

203

Applying Layout Algorithms to Hand-drawn Graphs
Peter Reid1, Fred Hallett-Hook1, Beryl Plimmer1, Helen Purchase2

Auckland University1
Auckland, New Zealand

prei033|fhal010|bplimmer@ec.auckland.ac.nz

Glasgow University2
Glasgow, Scotland

hcp@dcs.gla.ac.uk

ABSTRACT

Hand-drawing a node-and-edge graph is a simple visual
problem solving technique; however as the graph is built
it can easily get untidy and confusing. It is more difficult
to understand and interpret a confusing graph. By
applying edge morphing techniques and a force-directed
algorithm the hand-drawn graph can retain its informal
appearance while its layout is improved. Graphs will be
more readily understood, making the problem solving
process easier.

General Terms
Design, Human Factors

Author Keywords
Layout algorithms, sketch tools, Tablet PC

ACM Classification Keywords
H5.2 [Information interfaces and presentation]: User Interfaces,
Graphical user interfaces.

1. INTRODUCTION
Imagine you want to solve a problem using a node-edge
graph. Traditional choices such as whiteboard or paper
are intuitive to use, but lack the advantages of editing,
archiving and searching of a digital copy. A general
diagram tool has these advantages, and allows layout
changes to be applied, but current widget-based tools, we
hypothesise, interfere with the problem solving process.
A specific tool for graph layout for use with the tablet PC
offers the flexibility of a pen interface as well as the
advantages of having a digital copy, including the ability
to apply layout algorithms.

Node-and-edge graphs are a useful problem solving tool.
Classic computer science problems such as shortest path
finding algorithms can be solved by drawing and
interpreting a node-edge graph. It has been shown that
graphs are easier to understand if certain aesthetics are
optimised. The most critical aesthetic elements are
crossing edges, bends in edges and the symmetry of a
graph [5-7]. Graphs hand-drawn on a tablet PC can be
altered to optimize these aesthetics.

The tablet PC offers an intuitive interaction space for
users. Using the familiar pen and paper metaphor, the

user can sketch on a tablet screen with a stylus. Strokes
drawn with the stylus are stored as a series of coordinates,
at a high resolution using hi-metric units.

To explore this idea we have worked with undirected
graphs that are composed of nodes and edges. Each node
may contain some text. Each edge can associate one node
with another [2]. The next section discusses the related
work and presents software requirements. We then
discuss the implementation of the software and the issues
involved.

2. RELATED WORK
Prior work on the recognition of hand drawn diagrams
and the recording of their underlying semantics exists:
Freeman and Plimmer [2] present an implementation of
graph recognition using InkKit and describe how several
types of graph can be recognised. These include
undirected and hierarchical graphs and allow for the
exporting of the structure to other forms. InkKit,
however, does not include any graph layout algorithms to
automatically place the nodes in optimal positions. There
are many such algorithms; for this work we have selected
a simple force-directed algorithm [3]. It is based on
heuristics which calculate the amount of attraction and
repulsion force between nodes, while limiting the force to
keep the graph from expanding too far.

Purchase et. al. [6] analyses various force based
algorithms and how well they meet various conditions
that improve the readability of graphs. Tests were done
on the differences in performance with different graphs
and different layout algorithms with conclusions about
the performance of each. Work with sketch tools has
shown that maintaining an informal appearance has been
proven to be beneficial in other domains [8]. We
hypothesize that it will also be beneficial in the domain of
abstract problem solving using node-edge graphs.
However before this hypothesis can be tested we must
replicate the functionality of current graph drawing tools
in a sketch tool. It is the creation of this sketch tool for
graphs that is the focus of this paper.

3. REQUIREMENTS
Basic digital ink input, editing and persistence must be
supported. This is simple and requires no special
functionality over that which is provided in the Microsoft
Ink SDK. However for the software to be able to layout
the graph there are several other requirements.

First, it is necessary to recognize the elements of the
graph. Strokes drawn by the user should be recognized as
nodes, edges, or text within nodes. Second, the layout
algorithm must be applied to the graph to find new

OzCHI 2007, 28-30 November 2007, Adelaide, Australia. Copyright the
author(s) and CHISIG. Additional copies are available at the ACM
Digital Library (http://portal.acm.org/dl.cfm) or can be ordered from
CHISIG(secretary@chisig.org)

OzCHI 2007 Proceedings, ISBN 978-1-59593-872-5

204

positions for the nodes. Finally, elegant reflow of edges
must be performed as nodes are moved in order to retain
the original hand-drawn appearance.

3.1. Recognition
When the graph is drawn the strokes must be classified as
text, node or edge. This is done by first running the
strokes though a divider which divides text from shapes.
The Microsoft text recognizer includes a divider, however
it is strongly biased to text, we have used [4] a divider
developed specifically for diagrams.

