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Reconstructing Genealogies of Serial Samples Under the Assumption of a
Molecular Clock Using Serial-Sample UPGMA

Alexei Drummond and Allen G. Rodrigo
School of Biological Sciences, University of Auckland, Auckland, New Zealand

Reconstruction of evolutionary relationships from noncontemporaneous molecular samples provides a new challenge
for phylogenetic reconstruction methods. With recent biotechnological advances there has been an increase in
molecular sequencing throughput, and the potential to obtain serial samples of sequences from populations, including
rapidly evolving pathogens, is fast being realized. A new method called the serial-sample unweighted pair grouping
method with arithmetic means (sUPGMA) is presented that reconstructs a genealogy or phylogeny of sequences
sampled serially in time using a matrix of pairwise distances. The resulting tree depicts the terminal lineages of
each sample ending at a different level consistent with the sample’s temporal order. Since sUPGMA is a variant of
UPGMA, it will perform best when sequences have evolved at a constant rate (i.e., according to a molecular clock).
On simulated data, this new method performs better than standard cluster analysis under a variety of longitudinal
sampling strategies. Serial-sample UPGMA is particularly useful for analysis of longitudinal samples of viruses and
bacteria, as well as ancient DNA samples, with the minimal requirement that samples of sequences be ordered in
time.

Introduction

It is well known that some of the more pernicious
human viral pathogens evolve rapidly. Indeed, it is their
evolution that stymies attempts to battle infection with
antiviral drugs—resistance evolves too quickly. With
HIV-1, for instance, 1025–1024 substitutions accumulate
at each site in each generation, and there are an esti-
mated 140–300 generations per year (Perelson et al.
1996; Rodrigo et al. 1999). Parts of the HIV genome
have been shown to accumulate substitutions at a rate
of 0.92% per year (Shankarappa et al. 1999). There is
some thought in the research community that under-
standing how these viruses evolve is the key to under-
standing how one may control disease. Recent results
give us cause to think that this may be true: a study by
Shankarappa et al. (1999) found that in nine individuals
infected with HIV, the pattern of viral evolution within
each patient was strikingly similar, with certain features
that appeared predictive of progression to AIDS. If such
commonality of pattern is universal, then generalizations
can be made about the process of evolution that such
patterns suggest, and this, in turn, may lead to a strategy
to control progression.

The study by Shankarappa et al. (1999) involved
repeated sampling of the viral population from each in-
dividual over several years, but such sampling schemes
are not uncommon for such rapidly evolving pathogens
(Holmes et al. 1992; Wolinsky et al. 1996; Rodrigo et
al. 1999). A starting point for many evolutionary and
population genetic methods is a reconstructed phylogeny
of sampled sequences (Felsenstein 1992; Fu 1994; Nee
et al. 1995; Pybus, Rambaut, and Harvey 2000), often
under the assumption of a molecular clock, but until
now, there has been no method for reconstructing evo-
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lutionary trees of serially sampled sequences under this
assumption. In this paper, we present such a method.
The serial-sample unweighted pair grouping method
with arithmetic means (sUPGMA) is a fast, flexible phy-
logenetic reconstruction method that can be used when-
ever samples have been obtained at different times.
These samples may be of sequences from a rapidly
evolving viral population obtained from within a patient
over the course of infection or from cohorts of individ-
uals sampled over time. We demonstrate the efficiency
of sUPGMA at recovering the true topology and de-
scribe accessory analyses that allow the estimation of
population parameters and mutation rate. Finally, we
discuss various extensions of sUPGMA and its associ-
ated analyses.

