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Abstract 

This essay reviews problems in the Internet caused by, or related to, its addressing model 
and the way in which distributed applications use that addressing model. The roots of the 
problems go back to very early design and deployment choices, and affect scenarios such 
as referrals, multihoming, dual stack operation, multiple interfaces, roaming and 
renumbering. Numerous partial solutions have been proposed and in some cases partly 
adopted, but the problem persists and is complicated by the addition of IPv6 to the network. 
There are several possible future directions and no obvious choice. 
 
Introduction 

The alarming statement in the title above is not entirely a new idea. Shoch clearly described 
the benefits of late binding of names to addresses in 1978 [IEN19]. The point was repeated 
in 1983 in [RFC882]: 
  The basic need is for a consistent name space which will be 

  used for referring to resources.  In order to avoid the 

  problems caused by ad hoc encodings, names should not contain 

  addresses, routes, or similar information as part of the name. 

The same was implied by the DNS standard, whose first design goal was stated in 1987 to 
be “a consistent name space which will be used for referring to resources” [RFC1034]. The 
problems caused by using addresses have been stated in various forms ever since, for 
example [RFC1900], [RFC1958], [RFC2101], [RFC2775], [RFC4085], [RFC5887], [draft-irtf-
nsrg-report], [draft-carpenter-referral-ps], [draft-ubillos-name-based-sockets], [RFC6879], 
[RFC6866], [draft-baker-happier-eyeballs]. It has also been argued that source addresses in 
datagrams are unnecessary [SNA]. 
 
The superficial message from these, and certainly other, references is this: Internet 
applications and configuration files should use names, not IP addresses, to initiate the 
binding of an application to a remote resource. Addresses should only be stored transiently, 
if at all. Specifically, the name should be a fully qualified domain name (FQDN) in the DNS; 
failing that, some other name space might apply (such as a Skype user identifier). 
 
To argue from absurdity why this might be the right approach, let us consider the following 
assertion: “Computer applications should use numeric disk block addresses, instead of file 
names, to bind themselves to a particular mass storage file.” Binding to an IP address would 
be just like binding to a disk address. Yet people do it. Why? 
 
 
What are people getting so worked up about? 
 
A consequence of the original Berkeley socket API released in 1983 is that an application 
wishing to contact a remote resource on the Internet opens a socket by means of a layer 3 



IP address. That means that in order to connect to, say, host.example.net, an application 
first needs to discover at least one IP address for  host.example.net, store it locally, and use 
it as a parameter in the API call to open a socket. Moreover, a listener application in 
host.example.net, when it receives an unsolicited incoming packet, only learns the IP 
address of the host containing the caller; it is not told the name of the calling host. (It could in 
theory use reverse DNS to find a corresponding FQDN, but this cannot be relied on since by 
no means all hosts have valid reverse DNS entries, and in many cases the address may be 
that of a NAT box anyway.) Furthermore, it learns this by a layer violation – the transport 
layer peeks at layer 3 information in the incoming packet, and it’s even used as part of the 
TCP checksum. 
 
This address-based way of requesting, starting and continuing communication has 
consequences. Of course, using IP destination addresses to route the packets in an ongoing 
mono- or bi-directional communication is inevitable, but that is not our concern. Our concern 
is what happens when something other than simple packet flow occurs. Significant 
operational problems arise in several cases as follows. 
 
1. Referrals: A referral is, in the general case, when an application in host A that is 
communicating with an application in host B passes a reference to B over to an application 
in a third host C. There is a degenerate case when B = C, and there are indirect referrals 
where C passes the reference on to D, etc. In traditional multiparty Internet protocol design, 
the reference is passed as an IP address. There are several reasons why this often fails, 
basically because there is no such thing as a single universal address space in today’s 
Internet [draft-carpenter-referral-ps]. The address scope is typically chopped up into 
separate realms, separated by NATs, firewalls, and address families (IPv4 and IPv6). 
Sometimes, disjoint realms are linked by VPN connections. The Internet has no way to 
identify, label or take account of these disjoint addressing scopes, yet every address is only 
meaningful if we know which scope it belongs to. Thus, the traditional referral model of 
passing an IP address on to a third party is simply broken. Some (but not all) of this problem 
would be overcome if referral was based on an FQDN, but addresses are widely used 
because of ancient history, although their scopes are unknowable. 
 
