Applying Layout Algorithms to Hand-drawn Graphs

Peter Reid*, Fred Hallett-Hook?, Beryl Plimmer*, Helen Purchase?

Auckland University1
Auckland, New Zealand

prei033|fhal010|bplimmer@ec.auckland.ac.nz

ABSTRACT

Hand-drawing a node-and-edge graph is a simpleavisu
problem solving technigue; however as the grapbuift
it can easily get untidy and confusing. It is mdi#icult

Glasgow University2
Glasgow, Scotland

hcp@dcs.gla.ac.uk

user can sketch on a tablet screen with a stylueké&s
drawn with the stylus are stored as a series afdioates,
at a high resolution using hi-metric units.

To explore this idea we have worked with undirected

to understand and interpret a confusing graph. Bydraphs that are composed of nodes and edges. Bdeh n

applying edge morphing techniques and a force-ticec
algorithm the hand-drawn graph can retain its imizlr
appearance while its layout is improved. Graph$ el

may contain some text. Each edge can associataauee
with another [2]. The next section discusses thated
work and presents software requirements. We then

more read”y understood, making the prob|em So|ving discuss the implementation of the software andgbes

process easier.

General Terms
Design,Human Factors

Author Keywords
Layout algorithms, sketch tools, Tablet PC

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: Usgerfaces,
Graphical user interfaces.

1. INTRODUCTION

Imagine you want to solve a problem using a nodgeed
graph. Traditional choices such as whiteboard qrepa
are intuitive to use, but lack the advantages afireyrl
archiving and searching of a digital copy. A gehera

diagram tool has these advantages, and allows tayou

changes to be applied, but current widget-baseld,toe
hypothesise, interfere with the problem solvingcess.
A specific tool for graph layout for use with thabtet PC
offers the flexibility of a pen interface as wek #&he
advantages of having a digital copy, including aldity
to apply layout algorithms.

Node-and-edge graphs are a useful problem solgiol t
Classic computer science problems such as shquétist
finding algorithms can be solved by drawing and
interpreting a node-edge graph. It has been shdah t
graphs are easier to understand if certain aesshatie

involved.

2. RELATED WORK

Prior work on the recognition of hand drawn diagsam
and the recording of their underlying semanticsstsxi
Freeman and Plimmer [2] present an implementation o
graph recognition using InkKit and describe howesal
types of graph can be recognised. These include
undirected and hierarchical graphs and allow fce th
exporting of the structure to other forms. InkKit,
however, does not include any graph layout algoritto
automatically place the nodes in optimal positioFisere
are many such algorithms; for this work we havected

a simple force-directed algorithm [3]. It is based
heuristics which calculate the amount of attracteord
repulsion force between nodes, while limiting thecé to
keep the graph from expanding too far.

Purchase et. al. [6] analyses various force based
algorithms and how well they meet various condgion
that improve the readability of graphs. Tests weoee

on the differences in performance with differenamgrs
and different layout algorithms with conclusionsoab
the performance of each. Work with sketch tools has
shown that maintaining an informal appearance le&s b
proven to be beneficial in other domains [8]. We
hypothesize that it will also be beneficial in themain of
abstract problem solving using node-edge graphs.
However before this hypothesis can be tested wet mus
replicate the functionality of current graph dragvitools

optimised. The most critical aesthetic elements arein a sketch tool. It is the creation of this sketobl for

crossing edges, bends in edges and the symmetay of
graph [5-7]. Graphs hand-drawn on a tablet PC can b
altered to optimize these aesthetics.

The tablet PC offers an intuitive interaction spdoe
users. Using the familiar pen and paper metaphn, t

OzCHI 2007, 28-30 November 2007, Adelaide, Ausaraiopyright the
author(s) and CHISIG. Additional copies are avddabt the ACM
Digital Library (http://portal.acm.org/dl.cfm) orao be ordered from
CHISIG(secretary@chisig.org)

0zCHI 2007 Proceedings, ISBN 978-1-59593-872-5
20z

graphs that is the focus of this paper.

