Automatic Structures, Part 2

Bakh Khoussainov
Computer Science Department, The University of Auckland,
New Zealand

July 23, 2007

Plan: Tutorial 2 Proof methods

- Automatic well-founded partial orders
- Automatic linear orders and trees
- Automatic Boolean algebras
- Automatic Finitely generated groups

Automatic partial orders

Definition

A partially ordered set $A = (A, \leq)$ is automatic if A and \leq are recognized by word automata.

Examples:

- Small ordinals ω^n , where n is finite.
- **2** $(\{0,1\}^*; \leq)$.
- **3** Finite or co-finite subset of ω under inclusion.

Well-founded relations Structures

Definition

A relation R is called **well-founded** if there is no infinite sequence x_1, x_2, x_3, \ldots such that $(x_{i+1}, x_i) \in R$ for $i \in \omega$.

Define the height function as follows:

- For the *R*-minimal elements x, set $h_A(x) = 0$.
- ② Put $h_A(z) = \sup\{h(y) + 1 : (y, z) \in R\}.$

The height of A = (A, R), is $\sup\{h_A(x) \mid x \in A\}$.

Heights of well-founded partial orders

Goal: Study heights of automatic well founded partial orders.

Lemma

- For each $\alpha < \omega_1^{CK}$ there is a computable well-founded partial order of height α .
- The height of each computable well founded relation is below ω_1^{CK} .

Lemma

For a structure A = (A; R) where R is well-founded, if $h(A) = \alpha$ and $\beta < \alpha$ then there is an $x \in A$ such that $h_A(x) = \beta$.

The natural sum of ordinals

Definition

The natural sum of ordinals $\alpha, \beta, \alpha +' \beta$, is defined recursively by putting $\alpha +' \beta$ as the least ordinal strictly greater than $\gamma +' \beta$ for all $\gamma < \alpha$ and strictly greater than $\alpha +' \gamma$ for all $\gamma < \beta$.

This sum can also be defined as follows:

$$(\omega^{\beta_1}c_1 + \ldots + \omega^{\beta_k}c_k) + (\omega^{\beta_1}b_1 + \ldots + \omega^{\beta_k}b_k) = \omega^{\beta_1}(c_1 + b_1) + \ldots + \omega^{\beta_k}(c_k + b_k).$$

- Let $A = (A, \leq)$ be a well founded partial order.
- Let A_1 and A_2 be disjoint subsets of A such that $A = A_1 \cup A_2$.
- Consider $A_1 = (A_1, \leq_1)$ and $A_2 = (A_2, \leq_2)$ obtained by restricting \leq to A_1 and A_2 respectively.
- Let $\alpha_1 = h(A_1)$ and $\alpha_2 = h(A_2)$.

Height Lemma

Lemma (Height Lemma)

Under the assumptions above, $h(A) \leq \alpha_1 +' \alpha_2$.

Proof. For each $x \in A$, define function f(x):

Let
$$A_{1,x} = \{z \in A_1 \mid z < x\}$$
 and $A_{2,x} = \{z \in A_2 \mid z < x\}$.

Set
$$f(x) = h(A_{1,x}) +' h(A_{2,x})$$
.

The range of this ranking function is in $\alpha_1 +' \alpha_2$.

Corollary

If
$$h(A) = \omega^n$$
 then either $h(A_1) = \omega^n$ or $h(A_2) = \omega^n$.

A Characterization Theorem

Theorem (Khoussainov, Minnes, 2007)

An ordinal α is the height of an automatic well-founded partial order if and only if $\alpha < \omega^{\omega}$.

Proof. One direction is clear because ordinals ω^n do the job.

For the other direction, assume there is an automatic well-founded po $\mathcal{A}=(A,\leq)$ such that $r(\mathcal{A})=\alpha\geq\omega^{\omega}$.

- Let $(S_A, \iota_A, \Delta_A, F_A)$ be word automata for A.
- Let $(S_{\leq}, \iota_{\leq}, \Delta_{\leq}, F_{\leq})$ be word automata for \leq .

Proof: continued (Delhomme's technique)

- For $a \in A$, define $a \downarrow = \{x \in A : x < a\}$.
- For $a, p \in \Sigma^*$, set

$$\textit{X}^\textit{a}_\textit{p} = \{\textit{pw} \in \textit{A} : \textit{w} \in \Sigma^\star \ \& \ \textit{pw} < \textit{a}\}.$$

Thus, a ↓ can be partitioned as follows:

$$a \downarrow = \{x \in A : |x| < |a| \& x < a\} \cup \cup_{p \in \Sigma^*: |p| = |a|} X_p^a.$$

- For each n, select $a_n \in A$ such that $h_A(a_n) = \omega^n$.
- By the corollary, select p_n such that
 - $|a_n| = |p_n|$ and
 - $h(X_{p_n}^{a_n}) = h(a_n \downarrow) = \omega^n$.