Because of this problem, applications that need referrals either have to invent their own 
identifier space, build their own rendezvous mechanism, or adopt mechanisms to traverse 
NATs and other middleboxes. Widespread examples include BitTorrent and Skype. 
 
 
2. Multihoming failover: Even without referrals, any form of host or site multihoming that 
involves multiple IP addresses for the same host fails if IP addresses are used to bind 
transport sessions to applications. If the path using address α fails, we need the transport 
session to switch to address β. This problem [RFC3582] [RFC4177] has stymied most 
attempts to design scalable solutions for multihoming. As a result, multihomed sites prefer to 
have a single provider-independent address prefix that needs its own BGP4 routing entry. 
Therefore  the Internet is at some long-term risk of a blow-out of the wide area routing table 
to at least several million entries [RFC4984]. 
 
3. Dual stack operation: In a way this is the same as the previous case, except that α is an 
IPv4 address and β is an IPv6 address. Difficulties will arise if a transport session or a 
multiparty application needs to switch to the other version of IP for some reason. 
 
4. Multiple Interfaces: A host, especially but not exclusively a mobile host, may have at 
least two Internet connections via two different interfaces and probably two different 
providers – for example 3G/4G/LTE and WiFi – with different latency, throughput, battery 
impact, and cost [RFC6418]. Like the two previous cases, there will be multiple addresses, 
and in addition applications might want to choose one interface or another for reasons such 



as price/performance tradeoff or battery conservation. Analysis in the IETF has shown that a 
key part of these scenarios is the concept of a provisioning domain – defined as “a 
consistent set of network configuration information” normally derived from the service 
provider behind a given interface  [draft-anipko-mif-mpvd-arch]. Different provisioning 
domains may provide better, worse or non-existent routes to specific addresses, and may 
even provide different views of the DNS. 
 
5. Roaming: If a host is roaming while connected, it may experience an unpredictable 
change of address or even of address family. It may even move from being behind a NAT to 
having a global IP address, or vice versa. Thus, the impact may be similar to either or both 
of the above, with or without NAT traversal. 
 
6. Renumbering: If a site is renumbered, transport sessions in progress will fail – essentially 
the same situation as multhoming failover. Although rare, site renumbering is considered 
very important to ensure future scaling of the wide-area routing system [RFC5887, 
RFC6879]. 
 
Various approaches to tackling this set of problems partially or completely have been 
proposed, including: 
 
- RSIP (realm-specific IP) [RFC3102, RFC3103]. Years old, unused. 
 
- HIP (host identity payload) [RFC4423, RFC5201, etc.] Years old, hardly used. 
 
- STUN/TURN/ICE [RFC3489, RFC5766, RFC5768]. Aimed at NAT traversal for SIP (but 
why was SIP designed with so much dependency on address transparency at a time when 
NATs were already prevalent?) 
 
- PCP (port control protocol). Also aimed at NAT traversal [RFC 6887]. 
 
- SHIM6 [RFC5533, RFC5534, RFC5535, RFC6316, RFC6629]. In SHIM6, a shim on top of 
the network layer and below the transport layer swaps alternative IPv6 addresses between 
the two ends of a session, so that a broken session can be automatically restored by picking 
a new address pair. Host stacks are affected (but not TCP or the socket API), and traffic 
engineering is impacted. SHIM6 relies on IPv6 extension headers, which many firewalls 
discard. 
 
- LISP [RFC6830 to RFC6837]. In LISP, packets sent between two prefixes that are not 
present in the global BGP4 table are encapsulated to traverse the wide-area network. This 
relies on a distributed mapping system to map between the true destination and the 
decapsulator, and on a transition mechanism to interface the LISP and non-LISP Internets. 
On the other hand, site infrastructure and host software are not affected. 
 
- ILNP [RFC6740 to RFC6748]. In ILNP, there is a conceptual boundary between the routing 
part of an IPv6 address (64 bits) and the locally-significant identifying part (also 64 bits). The 
routing part is rewritten at the site boundary. Host code, including transport code, and on-site 
routers are affected. 
 
- Just as network address and port translation (NAT) has become widespread for IPv4 
enterprise networks wishing to be internally indpendent of ISP-based addressing, network 
prefix translation has been proposed, and implemented, for IPv6 networks [RFC6296]. It has 
some, but not all, the disadvantages of traditional NAT. 
 



