
ISSUES OF EXTENDING THE USER INTERFACE OF
INTEGRATED DEVELOPMENT ENVIRONMENTS

Samuel Hsiao-Heng Chang, Xiaofan Chen, Richard Anthony Priest, Beryl Plimmer

Auckland University

Auckland, New Zealand

{hcha155, xche044, rpri032, beryl}@ec.auckland.ac.nz

ABSTRACT

The current level of extensibility of integrated development

environments (IDEs) does not provide sufficient access to

make modifications to their user interface components. This

limits innovation in IDEs. This paper reviews the problems

we have encountered and presents alternative ways to help

developers achieve their goals of extending user interface

components. Developers interested in extending existing

applications will appreciate the information on likely

problems and solutions with extensible architectures.

Furthermore general suggestions for software architecture

extensions to maximize extensibility are included.

Author Keywords

Annotation, integrated development environment,

extensibility, user interface

ACM Classification Keywords

D.2.6. Software Engineering, Programming Environments:

Integrated environments; D.2.7. Software Engineering,
Distribution, Maintenance, and Enhancement: Extensibility;

H.5.2. Information Interfaces and Presentation (e.g., HCI),

User Interfaces: Graphical user interfaces (GUI)

INTRODUCTION

Modifiability is considered to be one of the most important

quality attributes in the study of software architecture[3].

This attribute has been recognized as a basic requirement

for many years, one of the specific goals of object oriented

programming (OOP) is to promote reuse through

encapsulation and inheritance. This architecture is

fundamental and is widely used. Many modern software

applications are designed to be extendable with a clear

Application Programming Interface and plug-in

architecture.

The highly customisable nature of modern software allows

software developers to focus on the core functions so that

the kernel can be kept small and robust. While others can

extend the software by making plug-ins to enhance its

functionality [2]. Most IDEs follow this trend. IDEs exist to

augment a human programmer's ability to create an

artifact[24]. Just as individuals have different requirements

for a workplace to be convenient for use, there are different

requirements for an IDE to ensure the productivity of a

software developer[7]. Popular IDEs such as Visual

Studio[15], Eclipse[9], and JBuilder[5] all allow third party

plug-ins to be installed so the core elements can be

extended to support additional functionality and
programming languages.

Extensibility also brings innovation. For example, the JUnit

testing tool[13] for Eclipse was originally released as a

plug-in that integrates into Eclipse. It is now packaged as

part of the official distribution, because people accept it as a

useful and essential tool in their Eclipse IDE. Other

examples of innovations that started as plug-ins include:

smooth scrolling[12], session saving [20] and RSS/Atom

subscribing [19] for Mozilla Firefox [18].

Plug-in based systems seem to promise almost unlimited

customization, however in reality the extensibility is mostly
dependent on the extension points provided by the core

application [8]. As most IDEs are commercial products,

instead of improving the capabilities which are demanded

by individual developers, IDE providers often are driven by

market and competition [4]. The limitations of plug-ins lie

where the software provider has placed or has not placed

extension points.

Paradoxically, even though most of the extensions are

activated through user interface elements such as buttons,

menus and lists, the extensibility of the user interface itself

is one of the most often disregarded parts in an IDE in
terms of extension points. These user interface elements

that can be added are used as a trigger to access the created

plug-ins, but rarely to actually alter the user interface. To

improve the user interface developers have to create new

design windows from scratch to fulfill their needs. An

example of this is the Eclipse Visual Editor [1]. There are

very few plug-ins which modify the built-in editor itself.

We [23] alluded to some issues of extending Microsoft

Visual Studio 2005 in RCA (Rich Code Annotator). RCA

aimed to provide an ink annotating tool on top of the IDE.

We later found similar issues when we tried to extend

Eclipse SDK 3.3.1 in CodeAnnotator [6]. The limitations of

these IDEs prevented us from implementing ink annotation

functionality in the intended manner. As a result, an

alternative approach was developed, which was not as

intuitive to use as we wanted. Thus architecture limitations

decrease the usability and cause limitation on innovation.

In this paper, we extend our previous work, specifically

exploring the limitation of the user interface of two

successful IDEs, Visual Studio and Eclipse. We will

compare the problems that they have in common and

provide suggested workarounds.

RELATED WORK

Parnas [21] overviewed the issues surrounding extensibility

of software in 1979. In this paper, he presented a selection

of approaches to extensibility. One of the most important

ideas he presented is that flexibility should be included as a

requirement when designing the artifact.