 Strokes identified as a shape are passed to an algorithm
which then classifies them as node or edge. Our heuristic
used the idea that a node (circle) has start and end points
relatively close together while edge end points are far
apart. Therefore if the distance from the first to the last
point of the stroke is less than one third of the length of
the stroke then the stroke is categorized as a node.
Otherwise the stroke is classified as a edge. As a final
step, any strokes drawn inside a node are classified as text
regardless of previous classification. The recognised
strokes are colour coded for human recognition with a
blackboard metaphor. The background colour is black,
nodes are drawn as white, text as green and edges as
yellow.

Once the nodes and edges are identified logical
connections between nodes are established by finding the
node that encloses or is within a small distance from the
endpoint of a edge. Thus edges are associated with nodes
and the structure of the entire graph is represented within
the software. These nodes and edges are stored in a graph
class which contains a list of its nodes and edges as well
as identifiers for the actual strokes in the visual graph.

3.2. Layout Algorithm
There are many different types of algorithm used for
optimally rearranging the nodes in a graph such as force-
directed algorithms and simulated annealing. The goal of
each is to find final positions of the nodes which allow
the clearest view or optimization of some feature of the
graph (e.g. the minimisation of the number of edge bends
or edge crossings). The final solution is normally one of
many different solutions which could have been found
and some may be better than others. Layout algorithms
are highly scalable and can be used for graphs with
thousands of nodes or graphs with very few nodes [6].

The type of algorithm which was implemented was a
spring force-directed algorithm [3]. The algorithm
maximises symmetry, lowers the number of edge
crossings, minimises edge bends, thus leading to a more
readable graph. Spring force-directed algorithms work by
modelling each edge of the graph as a spring or elastic
band pulling the nodes at each end of the edge together.
Simultaneously each node can be imagined as having a
negative charge so each node repels non-connected nodes
away from it.

Fruchterman and Reigngold’s algorithm [3] uses the two
heuristics shown in figure 1 for the attraction and
repulsion forces based on a factor calculated by the area

and number of nodes. The graph G with nodes V and
edges E must be rearranged in the available area where x
is the distance between two nodes. For a full explanation
of this algorithm see [3].

Figure 1: Heuristics for attraction and repulsion,
reproduced from [3]

These interactions, when repeated, cause the graph to
oscillate around an optimum position. This can be likened
to the way a pendulum without friction would swing
around the rest position. But with friction, the same
pendulum would eventually stop in its rest position.
Because of this, as the algorithm proceeds the forces must
be limited or reduced. The reduction in force is analogous
to temperature cooling. This will reduce the amount of
movement so that the nodes move into positions where
the forces are balanced.

Figure 2: Nodes pull and push themselves into position.

In our implementation this temperature cooling was
achieved by reducing the node movement by a set
percentage each iteration. This slowly reduces the
distance travelled and allows the nodes to settle in
positions of balanced force. The node positions are
constrained so that nodes do not move outside of the
visible area.

||/ Vareak =

xkrepulsion

kxattraction

/

/
2

2

=
=

),(EVG =

205

Figure 3: A graph before and after the layout algorithm
has been applied.

3.3. Edge Morphing
When a node is moved, every edge attached to the node
must be reflowed to reflect the new position of the node.
With a formal graph this is simply a matter of
repositioning the end points of the lines. However hand-
drawn lines need to be morphed to preserve the informal
appearance. Our implementation performs these morphs
by morphing each edge attached to a repositioned node
with respect to the fixed node at the opposite end of each
edge. In this way, each of the edges attached to the
mobile node is morphed to reflect its new position.

When morphing a line using a string metaphor the line
can undergo three types of transformation [1]. These are
compressing, stretching and overstretching. A line is
represented internally as a series of x, y points. In each
case the internal representation of the edge is extended by
adding an x, y point to each end of the line to extend it to
the centre of the appropriate node before morphing (the
added sectors are not rendered on the surface). The centre
of a node is approximated using the intersection of the
diagonals of the bounding box of the node.

Stretching is achieved using linear interpolation. The new
position of each point on the edge stroke is interpolated
between its original position and its position on a straight
line of the same length as the edge. The line is then
translated and rotated into place, so that the extended
ends of the line join the centres of the nodes. The visual
result is that the line has unfolded. The attachment point
and offset data is then used to remove the extensions.

Compression could also be achieved using linear
interpolation, between points on the original line, and on
a curved elliptical version of the line. We decided against
this, in favour of a solution which did not cause the line
to bunch up when compressed. The approach we used
was to scale the line to compress it in the direction of the
line which joins the centres of the two nodes. To achieve
the scaling in the appropriate direction, the edge is rotated
to horizontal, scaled in the horizontal direction using the
Ink resize method, and then rotated back to the original
angle. The angle of rotation that occurs as a result of the
node movement is then applied. This approach breaks the
string metaphor, but better retains the original appearance
of the edge.

Once a line unfolds until the point where it is straight, it
is in the overstretched state[1]. A working line is
constructed between the centres of the two relevant
nodes. The attachment point of the edge to each node can

then be calculated by finding the intersections of strokes.
The offset of each end of the edge from the attachment
point can then be applied, as in the stretching of lines.