3. REQUIREMENTS

Basic digital ink input, editing and persistencesinbe
supported. This is simple and requires no special
functionality over that which is provided in the dviosoft

Ink SDK. However for the software to be able todaty
the graph there are several other requirements.

First, it is necessary to recognize the elementghef
graph. Strokes drawn by the user should be recedras
nodes, edges, or text within nodes. Second, theutay
algorithm must be applied to the graph to find new

positions for the nodes. Finally, elegant reflowedlges and number of nodes. The graph G with nodes V and
must be performed as nodes are moved in ordertainre edges E must be rearranged in the available aresewh
the original hand-drawn appearance. is the distance between two nodes. For a full ewgilan

of this algorithm see [3].

3.1. Recognition _
When the graph is drawn the strokes must be cladsas G=(V,E)

text, node or edge. This is done by first runnihg t — [area/ IV |
strokes though a divider which divides text fronasés. K a_rea/|V2|
The Microsoft text recognizer includes a divideswever attraction=x"/k
it is strongly biased to text, we have used [4]iader - L2
developed specifically for diagrams. repulsion=k"/x

Strokes identified as a shape are passed to antlg frigyre 1: Heuristics for attraction and repulsion,
which then classifies them as node or edge. OuridtEu reproduced from [3]

used the idea that a node (circle) has start addemts
relatively close together while edge end points fae ~ These interactions, when repeated, cause the g@ph
apart. Therefore if the distance from the firstthe last oscillate around an optimum position. This canikerled
point of the stroke is less than one third of tegth of ~ to the way a pendulum without friction would swing
the stroke then the stroke is categorized as a.nodedround the rest position. But with friction, thensa
Otherwise the stroke is classified as a edge. Ama pendulum would eventually stop in its rest position
step, any strokes drawn inside a node are clagsifigext ~ Because of this, as the algorithm proceeds the$ontust
regardless of previous classification. The recagghis be limited or reduced. The reduction in force ialagous
strokes are colour coded for human recognition with to temperature cooling. This will reduce the amoaht
blackboard metaphor. The background colour is black movement so that the nodes move into positions evher
nodes are drawn as white, text as green and edges &he forces are balanced.

yellow.

Once the nodes and edges are identified logical
connections between nodes are established by §ritim
node that encloses or is within a small distanoenfthe
endpoint of a edge. Thus edges are associatedchaitbs
and the structure of the entire graph is represenithin

the software. These nodes and edges are storegraph
class which contains a list of its nodes and edgewell

as identifiers for the actual strokes in the visyralph.

3.2. Layout Algorithm

There are many different types of algorithm used fo
optimally rearranging the nodes in a graph sucfoa®-
directed algorithms and simulated annealing. Thed gb
each is to find final positions of the nodes whaltow
the clearest view or optimization of some featufehe
graph (e.g. the minimisation of the number of edgeds
or edge crossings). The final solution is normalhe of
many different solutions which could have been fbun
and some may be better than others. Layout algosith
are highly scalable and can be used for graphs with
thousands of nodes or graphs with very few nodes [6

The type of algorithm which was implemented was a
spring force-directed algorithm [3]. The algorithm riq e 2: Nodes pull and push themselves into position.
maximises symmetry, lowers the number of edge

crossings, minimises edge bends, thus leadingnmre In our implementation this temperature cooling was
readable graph. Spring force-directed algorithmskvioy ~ achieved by reducing the node movement by a set
modelling each edge of the graph as a spring atiela Percentage each iteration. This slowly reduces the
band pulling the nodes at each end of the edgehege distance travelled and allows the nodes to settle i
Simultaneously each node can be imagined as having positions of balanced force. The node positions are
negative charge so each node repels non-connectin constrained so that nodes do not move outside @f th
away from it. visible area.