Fayad and Cline’s research[11] further defined extensibility

and the positive effects it will bring to software

engineering. These ideas were then discussed by Weck
[25] where he used the term ―independently extensible‖ to

define a software system to which any individual can

develop extensions without the need of knowing the work

of other people extending the same artifact. Furthermore the

importance of having rules for extensibility is discussed

since the extensions should not interfere with each other.

Bako et al [2] extended these ideas and discussed and

defined the important properties in plug-in based systems:

• Plug-ins can be added at any time (also by end-users).

• Plug-in-based systems offer certain plug-in interfaces

(or extension points).

• Plug-ins have a plug-in type, determined through the

provided plug-in interface (or extension point).

• Plug-ins are components that can only be used with the

application (or environment) they have been developed

for.

• Plug-in-based applications can be executed with no

plug-ins—having minimal functionality in this case.

The main objective of integrated development

environments (IDEs), as stated by des Rivieres and

Wiegand [7] is to make programmers more productive. This

is achieved by providing tools which are intuitive to use and

cover more of the software engineering cycle. In their brief
history of IDEs they explain the requirement for IDEs to be

extensible so that they can adapt to the ever changing nature

of software development. The evolution of IDEs, some of

the features and the issues associated with them are

discussed by Boekhoudt [4] . He concluded that IDEs

Figure 1. Expected implementation of annotation tool in Visual Studio 2005

evolve quickly, not to satisfy developers but to counter

competition between rival IDEs. Dietrich et al [8]

specifically reviewed Eclipse and offered some suggestions

to improve its current extension environment. They

suggested a contract language which can be used to specify

the interaction between plug-ins. This contract may be used
for validating a complex system.

Our current research draws heavily on our previous work

on IDE ink annotation tools including RCA, a Visual Studio

extension by Priest & Plimmer[23] and CodeAnnotator, the

Eclipse version by Chen & Plimmer[6].

MOTIVATION

Pen-based computing has brought ink annotation, a

traditional human recording method, into the digital world.

Research shows that having ink annotating functionality in

software is enjoyable [16, 17, 22]. But there is little work

done in the area of providing ink annotation functionality in

IDEs.

In the past, code review was usually done by having

developers examine and annotate on printed copies of the
material. As the structure of programs has changed (from

linear to OOP) and size and average complexity of projects

has grown, the traditional way of reviewing code is no

longer feasible. It now makes good sense to have annotating

ability in IDEs. Most IDEs provide code handling abilities

such as search, replace, outline and so on. The two major

goals of an IDE are to increase the productivity of

programmer and to cover more of the software engineering

cycle[7]. We hypothesize that if the inking capability is

successfully implemented, the productivity of developers

can be improved through having more distinguishable
notes, comments and explanations. Activities such as code

review with ink annotation can further extend the use of

IDEs in the software lifecycle. Hence both goals of IDEs

may be extended by such implementation. However,

whether the successful experience of annotation in general

can be applied to IDEs has yet to be seen because of the

essential difference between an ordinary text editor and an

IDE. Our early experiments showed users accept such tools

in IDEs[23], but this implementation did not cover all the

requirements for the project.

Our goal is to extend an IDE with a plug-in to support ink

annotation. By extending the IDE rather than building a
separate annotation tool (such as [22]) we can leverage the

extensive services of the IDE. We can focus on the

implementation of the plug-in and evaluate its efficacy. For

this kind of plug-in to be practical and usable, several

requirements need to be fulfilled: Technically the plug-in

needs to enable annotation on code, annotated data needs to

be retained for later use, and the annotated ink must reflow

(stay in context with the appropriate data in the base

document) when the line is changed or window is scrolled.

From a usability point of view, the annotation window

should be the same window as the code window (i.e where
the code is edited) and the shift between coding and

annotating should be smooth and intuitive. This paper

represents our third attempt at achieving this functionality.

Our first attempt [23] tried to implement the annotation

ability through Visual Studio 2005[15]. In the final

solution, when users want to annotate on top of the code,

they press a button to create a new tool-window. This
copied all the code in the original window as background,

and users could annotate on top of the tool-window. Now,

users have two windows, one allows annotating where the

code can be seen but not modified and another with the

code where they could edit the code but could neither

annotate nor see the ink.

