Automatic structures, Part 3

Bakh Khoussainov Computer Science Department, The University of Auckland, New Zealand

July 23, 2007

Plan:

- Rabin automatic structures
- Scott ranks of automatic structures
- The isomorphism problem
- Heights of automatic well founded relations
- Cantor-Bendixson ranks of trees
- Resource bounded complexity

- Let \mathcal{T} be the binary tree ({0, 1}*; *Left*, *Right*).
- Let $Tree(\Sigma)$ be the set of all the Σ -labeled trees (\mathcal{T}, v) , where $v : \mathcal{T} \to \Sigma$.

Definition

A Rabin automaton \mathcal{M} is $(S, \iota, \Delta, \mathcal{F})$, where S is a set of states, $\iota \in S$ is the initial state, $\Delta : S \times \Sigma \rightarrow P(S \times S)$ is the transition table, and $\mathcal{F} \subset P(S)$ is the set of designated subsets.

Definition

A **run** of \mathcal{M} on (\mathcal{T}, v) is a mapping $r : \mathcal{T} \to S$ such that $r(root) = \iota$, and for each $x \in \mathcal{T}$ we have

 $(r(Left(x)), r(Right(x))) \in \Delta(r(x), v(x)).$

The run is **accepting** if for every path η in T we have

 $\{s \mid s \text{ appears on } \eta \text{ infinitely many times }\} \in \mathcal{F}.$

Definition

The **language** accepted by the automaton \mathcal{M} , denoted $L(\mathcal{M})$, is the set of all trees (\mathcal{T}, v) accepted by \mathcal{M} .

The alphabet Σ is $\{0, 1\}$.

- $\{(T, v) | \text{ there is at least one } x \text{ such that } v(x) = 1\}.$
- $\{(T, v) | \text{ for every node } x \text{ if } v(x) = 1 \text{ then the tree below } x \text{ is labeled by 0s only } \}.$

Theorem (Rabin, 1968)

- The emptiness problem for Rabin automata is decidable.
- Rabin automata recognizable languages are closed under Boolean operations.

- Consider the structure T = ({0, 1}*, Left, Right). Consider the MSO logic defined to be the extension of the FO logic with (monadic) variables for subsets over the domain of T.
- On *T* the MSO logic can express many interesting relations such as X ⊆ Y, Finite(X), Path(X), Open(X), Clopen(X), and PathOrder(X, Y), etc.

Theorem (Rabin, 1968)

- A relation $R \subseteq P(T)^n$ is definable in the MSO logic if and only if R is Rabin recognizable.
- The monadic second order theory of *T*, denoted by S2S, is decidable.

A finite Σ -tree is $t : dom(t) \to \Sigma$, where dom(t) is a finite binary tree. A tree language is a set of Σ -trees.

Definition

A tree automaton is $M = (S, \iota, \Delta, F)$, where $F \subseteq S$ and the rest are all as for Rabin automata.

Definition

A run of *M* on *t* is **accepting** if the last state along each path of the run is in *F*.

Now one has:

- The emptiness problem for tree automata is decidable.
- Tree automata recognizable languages are closed under Boolean operations.

Definition

A structure $\mathcal{A} = (A; R_0, R_1, \dots, R_m)$ is **tree automatic** over Σ if its domain A and all relations R_0, R_1, \dots, R_m are all tree automata recognizable (over Σ).

Definition

A structure $\mathcal{A} = (A; R_0, R_1, \dots, R_m)$ is **Rabin automatic** over Σ if its domain A and all relations R_0, R_1, \dots, R_m are all Rabin automata recognizable (over Σ).

- Every word automatic automatic structure is Rabin automatic.
- 2 Every Büchi automatic structure is Rabin automatic.
- If \mathcal{A} is tree automatic then so is its ω -product.
- (ω, \times) is tree automatic.
- The countable atomless boolean algebra is tree automatic.
- Every tree automatic structure is Rabin automatic.

The term algebra $\mathcal{F} = (Terms(X), f)$, where $|X| = \omega$ and *f* is the binary function symbol, is tree automatic.

Proof. Let *A* be the set of all trees $t : domt(t) \rightarrow \{0, 1\}$. Let t_0 and t_1 be $\{0, 1\}$ -trees. Define $f(t_0, t_1)$ as the tree *t* such that $t(root) = 1, t(x0) = t_0(x)$ and $t(x1) = t_1(x)$. It is easy that $(A, F) \cong \mathcal{F}$.