Define the following relation on (a, p) such that |a| = |p|: $(a, p) \sim (a', p') \iff$

- $\Delta_A(\iota_A, p) = \Delta_A(\iota_A, p')$, and
- $\bullet \ \Delta_{\leq}(\iota_{\leq},\binom{p}{a}) = \Delta_{\leq}(\iota_{\leq},\binom{p'}{a'}).$

There are at most $|S_A| \times |S_{\leq}|$ equivalence classes.

Therefore, in the sequence $(a_1, p_1), (a_2, p_2), \ldots$ there are m, n such that $m \neq n$ and $(a_m, p_m) \sim (a_n, p_n)$.

Lemma

For any $a,p,a',p'\in \Sigma^{\star}$, if $(a,p)\sim (a',p')$ then $h(X^a_p)=h(X^{a'}_{p'})$.

Proof. The function $f: X_p^a \to X_{p'}^{a'}$ defined by f(pw) = p'w is well-defined, bijective, and order preserving.

Thus, $\omega^m = h(X_{p_m}^{a_m}) = h(X_{p_n}^{a_n}) = \omega^n$, and we proved the theorem.

Automatic Linear orders

Fact

Let f(x) be either $a^{b \cdot x + c}$ with $a, b, c \in \omega$ or polynomial with positive integer coefficients. Let L be an automatic linear order. The order $\Sigma_{x \in \omega}(L + f(x) + L)$ is automatic.

- The order of rational numbers is automatic.
- The sum and product of automatic linear orders are automatic.

Cantor Bendixson ranks

Definition

Let (L, \leq) be a lo set. Elements $x, y \in L$ are \equiv_F -equivalent if there are finitely many elements between them.

Factorize (L, \leq) with respect to \equiv_F ; Continue this process.

Definition

The first ordinal at which the fix point is reached is called the **Cantor-Bendixson rank** of (L, \leq) . We denote it by $CB(L, \leq)$.

The fix point is either **1** or the order type of rational numbers.

Cantor Bendixson ranks

Lemma

If L is an automatic linear order then so is its factor L/\equiv_F .

The proof of the heights theorem is adapted to prove this:

Theorem (Khoussainov, Rubin, Stephan, 2003)

An ordinal α is a CB rank of an automatic linear order if and only if α is finite.

Corollaries

Corollary

Let L be an automatic linearly ordered set.

- One can compute the Cantor Bendixson rank of L.
- It is decidable if L is scattered.
- If L is not scattered then one can compute an automatic dense suborder of L.

Corollaries

Corollary

Let L be an automatic linearly ordered set.

- It is decidable if L is an ordinal.
- If L is an ordinal, one can compute its Cantor normal form.

Corollary

The isomorphism problem for automatic ordinals is decidable.

Open problem: We do not know whether the isomorphism problem for automatic linear orders is decidable.

Automatic partial order trees

Definition

A tree is $\mathcal{T}=(\mathcal{T},\leq)$ where \leq is partial order such that \mathcal{T} has the least element and the set $x\downarrow$ is linearly ordered and finite for all $x\in\mathcal{T}$.

Examples:

- (L, \preceq) , where L is prefix closed regular language.
- 2 Let L be regular language. Consider $(L \cup \{\lambda\}, \leq)$, where $x \leq y \iff x = y$ or

$$(|x|<|y|)\&\forall z(z\in L\&|x|=|z|\to x\preceq_{\mathit{llex}}z)$$

③ $(\{0,1\}^* \cdot 1, \preceq)$ is isomorphic to $\omega^{<\omega}$.

Cantor-Bendixson ranks of trees

Definition

Let $\mathcal{T} = (\mathcal{T}, \leq)$ be a tree. $d(\mathcal{T})$ is the subtree of all nodes x such that x belongs to two distinct infinite paths of \mathcal{T} . Set

- $d^{\alpha+1} = d(d^{\alpha}(T))$, and
- for limit ordinal α , set $d^{\alpha} = \bigcap_{\beta < \alpha} d^{\beta}(\mathcal{T})$.

Definition

The first α for which $d^{\alpha+1}(\mathcal{T}) = d^{\alpha}(\mathcal{T})$ is called the **CB rank of** \mathcal{T} denoted by $CB(\mathcal{T})$.

Cantor-Bendixson ranks of trees

Definition

Let $\mathcal{T} = (\mathcal{T}, \leq)$ be an automatic finitely branching tree. Set $x \leq_{\mathit{KB}} y$ if x = y or $y \leq x$ or there are u, v, w such that $v, w \in Successor(u)$ and $v \leq_{\mathit{llex}} w$ and $v \leq x$ and $w \leq y$.