Serial-Sample UPGMA

Consider the following sampling scheme. A pop-
ulation is sampled several times over the course of a
study period, and at each sampling time a number of
sequences are obtained. If these sequences have evolved
so that all lineages accumulate substitutions at the same
rate over the same period of time (i.e., according to a
molecular clock), then the best representation or model
of their phylogeny will look something like that shown
in figure 1E. Here, six sequences were sampled, two at
each of three time points. One would expect, if clocklike
evolution were occurring, that sequences from the same
time point would terminate at identical times. One meth-
od for reconstructing phylogenies of sequences accord-
ing to a molecular clock is the unweighted paired group
method with arithmetic means (UPGMA; see Sneath and
Sokal 1973). However, with UPGMA, all tips on the tree
terminate at the same time (i.e., the tree is ultrametric).
What is required to reconstruct the phylogeny shown in
figure 1E is a method that allows the tips to terminate
at different times but constrains tips sampled at the same
time to terminate at identical distances from the root.
Serial-sample UPGMA allows for this. The method con-
sists of four sequential steps.
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FIG. 1.—The main steps involved in the sUPGMA procedure. A, First, a distance matrix of the sequences sampled must be collected. B,
A matrix is constructed that relates each observed distance to the parameters to be estimated. Each row in B corresponds to an instance of
equation (2), and the binary values in the columns correspond to the X’s in equation (3). For convenience, only a single Q is estimated in this
example. Once this matrix is constructed, the least-squares solution (eq. 4) can be used to estimate the parameters. C, The estimated values of
d are then used to correct the original distance matrix (eq. 6). D, A standard UPGMA tree is constructed from these corrected distances. E, The
branches in the UPGMA tree are then trimmed using the estimated d’s to produce the serially sampled genealogy.

Step 1. Estimation of d’s
Simply, step one involves estimating the expected

number of substitutions per site accumulating between
sampling times. It has been shown how this may be
done for pairs of samples (Y.-X. Fu, personal commu-
nication). The expected distance between a pair of se-
quences, one from a later time point and the other from
an earlier time point, is

E[dist(S , S )]early late

(1) (2)5 E[dist(S , S )] 1 d . (1)early early early→late

The first term on the right-hand side is simply the

expected average distance between any two sequences
from the earlier time point. To obtain an estimate of d,
we substitute the average pairwise distance between ear-
ly and late sequences calculated from our sample for the
term on the left and the average pairwise distance be-
tween pairs of early sequences for the first term on the
right and solve. The problem becomes tricky when there
are more than two time points, because now it becomes
possible to calculate d’s for every possible pair of sam-
pling times. The problem with this approach is that it
may happen that, for any three time points A, B, and C
(where C is earlier than B, which is earlier than A),
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(where is the estimated value),d̂ ± d̂ 1 d̂ d̂CA CB BA

when, in fact, under any reasonable model, the equiva-
lent equality must be true. To overcome this problem,
we adopted a general regression approach to estimate d,
as follows. Consider a data set of p samples, with sam-
ple i obtained more recently than sample i 1 1 (i ∈ 1,
. . . , p). Let d(mi, nj) be the evolutionary distance be-
tween the ith sequence of the mth sample and the jth
sequence of the nth sample; by convention, we will as-
sume that m $ n; i.e., we will only consider elements
in the diagonal and lower triangular matrix of pairwise
distances.

We can model each d(mi, nj) by its expectation
E[d(mi, nj)], and from equation (1), we obtain

(1) (2)E[d(m , n )] 5 E[d(m , m )] 1 d .i j i i m→n (2)

For reasons that will become obvious below, we
will designate In addition, dm→n

(1) (2)E[d(m , m )] 5 Q .i i m

can be written as the sum of dm→m21, dm21→m22, . . . ,
dn11→n. Thus, we can write the linear equation relating
the distances to the parameters as

p

d(m , n ) 5 Q X 1 X dOi j k k (2→1)m,j 2→1
k51

1 X d 1 · · · 1 X d(3→2)m,j 3→2 (p→p21)m,j p→p21

1 e ,m ,ni j
(3a)

where dk→k21 is the expected number of substitutions
that have accumulated between the kth and the (k 2 1)th
samples,

1 if k 5 m,
X 5 (3b)k 50 otherwise

1 if m $ k and n # k 2 1,
X 5 (3c)(k→k21)m,n 50 otherwise,

and is the error due to natural variation, measure-em ,ni j

ment, and sampling.
The vector of estimated parameters â 5

is obtained by theˆ ˆ ˆ{Q , Q , . . . , Q , d̂ , . . . , d̂ }1 2 p 2→1 p21→p

standard least-squares solution:

T 21 Tâ 5 (X X) X d, (4)

where d is a vector of pairwise distances. With this ap-
proach, the estimate of the d’s satisfies the condition

. One additional constraint that wed̂ 5 d̂ 1 d̂CA CB BA

make to the d’s is to set any value of d that has been
estimated as a negative value to 0.