Hence when a user is using the plug-in for code reviewing

or commenting, they need to look at the annotation

window, find the line number of the commented code, and

change to the code window to modify the code.

Our second attempt, on Eclipse SDK 3.3.1[10], ended up

with a similar solution. This implementation included

pressing a button to create a new tool-window where code

is transferred into the background and user can annotate on

top of it.

Both of the discussed approaches violated one of our

requirements: to allow users to annotate with ink strokes in

the editing window. It is unintuitive to ask users to shift

Figure 3. Implementation by Chen

Figure 2. Implementation by Priest

between two different windows to annotate code and to edit

code. Also, as the ink strokes could not be seen in the code

window, it is confusing as people need to find line numbers

to make modifications accordingly.

VARIOUS APPROACHES

Following our dissatisfaction with the limitations we

experienced developing RCA and CodeAnnotator, we have

systematically explored extensibility in the two IDEs. In

this section the attempts on Visual Studio 2005 and Eclipse
SDK 3.3.1 are discussed, including the reasons behind the

actions and decisions, and the technical aspects and results.

Visual Studio

Microsoft Visual Studio™ is one of the most widely used

IDEs for development in Visual Basic, C++, C# and ASP. It

supports extensions through the use of the Visual Studio

Software Development Kit (VS SDK). The VS SDK allows

the extension developer to extend Visual Studio at three

different levels by creating a macro, an add-in or a package.

Macros can only be written in Visual Basic .NET. Since

Macros do not have access to the inner workings of Visual

Studio, it is considered to be the least powerful way to write

an extension. Add-ins are more powerful than macros
because they have access through the automation system to

the tool windows and command system of Visual Studio.

The third option, using packages, is the most powerful

extension type VS SDK provides. It allows access to much

of the core functionality of Visual Studio. Macros do not

provide enough capability to accomplish our goals therefore

we will not refer to them further.

Transparent layer over the editor

Our first attempt was with an add-in. The goal was to create

a transparent form element which supports annotation, and

place it on top of the code window. With the successful

implementation of this approach, the annotation could be

made on a transparent layer on top of the code, and as the

layer would be transparent, the code underneath could be
seen by the user. Also, because the transparent layer would

be on top of the built-in editor, all the services provided by

the built-in editor could still be used. Hence it would allow

easy code review, searching and editing. However this

approach failed because an extension point could not be

found to place a transparent form element (or any other type

of form element) on top of the code window.

While exploring the add-in, another problem was

encountered; it was discovered that the scrolling of the

scrollbar does not fire any event. This problem was

considered to be fatal, because even if the form element

was successfully placed on top of the code window, it
would still be a separate element. Without the scrolling

event, when user scrolls the scrollbar, the annotated strokes

on top would not be able to be synchronized with the code

window underneath.

Customized editor

Because of the inability to fire the scrolling event, we

decided to try to create a customized code window. This

attempt was via a Visual Studio package. The idea was to

customize an editor which has all the required functions

including annotation and code editing in the same window,

the reflow of ink and the support of language services

(syntax highlighting, layout, etc). The built-in editor could

then be substituted with this customized editor to provide
the desired functions.

An implementation of the customized window has been

created with two transparent rich text boxes, one above the

other. The top one is for annotating, and the bottom one is

for coding. Buttons are provided for user to change layers

between editing the code or annotating on top of it.

Depending on the choice, the focus of input would be on

the appropriate rich text box. Because both windows are

transparent, one can always be seen when modifying the

other.

By preserving the built-in editor and using a customized

editor as an annotation window, this approach can be seen
as an extended version of the RCA solution[23], because

both annotating and code editing could be done on the

annotation window. Also, because the rich text box

provided by C# allows changing the font format, the

annotation window will have code with the correct syntax

coloring if the synchronization between two editors is

appropriate. However, there would still be two editors

opened at the same time. More critically, we found that the

language services could not be used.

By modifying the Global Unique Identifier (GUID) of

several components, the customized editor can be opened as
the default editor of any selected languages. However if it is

used in this way, the user has nowhere to copy the font

styles (color and italics) from, thus the style of the text will

be the default style unless sets of rules are provided for the

rich text box.

The main disadvantage of this approach is that the language

services provided by Visual Studio, including syntax

coloring, statement completion, brace matching, parameter

information tooltips and error markers, are all implemented

within the original editor and we have not found a way to

abstract them from the built-in editor. Thus there is no way

to reuse them. By customizing the new editor, all of the
language services need to be rebuilt from scratch if they are

to be available. As Visual Studio is not open source

software, we cannot copy the language services and use

them. We have concluded that the re-creation of these

functions was not sensible.