Löwenheim-Skolem Theorem for Rabin structures

Theorem (Khoussainov, Nies, 2006)

Let A be a Rabin automatic structure. Consider

$$A' = \{(\mathcal{T}, v) \in A \mid (\mathcal{T}, v) \text{ is a regular tree} \}.$$

The structure A' is a computable elementary substructure of A.

The situation is similar to word and Büchi automatic structures:

Fact

- A structure is Rabin automatic iff it is definable in the monadic second order logic of the binary tree T.
- A structure is tree automatic iff it is definable in the weak monadic second order logic of the binary tree T.

Rabin automatic vs Büchi automatic

Fact

Every Büchi automatic structure is Borel.

Theorem (Khoussainov, Montalban, Nies; 2007)

There exists a Rabin automatic structure that is not Borel.

Let $V = \{(\mathcal{T}, v) \mid \text{each path through } \mathcal{T} \text{ has finitely many 1s} \}$.

Lemma

The language V is Rabin recognizable but not Borel.

Proof. Embed $\omega^{<\omega}$ into \mathcal{T} by: $n_1 \dots n_k \to 1^{n_1} 0 1^{n_2} 0 \dots 1^{n_k}$. A tree *S* in $\omega^{<\omega}$ has no infinite path if and only if its image (which is a tree) contains finitely many 1s along each path.

We code the set V in a Rabin automatic structure.

Outline of the proof

- The domain *D* of the structure is $\{(\mathcal{T}, v) \mid v : \mathcal{T} \to \{0, 1\}\}$.
- The unary predicate S = {(T, v) | there is a unique x for which v(x) = 1}.
- The unary predicate V from the lemma above.
- Two operations $Left' : S \rightarrow S$ and $Right' : S \rightarrow S$ mimic the Left and Right operations on the binary tree.

The structure (D; S, V, Left', Right') is Rabin automatic. If it had a Borel copy then the set V would also be Borel.

Definition

For tuples $\bar{a}, \bar{b} \in A^n$ define

- $\bar{a} \equiv^0 \bar{b}$ if \bar{a}, \bar{b} determine isomorphic substructures.
- For α > 0, ā ≡^α b̄ if for all β < α, for each c̄ there is d̄ such that ā, c̄ ≡^β b̄, d̄, and vice versa.

The **Scott rank** of \bar{a} is the least β such that for all $\bar{b} \in A^n$, $\bar{a} \equiv^{\beta} \bar{b}$ implies that $(\mathcal{A}, \bar{a}) \cong (\mathcal{A}, \bar{b})$. The Scott rank of \mathcal{A} , $\mathcal{SR}(\mathcal{A})$, is the least $\alpha \geq$ the Scott ranks of tuples of \mathcal{A} .

All known examples of automatic structures have had small Scott ranks.

Fact

The Scott rank of any locally finite graphs is at most 1.

Proof. Indeed, let *G* be such a graph. Then, by König's lemma, there is an automorphism between tuples \bar{a} to \bar{b} if and only if for every *n* the *n*-neighborhood of \bar{a} is isomorphic to the *n*-neighborhood of \bar{b} . Thus, $(G, \bar{a}) \cong (G, \bar{b})$ iff $\bar{a} \equiv^1 \bar{b}$.

Corollary

The Scott rank of the configuration space of any Turing machine is at most 1.

Theorem (B. Khoussainov, M. Minnes, 2007)

For each infinite $\alpha \leq \omega_1^{CK} + 1$ there is an automatic structure of Scott rank α .

We now outline the proof of the theorem.

- Let C = (C; R) be a computable structure.
- We construct an automatic structure A whose Scott rank is (close to) the Scott rank of C.
- We assume that $C = \Sigma^*$ for some finite Σ .
- Let \mathcal{M} be a Turing machine for R.

Consider the configuration space $C(\mathcal{M})$ of the machine \mathcal{M} .

Definition

A deterministic Turing machine M is **reversible** if the in-degree of each vertex in C(M) is at most 1.

Lemma (Bennet, 1973)

Any deterministic Turing machine may be simulated by a reversible Turing machine.

So, we assume that $\ensuremath{\mathcal{M}}$ is reversible.