- Happy Eyeballs [RFC6555]. In this technique, applications use explicit probing to discover 
the “best” IP address to use when there is a choice, but only before establishing a transport 
connection. Application code using the socket API must be updated. 
 
- Multipath TCP (MPTCP) [RFC6824]. Here, TCP itself is modified to operate several paths 
(i.e. several pairs of IP addresses) simultaneously, with automatic load sharing between the 
paths. In some ways this is a compromise between SHIM6 and Happy Eyeballs, but is only 
effective for TCP traffic, as well as requiring host stack modifications. 
 
- Name Based Sockets (NBS) [draft-ubillos-name-based-sockets, NBS1, NBS2]. In NBS, 
applications open sockets by name and the transport session, initially opened by address, 
swaps DNS names between the two ends, so that a broken session can be automatically 
reopened by name.  It relies on IPv6 extension headers or IPv4 options, which many 
firewalls discard. NBS requires retooling of the DNS, not just of the hosts using it, but should 
be transparent to routers and middleboxes. At this time it remains a prototype. 
 
- Ongoing research projects such as [Signposts] and Polyversal TCP [PolyTCP]. A more 
ambitious project is Named Data Networking [NDN]. This attempts to change the 
conversation by viewing individual data resources as the source and destination of packets, 
demoting both IP addresses and DNS names from their current primacy. 
 
- In a sense, the entire work of the IETF MIF WG is related to this, for example [draft-ietf-mif-
api-extension],  [draft-deng-mif-api-session-continuity-guide]. 
 
Why wasn’t this fixed years ago? 
 
It’s easy to see that we have a problem, and why there have been numerous attempts to find 
a solution. Some of these solutions are compared in some detail in [Naderi], which shows 
that none of them is perfect. However, we should consider why the problem persists even 
after the series of exhortations to use names instead of addresses that were cited at the 
beginning of this article, and the numerous attempts at (partial) solutions. The answer is 
probably the simplicity and generality of the Berkeley socket API, which was released with 
4.2BSD Unix  in early 1983. Dynamic translation of names into addresses was proposed by 
Jon Postel in 1978 [IEN61] and the general concept of the DNS was described in 1982 
[RFC819, RFC830], but it was still some months after the 4.2BSD release before the first 
stable specification of the DNS was published [RFC882,RFC883], and several years before 
the DNS was widely deployed, fully standardised [RFC1034, RFC1035], reasonably 
complete, and reliable.  
 
It’s also worth noting that the DNS added a third party to every two-party communication, in 
order to automate name-to-address (or identifier-to-locator) translation. This third party 
needs to be reliable, trustworthy, fast, constantly updated, and remarkably scalable. These 
requirements apply to the DNS or to any other form of identifier-to-locator mapping system. 
 
Back in 1983, there were fewer than 1000 hosts on the Internet, all with manually assigned 
and static addresses. There was only one address family and there was no NAT. All six of 
the above contingencies, even site renumbering, would have seemed highly unlikely. Thus, 
a three stage process of opening a socket – first, convert the remote host’s name to an 

address (originally by looking it up in /etc/hosts), second, store the resulting address, 

and third, use the stored address to bind a socket to the remote host, would have been the 
natural choice. If the address lookup failed or went slowly, the application failed or went 
slowly. It is not surprising that programmers chose to resolve DNS names only when they 
had to, and stored addresses whenever they could. Here we are thirty years later, and that’s 
still what C programmers do, with a POSIX twist and a little extra logic to cover the IPv4/IPv6 
choice. 



 
This is obviously wrong. At first sight, NBS seems right. The typical application programmer 
expects open/send/receive/close to “just work”.  To some extent, this is what Java already 
provides. The Java programmer opens a connection by DNS name, not by address, and with 
limited control over the details. Somebody else is supposed to take care of the hard stuff 
(multiple addresses and interfaces, failover, latency, throughput, battery life, bandwidth caps, 
cost per minute) but clearly Java, TCP (and still less UDP) do none of this. To a 
considerable extent, Java is an existence proof for NBS, and also shows that it is no 
panacea. If a Java connection fails to start, the user can’t tell whether there is a DNS hangup 
or a TCP/IP hangup, and doesn’t know how to recover. 
 