Modifying the built-in editor

To solve the problem encountered with the re-use of

language services, the third approach was explored. This

involved extending the built-in language specific editors

themselves. If we could successfully take the built-in editor

out, make extensions on it and substitute the built-in editor

with our extended version, essentially we will have

achieved the same result as the previous attempt. The
difference would be that the language services and other

services would be present. However, the only editor related

information that could be found was the GUID of editors,

which could not be extended because they are not part of

the object architecture of C#. This approach failed.

Eclipse

Eclipse[10] is probably as well known as Visual Studio in

the world of IDEs. It has an advantage in that it is open

source software. Not only does it support extensions by

allowing plug-in developments, developers can also modify
the core code or examine it to solve problems encountered

when extending the platform. To support plug-in

developments, the ―Eclipse for RCP/Plug-in Developers‖ or

the ―Eclipse Classic‖ versions, both of which are publically

available, need to be used.

Build a transparent annotation window

Similar to the implementation in Visual Studio, we made an

attempt to build a transparent annotation window that

overlays the code window, and has the two windows scroll

together. It would have the same advantage as the editor

with transparent layer explained in the previous section.

Our first attempts at achieving transparency were

frustrating: we could either make nothing transparent or
make the whole Eclipse window and everything inside

transparent.

Due to our inability to get Eclipse to render the transparent

layer properly, we could not construct a window where

users can review, edit and annotate the code in the same

space. As with Visual Studio, we could put the code into

the background of a window and ink over it. However, the

user still had to go back to the code window to edit the

code. In Eclipse, when one window is activated, the other

open windows are hidden behind the activated window, so

unless the code window is also transparent, it is not possible

to view the two windows overlaying each other.

Furthermore, there are complexities in moving the scrollbar

of the two windows simultaneously, because the previously

mentioned scrolling synchronization problem was also

encountered in Eclipse.

Customize an editable code window

The second Eclipse approach we attempted was to create an

annotation window that totally resembled the code window

and was editable. The expectation with this approach was

that the annotation window contained a copy of the code,

having the same layout and appearance as the actual code,

and users could change code directly on the annotation

window with these changes being automatically reflected in

the code window. This would keep the code window

consistent with the annotation window.

It is easy to copy the code into the annotation window.

However, it is difficult to maintain the code’s layout and

appearance, such as the syntax coloring, because in the

built-in editor, each file is displayed by implementing

specific layout and appearance strategies. For example, a

Java file has its own layout, font and color rules to display

the code in Eclipse. Unlike the rich text box in Visual

Studio which will copy all style information of fonts, under

Eclipse, these rules cannot be preserved when copying the

code to other windows. Also, because of the lack of

reusability, these rules would need to be re-implemented to

properly display the copied code in the annotation window.

Furthermore, if we extend the annotation window from the
code window, the annotation window could only deal with

text, not figures or drawings. This is because the code

window is actually a text editor in Eclipse. If we extend the

annotation window from Eclipse Graphical Editing

Framework (GEF), it is complicated to program rules since

GEF deals with everything as a figure, but not as text. The

result of this is that the language services would have to be

ignored.

Source recompile

We considered, and briefly explored, modification of the

core source code and recompilation of Eclipse, because

essentially this should allow maximum modifiability to the

IDE. However this is a complex process and it nullifies the

extensibility of the architecture model.

Points of failure

From all the work reviewed above, we found that some
common problems exist within the extensibility of the two

selected IDEs.

The first problem is that no extension point can be found on

the editor window to add a new element. The editor

window can be reached to get information such as the text

within or a line number; however the interface of it can

hardly be altered.

The second problem is that although customizing an editor

is possible, the language services are all compactly built-in,

which causes difficulty in reusing them. It is a waste of

work to rebuild all the features when wanting to extend the

editor of a certain language.

There are also problems associated with the event firing of

scrollbars. Scrolling does not trigger any event, which

means that synchronization of the code and annotation

layers is challenging.

Extension possibilities

The limitations we uncovered not only restrict the

development of our annotation plug-in, but can also limit

innovations in many applications which are used in areas

other than ink annotation. Moreover it may be useful to

integrate diagrams and code, effectively blending visual

programming techniques with text-based programming.