Fruchterman and Reigngold’s algorithm [3] usestthe
heuristics shown in figure 1 for the attraction and
repulsion forces based on a factor calculated byatiea

204

then be calculated by finding the intersectionstobkes.
The offset of each end of the edge from the attaciim
point can then be applied, as in the stretchineé.

It is a non-trivial matter to maintain a hand-drawn
appearance when morphing a edge. A number of fesatur
of the line need to be considered and preservéslideal
to maintain an approximately normal angle of inoicke
of a edge with a node [1]. If the line is extendedhe
centres of the nodes, this allows the point at twhlee
Figure 3: A graph before and after the layout algorithm edge intersects with each node to rotate aboutéhére

has been applied. of the node. This also maintains an approximatelynal
angle of incidence. Without such a mechanism icela
3.3. Edge Mor phing the edge runs the risk of being bent so that iersnthe

When a node is moved, every edge attached to the no Node atan awkward angle.
must be reflowed to reflect the new position of tioele.
With a formal graph this is simply a matter of
repositioning the end points of the lines. Howekand-
drawn lines need to be morphed to preserve thenveb
appearance. Our implementation performs these msorph
by morphing each edge attached to a repositionel@ no
with respect to the fixed node at the opposite @nelach
edge. In this way, each of the edges attached ¢o th
mobile node is morphed to reflect its new position.

When morphing a line using a string metaphor the li
can undergo three types of transformation [1]. €hae

compressing, stretching and overstretching. A lise Figure 4: The angle of incidence of the edge is kept
represented internally as a series of x, y poimtseach approximately normal.

case the internal representation of the edge endetd by
adding an x, y point to each end of the line teegtit to
the centre of the appropriate node before morpkiing
added sectors are not rendered on the surface)cértise
of a node is approximated using the intersectiorthef
diagonals of the bounding box of the node.

If a edge falls just short of a line, or if it ergehe node,
the visual appearance of the intersection should be
preserved in order to preserve the user’s styles ddm be
achieved by storing the length of the arc from the
attachment point to the end of the edge [1]. Thiggth
also needs to be recorded as positive or negafines.
Stretching is achieved using linear interpolatibhe new denotes whether the end of the edge falls withénnibde,
position of each point on the edge stroke is irdted or falls short of it, and is calculated using tleatre of the
between its original position and its position ostaight ~ node. The distance from the centre of the nodéeenhd
line of the same length as the edge. The line énth of the edge will be greater than the distance fibwn
translated and rotated into place, so that thenelei® centre of the node to the attachment point, if ¢age
ends of the line join the centres of the nodes. Vikeal falls short of the node.

result is that the line has unfolded. The attachnpemt

and offset data is then used to remove the extesisio 4. INTERACTION

To create a graph the user draws directly on thaeta
PC. Ink strokes are immediately recognized and wolo

a curved elliptical version of the line. We decideghinst ~ c0ded as a node, edge or text. Eraser, select ave m
this, in favour of a solution which did not caube tine ~ OPerations are available, and the user can cleaettiire

to bunch up when compressed. The approach we useff@Ph space. Save and load facilities are providee.
was to scale the line to compress it in the dicectf the layout algorithm is applied when the user clickiiiei of

line which joins the centres of the two nodes. Thieve the ‘optimise layout’ or >’ buttons. The first imediately

the scaling in the appropriate direction, the edgetated ~ 'e-renders the graph in a fully optimized form; seeond
to horizontal, scaled in the horizontal directicging the ~ @nimates the repositioning of each node in the rotfuist

Ink resize method, and then rotated back to thgirmi (€ nodes were added to the graph. Additions and
angle. The angle of rotation that occurs as a refuhe alterations can be made to the rearranged graphhend

node movement is then applied. This approach bribeks [@yout algorithm reapplied.

string metaphor, but better retains the originglespance |n preparation for evaluations comparing the affsfdhe
of the edge. visual fidelity of a graph we also render the grasha

Once a line unfolds until the point where it isagght, it ~ [ormal representation. The user can switch betwimms
is in the overstretched state[1]. A working line is PY clicking the tabs at the top left of the drawspace. In
constructed between the centres of the two relevanthis Prototype the formal view is not editable.

nodes. The attachment point of the edge to each cad

20t

Compression could also be achieved using linear
interpolation, between points on the original lined on

(=3 on |

Layout

@ gx] (alls] (5 o
i ‘eaure

Figure5: The user interface.

a2 Automatic Layout of Node-Edge Graphs.

