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Plan: Tutorial 2
Proof methods

Automatic well-founded partial orders
Automatic linear orders and trees
Automatic Boolean algebras
Automatic Finitely generated groups
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Automatic partial orders

Definition
A partially ordered set A = (A,≤) is automatic if A and ≤ are
recognized by word automata.

Examples:
1 Small ordinals ωn, where n is finite.
2 ({0, 1}?;�).
3 Finite or co-finite subset of ω under inclusion.
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Well-founded relations
Structures

Definition
A relation R is called well-founded if there is no infinite
sequence x1, x2, x3, . . . such that (xi+1, xi) ∈ R for i ∈ ω.

Define the height function as follows:

1 For the R-minimal elements x , set hA(x) = 0.
2 Put hA(z) = sup{h(y) + 1 : (y , z) ∈ R}.

The height of A = (A, R), is sup{hA(x) | x ∈ A}.
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Heights of well-founded partial orders

Goal: Study heights of automatic well founded partial orders.

Lemma

For each α < ωCK
1 there is a computable well-founded

partial order of height α.
The height of each computable well founded relation is
below ωCK

1 .

Lemma

For a structure A = (A; R) where R is well-founded, if h(A) = α
and β < α then there is an x ∈ A such that hA(x) = β.
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The natural sum of ordinals

Definition
The natural sum of ordinals α, β, α +′ β, is defined recursively
by putting α +′ β as the least ordinal strictly greater than γ +′ β
for all γ < α and strictly greater than α +′ γ for all γ < β.

This sum can also be defined as follows:
(ωβ1c1 + . . . + ωβk ck ) + (ωβ1b1 + . . . + ωβk bk ) =
ωβ1(c1 + b1) + . . . + ωβk (ck + bk ).
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Let A = (A,≤) be a well founded partial order.
Let A1 and A2 be disjoint subsets of A such that
A = A1 ∪ A2.
Consider A1 = (A1,≤1) and A2 = (A2,≤2) obtained by
restricting ≤ to A1 and A2 respectively.
Let α1 = h(A1) and α2 = h(A2).
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Height Lemma

Lemma (Height Lemma)

Under the assumptions above, h(A) ≤ α1 +′ α2.

Proof. For each x ∈ A, define function f (x):

Let A1,x = {z ∈ A1 | z < x} and A2,x = {z ∈ A2 | z < x}.

Set f (x) = h(A1,x) +′ h(A2,x).

The range of this ranking function is in α1 +′ α2.

Corollary

If h(A) = ωn then either h(A1) = ωn or h(A2) = ωn.
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A Characterization Theorem

Theorem (Khoussainov, Minnes, 2007)

An ordinal α is the height of an automatic well-founded partial
order if and only if α < ωω.

Proof. One direction is clear because ordinals ωn do the job.

For the other direction, assume there is an automatic
well-founded po A = (A,≤) such that r(A) = α ≥ ωω.

Let (SA, ιA,∆A, FA) be word automata for A.
Let (S≤, ι≤,∆≤, F≤) be word automata for ≤.
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Proof: continued (Delhomme’s technique)

For a ∈ A, define a ↓= {x ∈ A : x < a}.
For a, p ∈ Σ?, set

X a
p = {pw ∈ A : w ∈ Σ? & pw < a}.

Thus, a ↓ can be partitioned as follows:

a ↓= {x ∈ A : |x | < |a| & x < a} ∪ ∪p∈Σ?:|p|=|a|X a
p .
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Proof: continued

For each n, select an ∈ A such that hA(an) = ωn.
By the corollary, select pn such that

|an| = |pn| and
h(X an

pn ) = h(an ↓) = ωn.
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Proof: continued

Define the following relation on (a, p) such that |a| = |p|:
(a, p) ∼ (a′, p′) ⇐⇒

∆A(ιA, p) = ∆A(ιA, p′), and

∆≤(ι≤,
(p

a

)
) = ∆≤(ι≤,

(p′

a′

)
).