For the estimation approach above, it is not essen-
tial to know the actual sampling times, only the order
in which the samples were drawn. If the actual sampling
times are known, then an alternative approach to esti-
mating d is to estimate a single constant, v, effectively
the number of substitutions per unit time, and multiply
this by the time interval between two sampling occa-
sions, i.e., v(t1 2 t2).

Once again, we estimate v using a regression pro-
cedure. In this case,

p

d(m , n ) 5 Q X 1 v(t 2 t ) 1 e , (5)Oi j k k m n m ,ni j
k51

where tk is the time at which the kth sample was ob-
tained. Note that v is not the mutation rate per genera-
tion unless time is expressed in generation units. How-
ever, v can be converted to the mutation rate (i.e., the
number of substitutions per site per generation) if the
generation time is known.

Step 2. Correction of Pairwise Distances

Each pairwise distance dij in the distance matrix is
now transformed to a corrected distance, c(mi, nj), as
follows:

c(m , n ) 5 d(m , n ) 1 d̂ 1 d̂ ,i j i j m→1 n→1 (6)

where are the d’s associated with the di-d̂ and d̂m→1 n→1
vergence between samples m and n and the most recent
sampling occasion (labeled ‘‘1’’). What this does, in ef-
fect, is extend the distances of sequences sampled earlier
to a value that approximates the expected divergences
of sequences obtained most recently.

Step 3. Cluster Using UPGMA

In step 3, UPGMA or WPGMA (weighted PGMA;
Sneath and Sokal 1973) is applied to the corrected dis-
tance matrix.

Step 4. Trim Back branches

Once the UPGMA tree has been constructed, for
any terminal lineages which extend to sequences in sam-
ple m, is subtracted from the branch length. Thed̂t(i)→0
sUPGMA tree has the topology recovered by UPGMA
(on corrected distances), with tips terminating in the ap-
propriate order of sampling.

Estimation of Population Parameters and Mutation
Rate

As described in step 1 above, a vector of parame-
ters is estimated as part of the tree-building algorithm.
This vector takes the form . . . ,ˆ ˆ ˆâ 5 {Q , Q , Q ,1 2 p

. . . , p21→p} when the order of samples is knownd̂ , d̂2→1
and â 5 . . . , when exact times are known.ˆ ˆ{Q , Q , v̂}1 p

Of course, within this framework, there is no need to
specify a model with different values of Q; instead, we
could estimate a single parameter, Q0, such that â 5

In this case, the average pairwise diversity atˆ{Q , v̂}.0
each time point is effectively a random variable with
expectation Q0. Setting Q0 as a constant is equivalent to
assuming a population model with constant effective
size: under such a model, Q0 5 2Nem, where Ne is the
effective population size and m is the mutation rate per
site per generation (Tajima 1983).

Although the interpretation of a single Q0 is easily
accommodated within a simple constant-sized popula-
tion model, this is not the case when multiple Q’s are
estimated. Multiple Q’s should not be taken as (inde-
pendent) estimates of different 2Nem values, because the
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Table 1
Sampling Strategies Under Which Phylogenetic Reconstruction Was Tested

Total
Sequences Sampling Strategiesa

20 . . . . . . .
40 . . . . . . .
80 . . . . . . .

2 3 10
2 3 20
2 3 40

4 3 5
4 3 10
4 3 20

5 3 4
5 3 8
5 3 16

10 3 2
8 3 5
8 3 10

10 3 4
10 3 8

20 3 2
16 3 5 20 3 4

a Sampling strategies are represented by the number of time points multiplied by the number of sequences per time point.

overlap in genealogies from one sample to the next af-
fects the pairwise distances of the sequences in a com-
plex way. The simple assignment of different Q’s in our
model does not incorporate these complexities.

