a single connection was 50% greater than the median RTT of
native IPv6 connection, while NAT-PT and HTTP proxy were
only 28% and 37% greater respectively (Fig. 5, left). After
studying the code, and even with the assistance of the developers
of Ecdysis NAT64, we were unable to explain its anomalous
performance in this case. There is no theoretical reason to expect
this anomaly, so we concluded that it was due to an unidentified
implementation detail.
However, as the number of simultaneous connections increased,
the median RTT of NAT-PT increased rapidly, while the median

RTT of NAT64 did not increase much above 30 simultaneous
connections. With more than 10 simultaneous connections, the
median RTT of NAT-PT was greater than the median RTT of
NAT64. With 100 simultaneous connections, the median RTT of
NAT64 was 83% slower than the native IPv6 connection, while
NAT-PT was 130% slower. The median RTT of the HTTP proxy
increased rapidly until the number of simultaneous connection
reached 50, but with more than 50 simultaneous connections the
median RTT of HTTP proxy did not increase much more. The
median RTT of the HTTP proxy was 69% slower than the native
IPv6 connection with 100 simultaneous connections.

5. DISCUSSION
When we analyzed the specifications of NAT-PT, NAT64 and
HTTP proxy, we developed a hypothesis about efficiency of
translation based on the algorithmic structure of each translator.
Firstly, we expected both NAT mechanisms to be more efficient
than the HTTP proxy, since it has to rebuild every packet it
receives from each node, executing full TCP processing as well as
some application layer copying.

Secondly, we expected NAT-PT to be most efficient when there
are a small number of simultaneous connections across the
translator, because it has a somewhat simpler algorithm than
NAT64, implying less load on the translator. With many
simultaneous connections, we expected NAT64 to be most
efficient, since it has a well-defined binding information
management algorithm, which should more effectively manage a
large amount of session state.

During the experiment, NAT-PT was less efficient than we
expected. The median RTT of NAT-PT was greater than that of
NAT64 with a single connection for all three sets of experiments.
As the number of simultaneous connections increased, the median
RTT of NAT-PT increased most rapidly among the translators in
all conditions, and with 100 connections the median RTT of
NAT-PT was the slowest among the translators, as expected.

NAT64 was the most efficient IPv4-IPv6 translator during the
experiment, except in the set with large HTTP requests. Also, the

rate of increase of the median RTT with more connections was
the least among the three translators. However, with large HTTP
requests and few simultaneous connections, NAT64 had relatively
inefficient translation. As noted above, this is most likely an
implementation effect.

The HTTP proxy was more efficient than we expected. The
median RTT with the HTTP proxy was slowest among the three
translators with few simultaneous connections, except in the set
with large HTTP requests where NAT64 was the slowest.
However, with a large number of simultaneous connections, the
HTTP proxy showed relatively efficient translation, always
beating NAT-PT and usually close to NAT64. It appears that the
processing cost of TCP and application layer copying scales
almost as well as that of IP header translation.

The question arises whether the differences in RTT that we
observed in laboratory conditions would matter in practice. The
RTT for a simple HTTP command and response over the Internet
will typically be in the range 10ms to 200ms, depending on
circumstances. The worst case increase in median RTT due to
translation that we observed was approximately 3ms. This will not
significantly affect the user experience in most cases. On the other
hand, the increased RTT reflects processing time in the translation
device. A site operating a translator must ensure that it does not
become a bottleneck.

6. CONCLUSION
In this paper we have compared translation efficiency between
IPv4-IPv6 translators and native connections. Our study is based
on our understanding of various IPv4-IPv6 packet translation
techniques and we focused on measuring realistic performance
metrics on a simple network. We have tested three open-source
software packages: naptd (implementation of NAT-PT), Ecdysis
(implementation of NAT64), and Apache HTTP proxy, by
sending an HTTP over TCP over IPv6 packet to travel through
each translator to be translated to IPv4, with the reply coming
back from the IPv4 network through the translator.
The study showed that Ecdysis NAT64 is reasonably efficient in
practice, except perhaps for a network which has a significant
amount of large outbound packets and few simultaneous
connections. With a small network, NAT64 works relatively
efficiently compared to other translation techniques. If only native
IPv6 connection is available and no other IPv4-IPv6 coexistence
technique can be used, we recommend deploying NAT64 in order
to communicate with IPv4 servers via an IPv6 connection. If only

HTTP traffic is required, a dual stack Apache HTTP proxy is a
reasonable alternative.
Our results and conclusions apply only to the particular
implementations we have tested. As commercial implementations
of NAT64 appear, they should be tested in a similar way to
investigate their scaling behavior. It would also be of interest to
test high-performance HTTP proxies, since our results show that
it is not a foregone conclusion that NAT64 is faster or scales
better than a proxy in all circumstances.

7. ACKNOWLEDGMENTS
Nevil Brownlee provided advice and support throughout the work
reported here. We also thank Lukasz Tomicki for making NAT-
PT source code available, Viagenie for making Ecdysis NAT64
source code available and Apache Foundation for making HTTP
proxy source code available. Comments from anonymous
reviewers have significantly improved this paper.

8. REFERENCES
[1] Hurricane Electric IPv4 Exhaustion Counters.

http://ipv6.he.net/statistics/
[2] J. Postel. Internet protocol: DARPA internet program

protocol specification. Internet RFCs. RFC 791, 1981
[3] S. Deering. R. Hinden. Internet protocol version 6 (IPv6)

specification. Internet RFCs. RFC 2460, 1998.
[4] G. Tsirtsis. P. Srisuresh. Network address translation -

protocol translation (NAT-PT). Internet RFCs. RFC 2766,
2000.

[5] M. Bagnulo. P. Matthews. I.V. Beijnum. Stateful NAT64:
Network address and protocol translation from IPv6 clients
to IPv4 servers. Internet RFCs. RFC 6146, 2010.

[6] R. Fielding. J. Gettys. J.Mogul. Hypertext transfer protocol -
- HTTP/1.1. Internet RFCs. RFC 2616, 1999.

[7] Network Address Translation, Protocol Translation
IPv4/IPv6. http://tomicki.net/naptd.php

[8] Ecdysis: open-source implementation of a NAT64 gateway.
http://Ecdysis.viagenie.ca/index.html.

[9] Apache HTTP server. http://httpd.apache.org/.
[10] M. Bagnulo. A. Sullivan. P. Matthews. I. van Beijnum.

DNS64: DNS extensions for Network Address Translation
from IPv6 Clients to IPv4 Servers. Internet RFCs. RFC6147,
2011.