The relation \leq_{KB} is regular. Therefore $KB_T = (T, \leq_{KB})$ is an automatic linearly ordered set. This order can be exploited to prove the following theorem:

Theorem (Khoussainov, Rubin, Stephan, 2003)

If T is an automatic tree then $CB(T) < \omega$.

Full Automatic version of König's lemma

Suppose that \mathcal{T} is an automatic tree. An element x is scattered if $|[\mathcal{T}_x]| \leq \omega$ and $[\mathcal{T}_x] \neq \emptyset$.

Theorem (Khoussainov, Rubin, Stephan, 2003)

There is a ternary regular relation R(x, y, z) such that:

- ② For each scattered x and $y \in \Sigma^*$, the set $R_y = \{z \mid R(x, y, z)\}$ is an infinite path through \mathcal{T}_x .
- The search scattered x, if η is an infinite path through T_x there is a y such that $R_y = \eta$.

The Constant Growth Lemma

Lemma (Khoussainov, Nerode 1994)

Let $f: D^n \to D$ be a function such that the graph of f is a regular relation. There exists a constant C such that for all $x_1, \ldots, x_n \in D$, we have

$$|f(x_1,\ldots,x_n)| \leq max\{|x_1|,\ldots,|x_n|\} + C.$$

Proof. The Pumping lemma does the job.

Generating sets

Let $\mathcal{A} = (A, F_0, F_1, \dots, F_n)$ be an automatic structure. Let $X \subset A$ be such that in the $\leq_{\textit{llex}}$ listing x_1, x_2, \dots of X we have $|x_n| \leq C' \cdot n$ for some constant C'.

Define $G_n(X)$ as follows:

The growth of generation theorem

Theorem (Khoussainov, Nerode, 1994; Blumensath, Gradel, 2000)

There exists a constant C such that

$$|a| \leq C \cdot n$$

for all $a \in G_n(X)$. In particular, $G_n(X) \subseteq \Sigma^{\leq C \cdot n}$ when $|\Sigma| > 1$; and $|G_n(X)| \leq C \cdot n$ when $|\Sigma| = 1$.

Corollaries

Corollary

The following structures are not word automatic:

- The free semigroup $(\Sigma^*; \cdot)$.
- $(\omega; f)$, where $f : \omega^2 \to \omega$ is a bijection.
- The free group F(n) with n > 1 generators.
- $(\omega; \times)$.
- $(\omega; Div(x, y)).$
- $(\omega; \leq, \{n! \mid n \in \omega\}).$

Automatic Boolean algebras

Examples:

- The Boolean algebra \mathcal{B}_{ω} , the collection of all finite or co-finite subsets of ω .
- ② The Boolean algebra \mathcal{B}_{ω}^{n} , where $n \geq 1$.

The Generation Lemma for monoids

Lemma (Khoussainov, Rubin, Stephan, 2003)

Let (M, \cdot) be an automatic monoid. There is a constant C such that for every $s_1, \ldots, s_n \in M$ we have

$$|s_1 \cdot s_2 \cdot \ldots \cdot s_n| \leq \max\{|s_1|, |s_2|, \ldots, |s_n|\} + C \cdot \log(n).$$

Proof. Use the constant growth lemma and associativity of the monoid operation.

The Characterization Theorem for Boolean algebras

Theorem (Khoussainov, Nies, Rubin, Stephan, 2003)

A Boolean algebra is automatic if and only if it is isomorphic to \mathcal{B}^n_{ω} for some $n \geq 1$.

Proof. One direction is clear. We prove the other direction for the atomless Boolean algebra.

Construct a sequence embedded trees $\{T_n\}_{n \in \omega}$:

- $T_0 = \{\lambda\}, b_{\lambda} = 1.$
- The induction hypothesis on T_n is that the number of leaves in T_n is 2^n .
- For each leaf σ , the associated element b_{σ} is not empty.

Define \mathcal{T}_{n+1} as follows:

• For each leaf b_{σ} in \mathcal{T}_n find the first x such that $b_{\sigma 0} := b_{\sigma} \cap x$ and $b_{\sigma 1} := b_{\sigma} \cap \bar{x}$ both not empty.

By the constant growth Lemma we have

$$|b_{\sigma 0}| \le |b_{\sigma}| + C_1$$
 and $|b_{\sigma 1}| \le |b_{\sigma}| + C_1$.

- Hence $X_n \subseteq \Sigma^{C_2 \cdot n}$, where X_n is the set of leaves of T_n .
- Hence, by the generation lemma for monoids $\mathcal{B}(X_n) \subseteq \Sigma^{C_3 \cdot n}$.
- However, $|\mathcal{B}(X_n)| \geq 2^{2^n}$.