However we choose to define our model, the var-
iance of the estimates cannot be easily calculated ana-
lytically. However, for a constant-sized population mod-
el at least, a parametric bootstrap method for obtaining
the variance of these estimates can be implemented. For
a given set of parameter estimates, a large number (typ-
ically .1,000) of serially sampled genealogies can be
simulated using the estimated parameters (and assum-
ing a constant population size) to generate pseudore-
plicate data sets. For each generated pseudoreplicate,
the sUPGMA procedure is then repeated, resulting in a
range of estimates for Q’s and d’s or v. For a 95%
confidence interval and 1,000 replicates, the 26th and
975th estimates (when ranked) are taken as the upper
and lower 95% confidence limits of the original
estimate.

Efficiency of Tree Reconstruction

To test the efficiency of sUPGMA, simulated data
sets were created for which the real phylogenetic tree
was known. Rodrigo and Felsenstein (1999) described
how Kingman’s (1982a, 1982b) n-coalescent, essentially
a diffusion approximation of the times of n 2 1 coales-
cent events on an n-taxon tree, could be extended to
coalescent trees with noncontemporaneous tips. One of
the novel properties of coalescent trees of serial samples
is that sampling a direct descendant of a sequence sam-
pled at an earlier time point becomes possible (although
unlikely when Ne is very large). The probability of a
single lineage from a later time point having a direct
ancestor in an earlier sample is equal to the fraction of
the total population size sampled at the earlier time
(nt(earlier)/Ne) (Epperson 1999). This possibility was also
permitted in the simulations performed, representing an
extension of the original description of the serial-sample
coalescent of Rodrigo and Felsenstein (1999). It should
be noted that this inclusion results in the possibility of
multiple coalescent events occurring at the same time
point when more than one direct ancestor is sampled at
one time point. However, this happens at an appreciable
rate only when the assumption of a very large popula-
tion size is broken (i.e., when n2 $ Ne). At this point,
the diffusion approximation of coalescent intervals itself
is no longer valid. To avoid this problem, values of Ne
were selected so that n2 was always smaller than Ne.
Therefore, the simulations were performed under the as-

sumption of a constant population size, and Ne was set
to 10,000, which is large enough to fulfill the require-
ment that n2 K Ne. The mutation rate was set to 5 3
1026 mutations per site per generation. This resulted in
an overall Q value of 0.1 (for a haploid population),
comparable to published values for HIV evolution
(Leigh Brown 1997; Rodrigo et al. 1999). The model of
evolution used in the simulations was a simple Jukes-
Cantor substitution model (Jukes and Cantor 1969). The
simulated genealogies were drawn from populations
with no selection, recombination, or subdivision.

The serial-sample coalescent algorithm was imple-
mented in a small Java program for the purpose of gen-
erating coalescent trees under a variety of different sam-
pling strategies (table 1). This allowed an appraisal of
the effect of different sampling strategies on the accu-
racy of tree-building algorithms. For each sampling
strategy tested, a range of 0.5% to 10% intersample di-
vergence was tested, with an increment of 0.5%. For
each sampling strategy and each divergence, 1,000 sim-
ulated genealogies were constructed. All simulations re-
sulted in time-ordered DNA sequences of 1,000 nt in
length. This length was comparable with lengths of
many gene loci available for phylogenetic study and is
not so long that assuming no recombination is untena-
ble. For each simulation, a pairwise Jukes-Cantor dis-
tance matrix was constructed. The ability of sUPGMA
and UPGMA to correctly reconstruct the simulated ge-
nealogies using the pairwise distances was evaluated.
The reconstructed trees of each method were compared
with the real tree using the symmetric difference index
(SDI) tree comparison metric (Robinson and Foulds
1981). This metric counts the number of clades in each
tree that are not present in the other tree.