EII<[ER TR

Graph| Beautified |

=]

B[B

[1]

Figure 6: The formalized representation of the graph in [2]
Figure 5

5. DISCUSSSION (3]
The recognition algorithm, although simple, progde
satisfactory results. The layout algorithm works as
expected, however it does not attempt to presenye a [4]
aspects of the users initial layout. What effecis th
reorganisation of the users work has on their apati
memory and understanding of the graph is uncledraan
subject for further studies. A key reservation waven [5]
about the effectiveness of the edge morphing approa
we have implemented is in the likely proliferatiaf
overstretched lines. When applying layout algorghta [
graphs, it is likely that many of the edges willsatme

point move into the overstretched state. The oretcdied

state, which causes the edge to become a straight |
imposes a formal appearance on the edge. An aiteena [7]
approach could be used to replace the stretchiny an
overstretching states of the line. A line couldsbaled by

a ratio in the direction of the baseline. A ratlmae one [8]
would cause the line to stretch, and a ratio betwaszo

and one would cause the line to compress. This dvoul
have the advantage of maintaining the hand-drawn
appearance of the edges, but would lose the berafit

the extended line approach currently used in the
stretching.

20¢€

More sophisticated division for nodes and edgesdcbe
implemented to support directed graphs and more
complex diagrams. The current heuristic does, hewev
successfully classify strokes in most reasonablallsm
drawings.

The layout algorithm, while it works, is not comigley
optimized for graphs where nodes and edges are hand
drawn because the nodes vary in size. This meats th
large nodes may overlap with other nodes. In aulditi
highly curved edges may overlap with other graph
elements when the new layout is applied.

6. Conclusions

The software we have developed successfully méets t
goal of applying a layout algorithm to hand-drawn
graphs. This can increase the understandabilityhef
graphs drawn by the user by improving the layouthef
nodes and edges. Although further work could yield
improvement, the edge morphing techniques applied
successfully retain much of the user’'s drawingestyy
retaining and recreating features of edge lines.

The next steps in this project are to evaluateeffect on

the user of applying layout algorithms to their hew
created hand-drawn graph and to compare human
comprehension of optimised and non-optimised hand-
drawn and formally rendered graphs.

REFERENCES

Arvo, J., Novins, K., Appearance-preserving
manipulation of hand-drawn graphs, in proc
Graphite, ACM, 61-68 (2006)

Freeman, ., Plimmer, B., Edge Semantics for
Sketched Diagram Recognition, in proc AUIC,
ACM, 71-78 (2007)

Fruchterman, M. J. T., Reingold, M. E., Graph
drawing by force-directed placement, Softw. Pract.
Exper., 21, 11, 1129-1164, (1991)

Patel, R., Plimmer, B., Grundy, J., Ihaka, R.,
Exploring Better Techniques for Diagram
Recognition, NZ Computer Science Student
Conference, (2007),

Purchase, H. C., Which aesthetic has the gseate
effect on human understanding?, in proc Graph
Drawing Symposium, (1997)

Purchase, H. C., Carrington, D.A. and AlldeA.J-
Empirical evaluation of aesthetics-based graph
layout, Empirical Software Engineering, 7, 3, 233-
255 (2002)

Ware, C., Purchase, H.C., Colpoys, L. and MEGil
M., Cognitive Measurements of Graph Aesthetics,
Information Visualization, 1, 2, 103-110 (2002)
Yeung, L. W. S., Exploring beautification antet
effects of designs' level of formality on the desig
performance during the early stages of the design
process Department of Psychology, MSc,
University of Auckland, (2007),