By comparision, however, the alternatives are worse. LISP and ILNP require radical 
retooling of network elements, but still need a mapping system. (LISP adds a new mapping 
system, and ILNP re-uses DNS.) SHIM6 or MPTCP will only take care of some aspects, and 
Happy Eyeballs won’t take care of anything that goes wrong after a TCP connection has 
been established. Translation hurts Internet transparency, MPTCP (or Polyversal TCP) only 
takes care of TCP cases, and Signposts is a tailored solution for certain scenarios. 
 
The most ambitious approach is NDN. More so than NBS or Signposts, it sweeps the 
problems discussed above under the carpet by adding a name-based architecture on top of 
the existing Internet. It also calls into question an underlying assumption of the Internet 
addressing model: that the addressable entity (whether by locator or by identifier) is a “host.” 
In reality, since the early days, the concept of an Internet (or ARPANET) host has become 
fuzzy. Firstly, addresses are generally taken to refer to a specific interface on some box, not 
to the box as a whole. Secondly, today millions of apparent hosts (or interfaces) are virtual, 
in fact being hosted by some other host. Thirdly, some apparent hosts are in fact load 
balancers standing in front of an array of actual hosts (whether virtual or real). Fourthly, 
many names that appear to be translated into host addresses by the DNS are in fact bogus: 
what they really translate into are the addresses of proxies or caches, and the translation 
varies according to the topological location of the resolver. Another form of bogus name is a 
name synthesised purely for the purposes of Reverse DNS, because some applications 
operate on the assumption that an address without a Reverse DNS entry is itself bogus. In 
this case the bogus name frequently refers to a NAT box rather than to a real host. NDN’s 
premise seems to be that all of this is irrelevant to the real purpose of getting a packet from a 
named source object to a named destination object, and we should focus on those objects. 
 
 
Meanwhile, there was some distraction... 
 
Another reason this issue has not been fixed is that a great deal of effort (variously 
intellectual, engineering, and marketing) has gone into IPv6 since 1994 or thereabouts. IPv6 
has proved immensely harder to deploy than its progenitors expected. Partly this was 
because of the amazing growth rate of the IPv4 Internet from 1995 onwards, which put the 
focus of attention elsewhere. Partly it was because IPv6, although not conceptually radical, 
is more than just IPv4 with bigger addresses – so it was perceived as a complex step for 
vendors and operators already dealing with the growth rate. Partly it was because there is an 
intrinsic difficulty caused by the need for IPv4-only nodes (which know nothing of IPv6 
addresses) to interoperate with nodes that, even if they have their own IPv6 addresses, 
cannot get unique IPv4 addresses. In any case, the result was that for almost twenty years, 
thinking about changes in the network layer has concentrated on IPv6. 
 
 
 
 
 



Where next? 
 
Why hasn’t NBS caught on? It turns out to be pretty complicated and not self-contained in 
the hosts concerned. As IPv6 has shown, that makes deployment a very major, earthquake-
like, endeavour. 
 
Will SHIM6, LISP or ILNP catch on? There are reasons for pessimism. SHIM6 is currently 
undeployable because many firewalls block the necessary extension headers. LISP requires 
retooling the Internet wide-area routing system, and has a significant bottleneck in its 
method of interworking with the non-LISP Internet. ILNP requires retooling of both host 
network stacks and site routers. 
 
Will MPTCP catch on? It “only” requires both hosts to have updated stacks, and an MPTCP 
host can speak plain TCP if the other host is not MPTCP-aware. This has a chance of 
catching on – but it only fixes a subset of the above issues, because it assumes the host 
already knows a useful set of address pairs and it only works for TCP applications. Similar 
remarks apply to other TCP “retreads” such as Polyversal TCP. 
 
Will Happy Eyeballs catch on? Well yes, it has done, for the specific case of choosing IPv6 
vs IPv4, in specific browsers that happen to include the necessary code. This fixes an even 
smaller subset of the above issues, because it does not respond dynamically to changes in 
connectivity. Extensions and variants of this approach are already appearing. 
 
Will solutions like Signpost catch on? This author’s prediction: only for a niche market, where 
customers care enough about security and reliability to invest in such an approach. This is 
related to the way in which IPsec has only really caught on for corporate “dial home” VPNs 
and the like, rather than becoming ubiquitous. 
 
Will translation catch on? Sadly, it has done for IPv4, and NPTv6 is attracting attention for 
IPv6. 
 