There are at most |SA| × |S≤| equivalence classes.
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Proof: continued

Therefore, in the sequence (a1, p1), (a2, p2), . . . there are m, n
such that m 6= n and (am, pm) ∼ (an, pn).

Lemma

For any a, p, a′, p′ ∈ Σ?, if (a, p) ∼ (a′, p′) then h(X a
p ) = h(X a′

p′ ).

Proof. The function f : X a
p → X a′

p′ defined by f (pw) = p′w is
well-defined, bijective, and order preserving.

Thus, ωm = h(X am
pm ) = h(X an

pn ) = ωn, and we proved the
theorem.
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Automatic Linear orders

Fact

Let f (x) be either ab·x+c with a, b, c ∈ ω or polynomial with
positive integer coefficients. Let L be an automatic linear order.
The order Σx∈ω(L + f (x) + L) is automatic.

The order of rational numbers is automatic.
The sum and product of automatic linear orders are
automatic.
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Cantor Bendixson ranks

Definition
Let (L,≤) be a lo set. Elements x , y ∈ L are ≡F -equivalent if
there are finitely many elements between them.

Factorize (L,≤) with respect to ≡F ; Continue this process.

Definition
The first ordinal at which the fix point is reached is called the
Cantor-Bendixson rank of (L,≤). We denote it by CB(L,≤).

The fix point is either 1 or the order type of rational numbers.
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Cantor Bendixson ranks

Lemma
If L is an automatic linear order then so is its factor L/ ≡F .

The proof of the heights theorem is adapted to prove this:

Theorem (Khoussainov, Rubin, Stephan, 2003)
An ordinal α is a CB rank of an automatic linear order if and
only if α is finite.
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Corollaries

Corollary
Let L be an automatic linearly ordered set.

One can compute the Cantor Bendixson rank of L.
It is decidable if L is scattered.
If L is not scattered then one can compute an automatic
dense suborder of L.
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Corollaries

Corollary
Let L be an automatic linearly ordered set.

It is decidable if L is an ordinal.
If L is an ordinal, one can compute its Cantor normal form.

Corollary
The isomorphism problem for automatic ordinals is decidable.

Open problem: We do not know whether the isomorphism
problem for automatic linear orders is decidable.
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Automatic partial order trees

Definition
A tree is T = (T ,≤) where ≤ is partial order such that T has
the least element and the set x ↓ is linearly ordered and finite
for all x ∈ T .
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Examples:

1 (L,�), where L is prefix closed regular language.
2 Let L be regular language. Consider (L ∪ {λ},≤), where

x ≤ y ⇐⇒ x = y or

(|x | < |y |)&∀z(z ∈ L&|x | = |z| → x �llex z)

3 ({0, 1}? · 1,�) is isomorphic to ω<ω.
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Cantor-Bendixson ranks of trees

Definition
Let T = (T ,≤) be a tree. d(T ) is the subtree of all nodes x
such that x belongs to two distinct infinite paths of T . Set

dα+1 = d(dα(T )), and
for limit ordinal α, set dα = ∩β<αdβ(T ).

Definition

The first α for which dα+1(T ) = dα(T ) is called the CB rank of
T denoted by CB(T ).
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Cantor-Bendixson ranks of trees

Definition
Let T = (T ,≤) be an automatic finitely branching tree. Set
x ≤KB y if x = y or y ≤ x or there are u, v , w such that
v , w ∈ Successor(u) and v ≤llex w and v ≤ x and w ≤ y .

The relation ≤KB is regular. Therefore KBT = (T ,≤KB) is an
automatic linearly ordered set. This order can be exploited to
prove the following theorem:

Theorem (Khoussainov, Rubin, Stephan, 2003)

If T is an automatic tree then CB(T ) < ω.
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Full Automatic version of König’s lemma

Suppose that T is an automatic tree. An element x is
scattered if |[Tx ]| ≤ ω and [Tx ] 6= ∅.