Mechanisms for placing drawing elements in a code

window are required to implement this. Our experience

suggests that this would result in the same problems as we
encountered with digital ink annotation.

Users of the IDEs may also want to redefine or extend the

filter of syntax coloring. For example, under current support,

comments can only have one fixed color and font, but it

would certainly be helpful if user can set special colors and

fonts for some important comments to make them stand out

from other comments. Current extensibility would require a

rebuild of the entire language service to achieve this.

The ability to fire a scroll event is particularly useful. This

problem was also encountered in the work of Plimmer &

Mason when implementing a pen-based annotation

application [22]. Scrolling events are needed to ensure the
synchronization of the two windows or anything associated

with information based on the position of the code window.

ALTERNATIVE APPROACHS

We have explored two alternative approaches. Both of these

are workarounds and do not provide an ideal user

experience.

Separate windows

The common solution presented in previous work [6, 23] is

to create a new window which solely focuses on annotating.

This approach solves several problems.

Both Visual Studio and Eclipse provide functionality for

developers to make windows for use of tools such as the

visual editor. The windows are referred as tool windows,

and can be treated as forms. Thus the annotation window

can be built on a tool window using form elements, which

gives flexibility that the original editors do not allow. A
rich text box can be created to contain the code copied from

the code window, and on top of it, another layer can be

created for annotation.

The problem of editor scrolling is also solved since the

element that is used is completely flexible. Either the scroll

bar form element can be used with rules to define how it

should react with the code and annotation window, or the

rich text box can be extended so that it fires an event when

scrolled.

However, new problems arise in this solution. When people

edit the code window, the modifications they have made are

expected to be visible when they switch back to the
annotation window, with the ink reflowed according to their

relative position to word or paragraphs, and even the

position of scroll bars, and vice versa if the annotation

window allows modification in code. It is intuitive to have

this synchronization at the time of switching and window

closing.

RCA and CodeAnnotator both blocked the ability for users

to edit code in the annotation window (although this is

possible), because it is then difficult to keep consistency

between the annotation window and the code window. The

reason is that the language service mechanisms are not
provided by the annotation window. If code editing was

supported in the annotation window, syntax coloring would

be lost: new text would have to use the same style as the

previous character regardless of its purpose because font

and colors are not based on the language services. This

problem could be solved by either building language

services on the annotation window, or by providing more

frequent synchronization of the two windows so that when

a user edits in the annotation window, the modifications are

copied to the code window and then the result is returned

with updated style information to the annotation window.

From a usability point of view, this solution is not as

intuitive as to have an annotation layer directly on top of

the built-in editor. However under current technology, this

is certainly the simplest and most applicable way to solve
problems in this category.

Customized editor

Another alternative is to replace the built-in editor with a
customized editor. Both Visual Studio and Eclipse IDE

support the customization of new editors, which is proven

by the extensibility of new languages such as Python on

Visual Studio and Ruby on Eclipse. The customization of a

new editor can be done in the same way as building form

elements. It gives high flexibility like the solution above,

but prevents the redundancy of switching between windows

as the annotation window can be easily built into the editing

window.

However, with the current extensibility of both IDEs, there

is no easy way of reusing the language services. The only
solution is to re-implement them all from scratch, which is

a task that could be avoided with better design of the

software architecture.

This solution may be the best for the usability of the

software; however it is troublesome and demands a lot of

work from the developers.

DISCUSSION

We hoped to implement a plug-in for an extensible IDE that

allows the user to annotate on top of a code editor similarly

to the ink function in Microsoft Word [14]. Visual Studio

and Eclipse were the targeted IDEs because of their

reputation and extensibility, but obstacles were encountered

during the implementation phases. Different approaches

were taken but numerous problems were encountered
because of the incomplete support of user interface

modifiability. As mentioned in previous sections, the lack

of extension points in the user interface component and the

low reusability made the completion of this task

challenging. This may be due to the fact that no one has

attempted to extend the IDEs in such areas in the past. The

user interfaces appear to be designed without the flexibility

for customization. It may be possible to write an add-in that

supports the types of extensions that we would like to

achieve. However, we could not identify an elegant

solution.

After many failures we decided to solve the problem in

ways which are comparatively clumsy and unintuitive.