Figure 2 shows the performance of sUPGMA and
UPGMA on serially sampled data sets with four serial
samples. Essentially the same pattern was seen for all
sampling strategies. The performance of sUPGMA gen-
erally increases with divergence, while the performance
of UPGMA generally decreases. The graphs in figure 2
indicate that once some low threshold of intersample
divergence is exceeded, sUPGMA reconstructs the ge-
nealogy more accurately than UPGMA. Table 2 shows
the approximate threshold values for a variety of sam-
pling strategies. Each threshold value was found by
picking the lowest divergence for which sUPGMA per-
formed better on average than UPGMA. In general, our
simulations indicated that the divergence threshold de-
creases with an increase in the size of each sample.
Therefore, collecting more sequences within each time
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FIG. 2.—Phylogenetic reconstruction performances of sUPGMA and UPGMA on four samples.

FIG. 3.—Q estimates for four samples of five sequences for 1,000
simulated trees (real value of Q 5 0.1, total divergence 5 0.06 ex-
pected substitutions).

Table 2
Threshold Values for Total Divergence (expected
substitutions per site) Over Which sUPGMA Outperforms
UPGMA

TOTAL

SEQUENCES

NO. OF SAMPLING OCCASIONSa

2 4 5 8 10 16 20

20 . . . . . . . . . .
40 . . . . . . . . . .
80 . . . . . . . . . .

0.01
0.005
0.005

0.02
0.01
0.01

0.02
0.015
0.01

—
0.02
0.015

0.035
0.025
0.02

—
—

0.035

—
0.05
0.04

a The number of sequences at each time point is equal and can be obtained
from this table by dividing the number of time points by the total number of
sequences.

point improves the ability of the least-squares procedure
to detect small divergences.

Efficiency of Parameter Estimation

The efficiency of parameter estimation of Q, v, and
d’s was measured by simulating two sets of 1,000 seri-
ally sampled genealogies, one parameterized in accor-
dance with equation (3a), and the other in accordance
with equation (5). One thousand genealogies of four
samples, each with five sequences, were simulated under
the Jukes-Cantor model of substitution, resulting in
time-ordered sequences of 1,000 nucleotides. Figure 3
shows the distribution of estimates of Q (true value 5
0.1) for the 1,000 simulations with a total divergence
over the four samples of 6%. The mean estimate of Q
was 0.0986, with a skewness statistic of 1.753, showing
that the least-squares procedure produces estimates of Q
that are unbiased but have a positively skewed distri-
bution (tables 3 and 4). The least-squares estimators of
d1, d2, d3, and v are also unbiased, although once again,
the distributions of the estimates are skewed. Figures 4–

7 show frequency distributions for estimates of d1, d2,
d3, and v, respectively.

An Example Data Set

In this section, we illustrate the use of sUPGMA
with a data set of serially sampled partial envelope (env)
gene sequences of cell-associated HIV DNA obtained
from a long-term asymptomatic individual over five
sampling occasions. These samples and the patient his-
tory have previously been described (Rodrigo et al.
1999). In total, there were 60 sequences in this data set.
Pairwise distances were constructed using a general
time-reversible model allowing for unequal nucleotide
frequencies and relative rates of substitutions. Substi-
tution and frequency parameters of the substitution mod-
el were estimated with PAUP*, version 4.0b4 (D. Swof-
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Table 3
Statistics of Estimated Q and d’s for 1,000 Simulated Data Sets of Four Samples of Five Sequences

Q̂ 1d̂ 2d̂ 3d̂

True value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . . .
Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97.5th percentile . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5th percentile . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.1
0.0986
0.04232
1.753
0.207189
0.045227

0.02
0.0203
0.0229
1.807
0.079969

20.01973

0.02
0.0189
0.0269
2.356
0.094122

20.01408

0.02
0.0205
0.0477
2.452
0.141634

20.03477

FIG. 4.—d1 estimates for four samples of five sequences for 1,000
simulated trees (real value of d1 5 0.02).

Table 4
Statistics of estimated Q and v for 1,000 Simulated Data
Sets of Four Samples of Five Sequences

Q̂ v

True value . . . . . . . . . . . . .
Mean . . . . . . . . . . . . . . . . .
Standard deviation . . . . . .
Skewness . . . . . . . . . . . . . .
97.5th percentile . . . . . . . .
2.5th percentile . . . . . . . . .