What else? All major distributed applications, especially the multiparty ones such as 
BitTorrent and Skype, have been forced to solve some or all of these problems. Essentially 
they do so by inventing their own globally unique identifier space (Skype ID and the like) and 
their own rendez-vous mechanism that lives in the global part of the Internet (“outside” all 
proxies, firewalls and NATs). This indeed takes the harm out of IP addresses by not relying 
on them except in a transitory way – if something goes wrong, a multiparty application 
shrugs its shoulders and repeats its rendezvous process via unique identifiers again. 
 
Another angle of attack is the notion of a connection manager. This is a piece of magic that 
is more pro-active than the Happy Eyeballs approach (which is entirely reactive). A 
connection manager decides how to maintain connectivity as the network environment 
changes around it. There are numerous proprietary connection managers, often bundled 
with corporate VPN solutions, where the motivation is to set up tunnels and host routes such 
that the user gets access to both the Internet and the corporate network while roaming 
arbitrarily. One step up from a connection manager is a congestion manager [RFC 3124] but 
that is double-ended whereas a connection manager is typically single-ended. 
 
What does the Internet need?  It goes without saying that so-called “clean slate” 
approaches, in which radical basic changes are made, are excluded from serious 
consideration, except perhaps as thinking aids. Today’s infrastructure, operating systems 
and applications are not going to be replaced overnight. In this sense, the NDN approach is 
more hopeful, because although architecturally radical, it is deployed as an overlay on the 
existing network. 
 



There’s no point in doing anything that is not deployable. Only incremental change is 
physically possible. In this writer’s opinion, that creates difficulty for solutions requiring 
simultaneous actions by independent parties, i.e. any kind of double-ended solution that 
doesn’t automatically fall back to a single-ended mode, or any solution that requires a host to 
be aware of a specific middlebox. Also any solution that requires firewall transparency has a 
poor chance of deployment. Solutions that can be installed one host at a time, without 
changing firewall policies, and don’t need new middleboxes, seem right. 
 
There could be partial solutions that break these deployability guidelines, for cases where 
there is strong motivation – the proof of concept for that is the corporate VPN, where the 
enterprise has to deploy a VPN end-point and the users have to install a VPN client. This 
works because there is a pre-existing link between the two parties and a strong motivation to 
get connected. Signpost is similar, but this will not work for the general case of Joe Random 
Citizen connecting to some new server or service. NDN seems to have adequate generality 
but it does require new infrastructure (a name-based routing system, depending on a 
systematic naming mechanism) . 
 
There are several possible approaches: 
 
1. Do nothing. Applications will have to continue doing what they do today – use DNS and 
their own form of identifier (hopefully authenticated) to rendez-vous at a global IP address, 
but treat IP addresses obtained during the rendez-vous process as transitory. When a 
connection fails, repeat. The basic interface between apps and the network remains Berkley 
sockets, possibly lightly concealed by Java etc. Issues such as multihoming or interface 
choice will be resolved by proprietary connection managers via rules of thumb. Translation 
will not go away, and various point solutions will emerge. 
 
2. Design a superSocket API, but don’t specify the engine behind it. Let the implementors 
sort it out, and may the best solution win. 
 
3. Specify requirements for a generic name-driven connection manager (to go with #2). The 
IETF HOMENET and MIF efforts may go in this direction, but that only covers a subset of the 
network. 
 
4. Design a one-size-fits-all solution: more practical than NBS, more general than MPTCP or 
Happy Eyeballs, with knobs to set policy for interface choice etc. But if this needs a generic 
rendez-vous server of some kind (superICE), it hits the deployability barrier. 
 
5. Overlay a new architecture; NDN is an example. As noted above, this could indeed hide 
the problems discussed above, but it radically affects host stacks and requires an elaborate 
new routing system. 
 
Any solution has implementation aspects as well as external aspects. Where does the new 
intelligence sit in the host system? Kernel space or user space? In the VM or the hypervisor 
(on the assumption that in future, virtual hosts will greatly outnumber physical hosts)? What 
is the structure (library, process, thread)? What is the relationship to the DNS resolver, and 
how does DNSSEC change things? How will middleboxes such as proxies, caches, content 
distribution mechanisms, load balancers, and firewalls deal with the solution? 
 
This essay doesn’t attempt to answer these questions or predict the future. 
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