We have a contradiction.

An application

Corollary

The isomorphism problem for word automatic Boolean algebras is decidable.

Proof Elements $a, b \in B$ are \equiv_F -equivalent if their symmetric difference $(a \cap \bar{b}) \cup (\bar{a} \cap b)$ is a finite union of atoms.

By the theorem, the factor algebra \mathcal{B}/F is finite if \mathcal{B} is automatic. Also \equiv_F is regular. Thus, \mathcal{B} and \mathcal{B}' are isomorphic iff \mathcal{B}/F and \mathcal{B}'/F' are isomorphic.

Automatic finitely generated groups

Examples:

- Finitely generated Abelian groups are automatic.
- 2 F(n), with n > 1, is not automatic.

Definition

A group is **virtually Abelian** if it has an Abelian subgroup of finite index.

Automatic finitely generated groups

Lemma

Virtually Abelian finitely generated groups G are automatic.

Proof. Say, $A = \langle x_1, x_2 \rangle$ is an Abelian torsion free normal subgroup of finite index of the group G.

Each $g \in G$ is of the form

$$g = t_j x_1^{m_1} x_2^{m_2}, \quad j = 1, \dots, s.$$

We have:

$$x_1t_j=t_jx_1^{a(j)}x_2^{b(j)}, \ \ x_2t_j=t_jx_1^{c(j)}x_2^{d(j)}, \ \ \text{and} \ \ t_it_j=t_kx_1^{e(i)}x_2^{e(j)}.$$

Thus,

$$t_i x_1^{m_1} x_2^{m_2} \cdot t_j x_1^{n_1} x_2^{n_2} = t_i t_j x_1^{m_1 a(i) + m_2 c(j) + n_1} x_2^{m_1 b(j) + m_2 d(j) + n_2}.$$

So, the group is automatic.

Theorem

Our goal is to prove the following

Theorem (Thomas, Oliver, 2003)

A finitely generated group is automatic if and only if the group is virtually Abelian.

Proof. One direction is given by the previous lemma. We prove the other direction.

Define:

- 2 $\gamma_0(G) = G, \gamma_{k+1}(G) = [\gamma(G_k), G].$

Definition

The group G is **solvable** if $G^n = \{e\}$ for some n. The group G is **nilpotent** if $\gamma_n(G) = \{e\}$ for some n.

If G is nilpotent then G is solvable.

Let $\Delta = \{a_1, \dots, a_k\}$ be a generating set of G. By the generation lemma for monoids, we have

$$G_n(\Delta) \subseteq \Sigma^{C \cdot log(n)}$$
, and hence $|G_n(\Delta)| \leq n^C$.

Theorem (Gromov)

If a finitely generated group has a polynomial growth then it is virtually nilpotent.

Theorem (Ershov)

A nilpotent group has a decidable FO theory if and only if it is virtually Abelian.

Theorem (Romanovski, Novikov)

A virtually solvable group has a decidable FO theory if and only if it is virtually Abelian.

Thus, if *G* is automatic and finitely generated then:

- G has a polynomial growth.
- By Gromov G is virtually nilpotent. Hence G is virtually solvable.
- By Romanovski, G is virtually Abelian.

Open problems

- Is the isomorphism problem for finitely generated automatic groups decidable?
- Is the isomorphism problem for torsion free Abelian groups decidable?
- **3** Is the group (Q, +) automatic?

Automatic groups by Thurston

Let A be a finite set of generators of a group \mathcal{G} and $A = A^{-1}$.

Definition

The **Cayley graph** of G is the structure $(G, f_a)_{a \in A}$, where $f_a(x) = x \cdot a$ for $x \in G$.

Definition

The group $\mathcal G$ is **Thurston automatic** if there is a language $Rep\subseteq A^*$ such that

- Rep is regular and for each $g \in G$ there is a $v \in Rep$ such that v = g.
- 2 The set $\{(u, v) \mid \mathcal{G} \models u = v \& u, v \in Rep\}$ is regular.
- For each $a \in A$, the set $\{(ua, v) \mid \mathcal{G} \models ua = v \& u, v \in Rep\}$ is regular.

Thurston automatic vs automatic

Here we restrict ourselves to finitely generated groups. We have the following:

- If \mathcal{G} is automatic then \mathcal{G} is Thurston automatic.
- There is a Thurston automatic group which is not automatic. The group F(n) is such an example.
- If G is Thurston automatic then its Cayley graph is automatic.
- There is a group $\mathcal G$ such that its Cayley graph is automatic but $\mathcal G$ is not Thurston automatic. The Heisenberg group is such an example.