These alternative solutions have been recorded in previous

sections as they may provide information for people who

intend to build extensions in similar areas. The final

implementations of RCA [23] and CodeAnnotator [6]

resulted in similar solutions: to separate the coding and the

annotation window, and synchronize between them. This

result may have arisen because both of the selected IDEs

have similar sets of limitations. In further research, we

discovered that it is hard to modify the built-in editors in

both of the IDEs, but it is significantly easier to make a

customized editor or window.

The limitations we uncovered may be resulted from one of

the requirement of extensibility of an IDE: developer
should be able to integrate support of a new language into

the IDE. As when integrate a new language, most of the

language services may need to be re-created, it is logical to

have developers define their own set of language service

syntaxes instead of using the original ones. Also, the high

flexibility of customizing the tool windows allows the

creation of many different extensions since there are

virtually no restrictions on it. However those supports are

far from enough, if a developer would wish to extend the

interface design of an editor on a supported language.

In the past, changing the user interface design of a built-in

editor may have been considered as unnecessary since
traditionally, as long as the user could quickly find the

sentence or word needed and the supported language

service such as syntax highlighting or text completion is

provided, the editor would be considered as good. Editors

were used for editing text, and there was no obvious reason

for people to be motivated to place things on top of them.

The definition of a good editor may have altered in recent

years, just as the definitions of a good word processor or a

browser have changed. The user interface is experiencing

rapid changes brought about by innovations in hardware

and software. As such it should be considered an important
area where customization in existing software is enabled.

User evaluation studies of RCA and CodeAnnotator [6, 23]

have already drawn positive feedback from users who tried

using the plug-in for annotating on IDEs, even though they

are not optimal. There may be more creative ideas that are

not realized because of the lack of extensibility.

Open source software seems to promise a lot, with the

ability to let developers look into the source code and make

modifications. However, most of the time they are not

easier to extend than closed source software because of the

tangling between classes and the lack of proper

documentation. If innovations cannot be built as plug-ins,
they are harder to disseminate and less people will use them.

This, in turn, creates difficulty in getting meaningful

feedback.

An extensible architecture should support the ease of

modifiability and adaptability of a system. However, most

of them are limited. It is understandable that a system

cannot support all possible extension opportunities, but the

user interface element certainly should be valued higher

than it is, because it is the most important part of an IDE,

the first thing users see and the thing they spend the most

time with.

Extensibility and the user experience should be

evolutionary. The architecture of IDEs should be modified

to allow more flexibility as requirements arise. As

technologies such as touch-screens become commonplace,

not only IDE developers, but the developers of all kinds of

software can consider different perspectives on the

extensibility of their products. The providers of IDEs

should consider exposing extension points in more user
interface components in future releases.

SUMMARY AND FUTURE WORK

Taken together, the experiments demonstrated that the
extensibility of Visual Studio and Eclipse in the area of

extending the user interface elements are unsatisfactory.

Major problems include: the lack of an extension point on

the editor window, the missing event from scrolling the

window and the limitations on reusing language services

and built-in editors. These problems prevent innovation.

Suggestions of alternative approaches to specific problems

are discussed, including the customization of editors, which

gives more flexibility, and the making of a tool window

which can synchronize with the built-in editor, hence

imitating existing language services. We conclude that the
extensibility should be improved, especially as new

hardware provides more natural human interaction

possibilities.

Further research can be done in several areas to allow the

realization of our primary goal: ink annotation on the code

window. The modification of the core Eclipse IDE code is

one possibility. To do this would require detailed

knowledge on its underlying structure. Alternatively, Visual

Studio 2008 (we used Visual Studio 2005) may have

improvements to the extensibility. However, from cursory

examination this does not look promising.

REFERENCE

1. Visual Editor Project [cited 2008 Feb 21]; Available

from:
http://www.eclipse.org/vep/WebContent/main.php.

2. Bako, B., et al., Plugin-Based Systems with Self-

Organized Hierarchical Presentation. Software

Engineering Research and Practice, 2006: p. 577-584.

3. Bass, L., P. Clements, and R. Kazman, Software

Architecture in Practice. 2003: Addison Wesley

Professional.

4. Boekhoudt, C., The Big Bang Theory of IDEs. Queue,

2003. 1(7): p. 74 - 82.

5. Borland. JBuilder product page. 2008 [cited Feb 21];

Available from:
http://www.codegear.com/products/jbuilder.

6. Chen, X. and B. Plimmer. CodeAnnotator: Digital Ink

Annotation within Eclipse. in OzCHI 2007: Entertaining

User Interfaces 2007. Adelaide: ACM.