It is a non-trivial matter to maintain a hand-drawn
appearance when morphing a edge. A number of features
of the line need to be considered and preserved. It is ideal
to maintain an approximately normal angle of incidence
of a edge with a node [1]. If the line is extended to the
centres of the nodes, this allows the point at which the
edge intersects with each node to rotate about the centre
of the node. This also maintains an approximately normal
angle of incidence. Without such a mechanism in place,
the edge runs the risk of being bent so that it enters the
node at an awkward angle.

Figure 4: The angle of incidence of the edge is kept
approximately normal.

If a edge falls just short of a line, or if it enters the node,
the visual appearance of the intersection should be
preserved in order to preserve the user’s style. This can be
achieved by storing the length of the arc from the
attachment point to the end of the edge [1]. This length
also needs to be recorded as positive or negative. This
denotes whether the end of the edge falls within the node,
or falls short of it, and is calculated using the centre of the
node. The distance from the centre of the node to the end
of the edge will be greater than the distance from the
centre of the node to the attachment point, if the edge
falls short of the node.

4. INTERACTION
To create a graph the user draws directly on the Tablet
PC. Ink strokes are immediately recognized and colour
coded as a node, edge or text. Eraser, select and move
operations are available, and the user can clear the entire
graph space. Save and load facilities are provided. The
layout algorithm is applied when the user clicks either of
the ‘optimise layout’ or ‘>’ buttons. The first immediately
re-renders the graph in a fully optimized form; the second
animates the repositioning of each node in the order that
the nodes were added to the graph. Additions and
alterations can be made to the rearranged graph and the
layout algorithm reapplied.

In preparation for evaluations comparing the affect of the
visual fidelity of a graph we also render the graph as a
formal representation. The user can switch between views
by clicking the tabs at the top left of the drawing space. In
this prototype the formal view is not editable.

206

Figure 5: The user interface.

Figure 6: The formalized representation of the graph in
Figure 5

5. DISCUSSSION
The recognition algorithm, although simple, provides
satisfactory results. The layout algorithm works as
expected, however it does not attempt to preserve any
aspects of the users initial layout. What effect this
reorganisation of the users work has on their spatial
memory and understanding of the graph is unclear and a
subject for further studies. A key reservation we have
about the effectiveness of the edge morphing approach
we have implemented is in the likely proliferation of
overstretched lines. When applying layout algorithms to
graphs, it is likely that many of the edges will at some
point move into the overstretched state. The overstretched
state, which causes the edge to become a straight line,
imposes a formal appearance on the edge. An alternative
approach could be used to replace the stretching and
overstretching states of the line. A line could be scaled by
a ratio in the direction of the baseline. A ratio above one
would cause the line to stretch, and a ratio between zero
and one would cause the line to compress. This would
have the advantage of maintaining the hand-drawn
appearance of the edges, but would lose the benefits of
the extended line approach currently used in the
stretching.

More sophisticated division for nodes and edges could be
implemented to support directed graphs and more
complex diagrams. The current heuristic does, however,
successfully classify strokes in most reasonable small
drawings.

The layout algorithm, while it works, is not completely
optimized for graphs where nodes and edges are hand
drawn because the nodes vary in size. This means that
large nodes may overlap with other nodes. In addition
highly curved edges may overlap with other graph
elements when the new layout is applied.

6. Conclusions
The software we have developed successfully meets the
goal of applying a layout algorithm to hand-drawn
graphs. This can increase the understandability of the
graphs drawn by the user by improving the layout of the
nodes and edges. Although further work could yield
improvement, the edge morphing techniques applied
successfully retain much of the user’s drawing style by
retaining and recreating features of edge lines.

The next steps in this project are to evaluate the effect on
the user of applying layout algorithms to their newly
created hand-drawn graph and to compare human
comprehension of optimised and non-optimised hand-
drawn and formally rendered graphs.

REFERENCES
[1] Arvo, J., Novins, K., Appearance-preserving

manipulation of hand-drawn graphs, in proc
Graphite, ACM, 61-68 (2006)

[2] Freeman, I., Plimmer, B., Edge Semantics for
Sketched Diagram Recognition, in proc AUIC,
ACM, 71-78 (2007)

[3] Fruchterman, M. J. T., Reingold, M. E., Graph
drawing by force-directed placement, Softw. Pract.
Exper., 21, 11, 1129-1164, (1991)

[4] Patel, R., Plimmer, B., Grundy, J., Ihaka, R.,
Exploring Better Techniques for Diagram
Recognition, NZ Computer Science Student
Conference, (2007),

[5] Purchase, H. C., Which aesthetic has the greatest
effect on human understanding?, in proc Graph
Drawing Symposium, (1997)

[6] Purchase, H. C., Carrington, D.A. and Allder J-A.,
Empirical evaluation of aesthetics-based graph
layout, Empirical Software Engineering, 7, 3, 233-
255 (2002)

[7] Ware, C., Purchase, H.C., Colpoys, L. and McGill,
M., Cognitive Measurements of Graph Aesthetics,
Information Visualization, 1, 2, 103-110 (2002)

[8] Yeung, L. W. S., Exploring beautification and the
effects of designs' level of formality on the design
performance during the early stages of the design
process Department of Psychology, MSc,
University of Auckland, (2007),