Theorem (Khoussainov, Rubin, Stephan, 2003)

There is a ternary regular relation R(x , y , z) such that:

1 ∃y∃zR(x , y , z) = {x ∈ T | x is scattered }.
2 For each scattered x and y ∈ Σ?, the set

Ry = {z | R(x , y , z)} is an infinite path through Tx .
3 For each scattered x, if η is an infinite path through Tx

there is a y such that Ry = η.
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The Constant Growth Lemma

Lemma (Khoussainov, Nerode 1994)

Let f : Dn → D be a function such that the graph of f is a
regular relation. There exists a constant C such that for all
x1, . . . , xn ∈ D, we have

|f (x1, . . . , xn)| ≤ max{|x1|, . . . , |xn|}+ C.

Proof. The Pumping lemma does the job.
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Generating sets

Let A = (A, F0, F1, . . . , Fn) be an automatic structure. Let
X ⊂ A be such that in the ≤llex listing x1, x2, . . . of X we have
|xn| ≤ C′ · n for some constant C′.

Define Gn(X ) as follows:
1 G1(X ) = {x1}.
2 Gn+1(X ) = Gn(X ) ∪ {Fi(ā) | ā ∈ Gn(X )} ∪ {xn+1}.
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The growth of generation theorem

Theorem (Khoussainov, Nerode, 1994; Blumensath, Gradel,
2000)
There exists a constant C such that

|a| ≤ C · n

for all a ∈ Gn(X ). In particular, Gn(X ) ⊆ Σ≤C·n when |Σ| > 1;
and |Gn(X )| ≤ C · n when |Σ| = 1.
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Corollaries

Corollary
The following structures are not word automatic:

The free semigroup (Σ?; ·).
(ω; f ), where f : ω2 → ω is a bijection.
The free group F (n) with n > 1 generators.
(ω;×).
(ω; Div(x , y)).
(ω;≤, {n! | n ∈ ω}).
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Automatic Boolean algebras

Examples:
1 The Boolean algebra Bω, the collection of all finite or

co-finite subsets of ω.
2 The Boolean algebra Bn

ω, where n ≥ 1.
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The Generation Lemma for monoids

Lemma (Khoussainov, Rubin, Stephan, 2003)

Let (M, ·) be an automatic monoid. There is a constant C such
that for every s1, . . . , sn ∈ M we have

|s1 · s2 · . . . · sn| ≤ max{|s1|, |s2|, . . . , |sn|}+ C · log(n).

Proof. Use the constant growth lemma and associativity of the
monoid operation.
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The Characterization Theorem for Boolean algebras

Theorem (Khoussainov, Nies, Rubin, Stephan, 2003)
A Boolean algebra is automatic if and only if it is isomorphic to
Bn

ω for some n ≥ 1.

Proof. One direction is clear. We prove the other direction for
the atomless Boolean algebra.
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Proof: Continued

Construct a sequence embedded trees {Tn}n∈ω:

T0 = {λ}, bλ = 1.
The induction hypothesis on Tn is that the number of
leaves in Tn is 2n.
For each leaf σ, the associated element bσ is not empty.
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Proof: Continued

Define Tn+1 as follows:

For each leaf bσ in Tn find the first x such that
bσ0 := bσ ∩ x and bσ1 := bσ ∩ x̄ both not empty.
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Proof: Continued

By the constant growth Lemma we have

|bσ0| ≤ |bσ|+ C1 and |bσ1| ≤ |bσ|+ C1.

Hence Xn ⊆ ΣC2·n, where Xn is the set of leaves of Tn.
Hence, by the generation lemma for monoids
B(Xn) ⊆ ΣC3·n.
However, |B(Xn)| ≥ 22n

.

We have a contradiction.
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An application

Corollary
The isomorphism problem for word automatic Boolean algebras
is decidable.