0.1
0.09996
0.0454
1.797884
0.2224
0.0440

5 3 1026

4.95 3 1026

3.88 3 1026

2.186
1.56 3 1025

2.71 3 1027

ford, Smithsonian Institution). sUPGMA was applied to
the pairwise distance matrix to reconstruct the serial ge-
nealogy of the sequences, allowing different values of
Q and d’s. We also reconstructed the genealogy by as-
suming a constant Q and mutation rate, v, and used
parametric bootstrapping of 1,000 simulated trees to ob-
tain 95% confidence intervals for these parameters. The
reconstructed trees are shown in figure 8, and the as-
sociated parameter estimates are given in table 5.

It is instructive to consider some of the main points
of these results. When Q and d are allowed to vary,
sUPGMA is unable to distinguish between samples 2
and 3; i.e., for this interval, d 5 0. In fact, these two
samples were obtained only 1 month apart, so this result
is reasonable. When Q is held constant and v is esti-
mated, the values obtained are Q 5 0.0446 (95% con-
fidence interval [0.0184, 0.1016]) and v 5 7.8 3 1026

substitutions per site per day (95% confidence interval
[23.47 3 1026, 3.87 3 1025]). This estimate of v trans-
lates into an annual substitution rate of 0.3%. This is
certainly lower than other HIV-1 env gene substitution
rate estimates that have previously been obtained, which
are on the order of 1% per year (Shankarappa et al.
1999). It is not clear why our estimate of substitution
rate is three times as low as other estimates. It is per-
tinent to note that with the patient from whom the sam-
ples were obtained, antiretroviral therapy was initiated
at an early stage of the study, and this, in turn, may have
lengthened the average generation time of infected cells
(see below) and consequently lowered the substitution
rate. When a varying substitution rate was allowed, the
average rate obtained over the entire 1,005 days of the
study was 1.53 3 1025 substitutions per site per day
(0.6% per year), which is closer to previously obtained
results. However, this mean rate is still deflated by the
very slow substitution rate observed in the last 306 days
of the study (see table 5).

Interestingly, the 95% confidence interval of our
estimate of mutation rate encloses 0. While this can
mean that there is no evidence that there has been a
detectable substitution accumulation over time, it can
also mean that there were some sequences obtained at
a later time point that appear more closely related to
those from an earlier time point. In fact, in the original
tree published by Rodrigo et al. (1999), this appears to
be the case.

Discussion

Serial-sample UPGMA is a variant of UPGMA
which constructs genealogies of samples of sequences
obtained at different times under the assumption of a
molecular clock. Serial-sample UPGMA is a two-step
procedure. The first step involves estimating the ex-
pected sequence divergence between samples obtained
at different times. The second step requires the construc-
tion of a corrected distance matrix adjusted to take ac-
count of these expected divergences, and subsequent
clustering using UPGMA. Given a more accurate esti-
mation procedure for the divergences, the accuracy of
sUPGMA tree reconstruction can be improved. For ex-
ample, given a perfect estimate of divergences, the
sUPGMA procedure will perform better than UPGMA
under all sampling strategies and divergences (simula-
tions not shown). Therefore, the threshold divergences
required for sUPGMA to outperform UPGMA will be
reduced by the use of better estimators of d’s and/or v.
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FIG. 5.—d2 estimates for four samples of five sequences for 1,000
simulated trees (real value of d2 5 0.02).

FIG. 7.—Estimated mutation rate, v, from 1,000 simulations of
four samples of five sequences (real value 5 5 3 1026 substitutions
per site per generation).

FIG. 8.—Two sUPGMA trees constructed from an example data
set. Tree A was constructed under the assumption of a constant pop-
ulation size and a constant mutation rate. Tree B was constructed al-
lowing a different population size at each sampling point and allowing
the varying-rate model, in which each time interval has a different
mutation rate.

FIG. 6.—d3 estimates of four samples of five sequences for 1,000
simulated trees (real value of d3 5 0.02).