7. des Rivieres, J. and J. Wiegand, Eclipse: a platform for

integrating development tools. . IBM SYSTEMS

JOURNAL, 2004. 43(2): p. 371 - 383.

8. Dietrich, J., J. Hosking, and J. Giles, A Formal Contract

Language for Plugin-based Software Engineering.

Engineering Complex Computer Systems, 2007.

http://www.eclipse.org/vep/WebContent/main.php
http://www.codegear.com/products/jbuilder

9. Eclipse.org. Eclipse.org home. 2008 [cited Feb 21];

Available from: http://www.eclipse.org/.

10. Eclipse.org. Eclipse.org home. [cited 2008 Feb 21];

Available from: http://www.eclipse.org/.

11. Fayad, M. and M.P. Cline, Aspects of software

adaptability. Communications of the ACM, 1996. 39: p.
58 - 59

12. Halachmi, A. SmoothWheel. [cited 2008 Feb 21];

Available from: http://smoothwheel.mozdev.org/.

13. IBM. JDT JUnit integration. [cited 2008 Feb 21];

Available from:

http://publib.boulder.ibm.com/infocenter/radhelp/v6r0m

1/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_int_j

unit.htm.

14. Microsoft. Microsoft Word. [cited 2008 Feb 21];

Available from: http://office.microsoft.com/en-

us/word/default.aspx.

15. Microsoft. Visual Studio [cited 2008 Feb 21]; Available
from: http://msdn2.microsoft.com/en-

us/vstudio/default.aspx.

16. Mock, K., Teaching with Tablet PCs. Journal of

Computing Sciences in Colleges, 2004. 20(2): p. 17-27.

17. Moran, T.P., P. Chiu, and W. van Melle. Pen-Based

interaction techniques for organizing material on an

electronic whiteboard. in 10th Annual Symposium on

User Interface Software and Technology. 1997. Banff,

Canada: ACM.

18. Mozilla. Firefox web browser. [cited 2008 Feb 2];

Available from: http://www.mozilla.com/en-

US/firefox/.

19. Mozilla. The info RSS. [cited 2008 Feb 2]; Available

from: http://inforss.mozdev.org/.

20. Mozilla. Mozilla Firefox 2 Release Notes. [cited 2008
Feb 21]; Available from: http://en-

us.www.mozilla.com/en-US/firefox/2.0/releasenotes/.

21. Parnas, D.L., Designing Software for Ease of Extension

and Contraction. Software Engineering, IEEE

Transactions on, 1979. SE-5, Issue: 2: p. 128- 138.

22. Plimmer, B. and P. Mason. A Pen-based Paperless

Environment for Annotating and Marking Student

Assignments. in AUIC. 2006. Hobart: CRPIT.

23. Priest, R. and B. Plimmer. RCA: Experiences with an

IDE Annotation Tool. in CHINZ. 2006. Christchurch:

ACM.

24. Robbins, J.E., D.M. Hilbert, and D.F. Redmiles,
Extending Design Environments to Software

Architecture Design. Automated Software Engineering:

An International Journal, 1998. 5: p. 261--290.

25. Weck, W., Independently Extensible Component

Frameworks. Special Issues in Object-Oriented

Programming, M. M¨uhlh¨auser,Ed., Heidelberg, 1997:

p. 177–183.

http://www.eclipse.org/
http://www.eclipse.org/
http://smoothwheel.mozdev.org/
http://publib.boulder.ibm.com/infocenter/radhelp/v6r0m1/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_int_junit.htm
http://publib.boulder.ibm.com/infocenter/radhelp/v6r0m1/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_int_junit.htm
http://publib.boulder.ibm.com/infocenter/radhelp/v6r0m1/index.jsp?topic=/org.eclipse.jdt.doc.isv/guide/jdt_int_junit.htm
http://office.microsoft.com/en-us/word/default.aspx
http://office.microsoft.com/en-us/word/default.aspx
http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://msdn2.microsoft.com/en-us/vstudio/default.aspx
http://www.mozilla.com/en-US/firefox/
http://www.mozilla.com/en-US/firefox/
http://inforss.mozdev.org/
http://en-us.www.mozilla.com/en-US/firefox/2.0/releasenotes/
http://en-us.www.mozilla.com/en-US/firefox/2.0/releasenotes/