Proof Elements a, b ∈ B are ≡F -equivalent if their symmetric
difference (a ∩ b̄) ∪ (ā ∩ b) is a finite union of atoms.

By the theorem, the factor algebra B/F is finite if B is
automatic. Also ≡F is regular. Thus, B and B′ are isomorphic iff
B/F and B′/F ′ are isomorphic.
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Automatic finitely generated groups

Examples:
1 Finitely generated Abelian groups are automatic.
2 F (n), with n > 1, is not automatic.

Definition
A group is virtually Abelian if it has an Abelian subgroup of
finite index.
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Automatic finitely generated groups

Lemma
Virtually Abelian finitely generated groups G are automatic.

Proof. Say, A =< x1, x2 > is an Abelian torsion free normal
subgroup of finite index of the group G.

Each g ∈ G is of the form

g = tjx
m1
1 xm2

2 , j = 1, . . . , s.
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Proof: continued

We have:

x1tj = tjx
a(j)
1 xb(j)

2 , x2tj = tjx
c(j)
1 xd(j)

2 , and ti tj = tkxe(i)
1 xe(j)

2 .

Thus,

tix
m1
1 xm2

2 · tjxn1
1 xn2

2 = ti tjx
m1a(i)+m2c(j)+n1
1 xm1b(j)+m2d(j)+n2

2 .

So, the group is automatic.
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Theorem

Our goal is to prove the following

Theorem (Thomas, Oliver, 2003)
A finitely generated group is automatic if and only if the group is
virtually Abelian.

Proof. One direction is given by the previous lemma. We prove
the other direction.
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Proof: Continued

Define:
1 G0 = G, Gk+1 = [Gk , Gk ], and
2 γ0(G) = G, γk+1(G) = [γ(Gk ), G].

Definition
The group G is solvable if Gn = {e} for some n. The group G
is nilpotent if γn(G) = {e} for some n.

If G is nilpotent then G is solvable.
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Proof: continued

Let ∆ = {a1, . . . , ak} be a generating set of G. By the
generation lemma for monoids, we have

Gn(∆) ⊆ ΣC·log(n), and hence |Gn(∆)| ≤ nC .

Theorem (Gromov)
If a finitely generated group has a polynomial growth then it is
virtually nilpotent.

Theorem (Ershov)
A nilpotent group has a decidable FO theory if and only if it is
virtually Abelian.
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Proof: continued

Theorem (Romanovski, Novikov)
A virtually solvable group has a decidable FO theory if and only
if it is virtually Abelian.

Thus, if G is automatic and finitely generated then:
1 G has a polynomial growth.
2 By Gromov G is virtually nilpotent. Hence G is virtually

solvable.
3 By Romanovski, G is virtually Abelian.
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Open problems

1 Is the isomorphism problem for finitely generated
automatic groups decidable?

2 Is the isomorphism problem for torsion free Abelian groups
decidable?

3 Is the group (Q,+) automatic?

42 / 44

Bakh Khoussainov Automatic Structures, Part 2



Automatic groups by Thurston

Let A be a finite set of generators of a group G and A = A−1.

Definition
The Cayley graph of G is the structure (G, fa)a∈A, where
fa(x) = x · a for x ∈ G.

Definition
The group G is Thurston automatic if there is a language
Rep ⊆ A? such that

1 Rep is regular and for each g ∈ G there is a v ∈ Rep such
that v = g.

2 The set {(u, v) | G |= u = v & u, v ∈ Rep} is regular.
3 For each a ∈ A, the set
{(ua, v) | G |= ua = v & u, v ∈ Rep} is regular.
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Thurston automatic vs automatic

Here we restrict ourselves to finitely generated groups. We
have the following:

If G is automatic then G is Thurston automatic.
There is a Thurston automatic group which is not
automatic. The group F (n) is such an example.
If G is Thurston automatic then its Cayley graph is
automatic.
There is a group G such that its Cayley graph is automatic
but G is not Thurston automatic. The Heisenberg group is
such an example.
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