When a molecular clock does not apply, UPGMA
is known to perform poorly as a tree reconstruction
method. However, in the case of clocklike data that have
experienced large amounts of evolution, the accuracy of
UPGMA in reconstructing clocklike genealogies has
been favorably compared with methods such as maxi-
mum-likelihood phylogenetic reconstruction (Pybus,
Rambaut, and Harvey 2000). Our results demonstrate
that the accuracy of UPGMA for phylogenetic recon-
struction can be improved by modifying the distances
between longitudinally sampled sequences to correct for
the extra divergence expected between earlier time
points and the most recent time point. The rationale be-
hind using sUPGMA as a basis for a tree reconstruction
procedure for serial samples is to provide an (1) accurate
and (2) rapid estimation of a serially sampled genealogy.
Both the criteria for large divergences and clocklike
evolution are fulfilled in at least some virus populations
(Gojobori, Moriyama, and Kimura 1990; Leitner and
Albert 1999; Shankarappa et al. 1999). However, per-
haps most importantly, the speed of sUPGMA allows
very large data sets (with hundreds or thousands of se-

quences) to be analyzed with relative ease. This is an
important feature when taking into account the sizes of
genealogies already under consideration (e.g., Shankar-
appa et al. 1999). The distance-corrected matrix that is
constructed as part of sUPGMA can also be used with
other members of the family of hierarchical algorithmic
clustering methods such as WPGMA, complete-linkage
and single-linkage clustering.

As part of our parameter estimation procedures,
we also introduce two parameterizations of expected
intersample sequence divergence. In one case—v pa-
rameterization—divergence is expressed as a product
of the sampling interval and mutation rate (with the
latter scaled to the same units of time as the sampling
interval). A second parameterization that we use, d pa-
rameterization, is less constrained. With d parameteri-
zation, the ith interval between two sampling occasions
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Table 5
Estimated Q and v for 1,000 Simulated Data Sets of
Four Samples of Five Sequences

Sample

Days
from
First

Sample

No. of
Se-

quences
Q

Estimates da Estimates

1 . . . . .
2 . . . . .
3 . . . . .
4 . . . . .
5 . . . . .

0
214
671
699

1,005

13
15
15

9
8

0.0410
0.0388
0.0519
0.0452
0.0410

0.00386 (1.80 3 1025)b

0.01054 (2.31 3 1025)
0.0 (0.0)
9.54 3 1024 (3.12 3 1026)
n/a

a Measured in expected substitutions per site between the given sample and
the sample immediately following it.

b Corresponding mutation rates are shown in parentheses in mutations per
site per day.

is effectively allowed to have its own mutation rate,
vi, so that di 5 viti, where ti is the length of the inter-
val. In a sense, d parameterization provides a new in-
termediate model of evolution between the two ex-
tremes of a strict molecular clock and the absence of
a molecular clock. We call this intermediate model the
varying-clock model. With HIV, for instance, the ap-
plication of antiretroviral therapy leads to changes in
the relative frequencies of different infected cell types
(Perelson et al. 1996). Since each cell type has a dif-
ferent mean generation time, a change in population
structure will lead to a change in mean generation time
and, consequently, a change in the average mutation
rate. This was already alluded to above when we ana-
lyzed our example data set. Under such conditions, a
varying-clock model may be appropriate. (Note that the
varying-clock model we propose is different from lin-
eage-specific models of variable mutation rates. In the
latter, the mutation rate is assumed to change indepen-
dently along different branches of the tree [Thorne,
Kishino, and Painter 1998; Huelsenbeck, Larget, and
Swofford 2000].)

Although we focused on rapidly evolving viral
populations in this paper, it should be obvious that
sUPGMA and its associated procedures of parameter es-
timation apply equally well to eukaryotic populations
from which ancient and/or archival DNA is available.
We anticipate that the search for better methods to an-
alyze such populations will only become more important
with the increasing frequency of longitudinal sampling
strategies and the acquisition of DNA samples from an-
cient or archival material.

A computer program called PEBBLE that imple-
ments sUPGMA and other related methods, written in
the Java programming language, can be obtained from
www.cebl.auckland.ac.nz. This software will run on all
computer platforms that support the Java Virtual Ma-
chine version 1.1 (JVM 1.1). This includes Microsoft
Windows, Linux, and MacOS.
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