Some assumptions and terminology for $C(\mathcal{M})$

- All the chains in $C(\mathcal{M})$ are of the type ω or ω^* or *n*.
- 2 \mathcal{M} halts if and only if its output is yes.
- Terminating computation chains: finite chains whose base is a valid initial configuration.
- Non-terminating computation chains: infinite chains whose base is a valid initial configuration.
- Unproductive chains: chains whose base is not a valid initial configuration.

- Add an ω*-chain below each base of an unproductive chain.
- 2 Add ω -many copies of ω^* and $\omega^* + \omega$.
- Solution Connect to each base of a computation chain a structure which consists of ω many chains of each finite length.
- Connect each tuple (x_1, \ldots, x_n) in *C* to the initial configuration of *M* determined by the tuple.

Denote the resulting structure by A.

Lemma

For \bar{x}, \bar{y} from the domain of C, and for any ordinal $\alpha, \bar{x} \equiv_{C}^{\alpha} \bar{y}$ implies that $\bar{x} \equiv_{A}^{\alpha} \bar{y}$.

Lemma

$$\mathcal{SR}(\mathcal{C}) \leq \mathcal{SR}(\mathcal{A}) \leq \mathbf{2} + \mathcal{SR}(\mathcal{C}).$$

Lemma (Knight, Millar, in print)

For each $\alpha \leq \omega_1^{CK} + 1$ there is a computable structure of Scott rank α .

Thus, we have proved the theorem.

Corollary

The isomorphism problem for automatic structures is Σ_1^1 -complete.

Proof. The transformation from C to A preserves isomorphism types. The isomorphism problem for computable structures is Σ_1^1 -complete. Hence, the theorem reduces the isomorphism problem for computable structures to the isomorphism problem for automatic structures.

Recall the following:

Definition

Let $\mathcal{T} = (\mathcal{T}, \leq)$ be a tree. $d(\mathcal{T})$ is the subtree of all nodes x such that x belongs to two distinct infinite paths of \mathcal{T} . Set

•
$$\textit{d}^{lpha+1}=\textit{d}(\textit{d}^{lpha}(\mathcal{T}))$$
, and

• for limit ordinal
$$\alpha$$
, set $d^{\alpha} = \bigcap_{\beta < \alpha} d^{\beta}(\mathcal{T})$.

Definition

The first α for which $d^{\alpha+1}(\mathcal{T}) = d^{\alpha}(\mathcal{T})$ is called the **CB rank of** \mathcal{T} denoted by $CB(\mathcal{T})$.

In the second tutorial we proved the following

Theorem (Khoussainov, Rubin, Stephan, 2003)

If T is automatic partial order tree then $CB(T) < \omega$.

This theorem fails if we consider automatic successor trees rather than automatic partial order trees.

Theorem (Khoussainov, Minnes, 2007)

For each computable ordinal $\alpha < \omega_1^{CK}$ there is a successor tree of CB rank α .

In the second tutorial we proved that heights of automatic well founded po sets are $< \omega^{\omega}$. However, we have the following:

Theorem (B. Khoussainov, M. Minnes, 2007)

For each computable ordinal $\alpha < \omega_1^{CK}$, there is an automatic well-founded relation (A, R) such that $\alpha \le h(A) \le \omega + \alpha$.

This answers Vardi's question.

Let G = (V, E) be an automatic graph. We ask the following:

- Connectivity Problem. Is G connected?
- **Reachability Problem**. Is there a path from *x* to *y*?
- Infinity Testing Problem. Is the component of x infinite?
- Infinite Component Problem. Does *G* have an infinite component?
- All the problems above are *undecidable*.

Theorem (Khoussainov, Liu, Minnes, 2007)

Given a unary automaton \mathcal{A} of size n representing a locally finite graph G:

- The infinite component problem can be solved in $O(n^{\frac{3}{2}})$.
- The infinity testing problem can be solved in O(n^{2/2}). Moreover, when A is fixed, the infinity testing problem can be solved in constant time.
- 3 The reachability problem can be solved in $O(|v| + |w| + n^{\frac{5}{2}}).$

Conclusion (Open questions):

- Study the isomorphism problem for the classes of
 - Automatic linear orders.
 - Automatic groups.
 - Automatic Abelian groups.
 - Automatic partial orders.
 - Automatic equivalence structures.
- Study computational complexity of computing isomorphism invariants of automatic structures (heights, CB ranks,etc).
- Study computational complexity of the theories of automatic structures.
- etc.