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Abstract

Recognition of objects-of-interest by similarity of prototypes (templates) to sensed images of natural scenes
is important in computer vision, digital photogrammetry and multimedia data retrieval. However, accurate
template matching in the presence of non-uniform nuisance contrast and offset deviations remains a
challenging problem. Uniform deviations leading to cross-correlation matching scores have been studied for
decades, but non-uniform ones have been little explored - mostly, only computationally intensive gradient-
based matching for low order polynomial deviation model. This paper presents two computationally simpler
alternative approaches: (i) an analytical least-squares template matching for polynomial deviation models
of an arbitrary order using a bank of concurrent cross-correlation scores and (ii) a fast numerical quadratic
programming based matching for a new general model of loosely constrained non-uniform contrast and
offset deviations. Experiments confirm that these approaches hold great promise in practice.
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1 Introduction

Robust template matching is a basic part of any
image processing, computer vision, photogrammet-
ric and multimedia system that has to detect, clas-
sify or retrieve objects on the basis of sensed 1D
signals or 2D images of natural scenes. Typical
matching frameworks assume that the sensed data
mostly follow probability models that account for
varying environments and sensing or imaging con-
ditions. The most popular cross-correlation match-
ing assumes uniform contrast deviations of a tem-
plate in the presence of an additive, independent,
central-symmetric and random noise [1, 2]. How-
ever, in practice, these assumptions frequently do
not hold and non-uniform contrast deviations that
exist even in a controlled real world environment
(e.g. due to changing illumination) often make the
correlation rather useless.

A polynomial model of non-uniform contrast in-
troduced by Lai [3] stimulated a number of sub-
sequent efforts [4, 5, 6]. Instead of the more con-
ventional but not robust least squares estimator,
Lai’s matching uses the robust M-estimator [7] and
thus a computationally complex numerical gradi-
ent search for the best match in the parameter
space of both geometric transformation and poly-
nomial coefficients. This high dimensional space is
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difficult to explore extensively, so various simplifi-
cations were made such as a heuristic feature sam-
pling with manual changes of selection parameters
for different recognition tasks [6] or matching only
contour images after edge detection [5]. Thus the
approach was practical with only a small number of
polynomial coefficients and failed with non-smooth
contrast changes and even shadows [3]. Low or-
der polynomial contrast deviations tend to have
a rather unnatural visual appearance (Fig. 1(c)):
even small movements of light sources lead to large
jumps in intensity (due to shadows and reflections)
which cannot be adequately modelled with sim-
ple polynomial functions. Fig. 2(c) shows contrast
deviations for a small (15◦) rotation of the light
source.

We show that the least-squares framework allows
us to reduce matching based on an arbitrary order

(a) Template (b) Polynomial (c) Deviation

Figure 1: (a) Template from the MIT database [8],

(b) (synthetic) example of scaled parabolic contrast

factors, and (c) contrast deviations using this model.
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Figure 2: Contrast variations with small change in

source position: (a) frontal illumination, (b) illumina-

tion from 15◦, (c) scaled contrast deviations between

(a) and (b).

polynomial contrast and offset model to a sim-
ple concurrent cross-correlation matching with a
bank of specific co-registered templates. This re-
duction simplifies the elimination of nuisance de-
viations from a similarity score between an image
and its template. Also, a new general model of
loosely constrained non-uniform contrast and off-
set deviations from a template that preserve its
visual appearance as well as a computationally fea-
sible numerical least-squares matching framework
based on quadratic programming (QP) are pro-
posed. Both QP-matching and concurrent correla-
tion matching can be made robust in the presence
of outliers that violate the underlying probabil-
ity model of central-symmetric noise, much as the
conventional least-squares correlation in previous
work [9, 10].

The paper is organised as follows: concurrent cor-
relation matching for polynomial deviation models
is described in Section 2. Section 3 introduces
a new model of general constrained non-uniform
contrast and offset deviations that more closely
fits natural images than polynomial models. This
model leads to QP-based matching and a fast nu-
merical implementation. Experimental results and
conclusions are presented in Section 4.

2 Concurrent Correlation under
Polynomial Deviations

Let R = [(x, y) : x = 0, . . . , X−1; y = 0, . . . , Y −1]
be a finite arithmetic lattice of XY pixels support-
ing images, and Q = {0, 1, . . . , Q−1} be a finite set
of grey levels. Let g : R → Q denote a greyscale
digital image, t : R → Q, a template image to
be matched to g, and a : R → Q, an ‘image’ of
admissible contrast and offset deviations from t.
The images as vectors of the size XY are boldfaced
(g, t,a).

The nth order polynomial model of non-uniform
contrast and offset deviations from t is:

ax,y =
n∑

i,j=0

i+j≤n

(αijtx,y + βij)xiyj ≡
kn∑

κ=1

γκp
[κ]
x,y (1)

Figure 3: Bank of six eigen-templates for the 1st order

polynomial model of the template in Fig. 1(a)

specifies a vector space A(t;E) of the admissible
transformed templates a where E denotes a kn-
dimensional space of the real-valued coefficients γκ

(i.e. αij and βij), e.g. k1 = 6 for the first order
model (n = 1) with the coefficients γ1 ≡ α00, γ2 ≡
α10, . . . , and γ6 ≡ β01; k2 = 12, etc. Note that the
offset term, β, is not considered by Lai[3]. Each
image a in Eq. (1) is a linear combination of the kn

component images: p[κ] = [xiyjtx,y : (x, y) ∈ R] if
γκ ≡ αij and p[κ] = [xiyj : (x, y) ∈ R] if γκ ≡ βij .
Thus the image space A(t;E) is a linear manifold
of the maximal cardinality specified by the number
of orthonormal vectors in it. As Fig. 1(c) suggests,
a majority of the coefficient vectors γ in E produce
unnatural distorted images a ∈ A(t;E).

With admissible deviations defined by Eq. (1), the
least-squares matching of a sensed image g to the
template t reduces to estimation of the kn minimis-
ers, γκ, i.e. αij and βij , of the Cartesian distance
between g and a ∈ A(t;E):

d(g, t|E) = min
a∈A(t;E)

∑
(x,y)∈R

(ax,y − gx,y)
2 (2)

This least-squares matching is equivalent to max-
imising the variance of the projection of g on the
manifold A(t;E). It is easily shown that the max-
imiser γ is obtained by solving a system of linear
equations γB = b with the kn × kn matrix B and
the kn-vector b:

B =
[
Bκl =

∑
(x,y)∈R p

[κ]
x,yp

[l]
x,y

]kn

κ,l=1

b =
[
bκ =

∑
(x,y)∈R p

[κ]
x,ygx,y : κ = 1, . . . , kn

]T

The solution is simplified after replacing the kn

component images p[κ] with an orthogonal basis
of the manifold A(t;E) being built from the com-
ponent images by using the tractable PCA [11].
The eigenvectors with non-zero eigenvalues (called
the eigen-templates below) lead to a bank of kn

orthonormal eigen-templates el; l = 1, . . . , kn for
the concurrent cross-correlation matching. Then
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Figure 4: Bank of 12 eigen-templates for the 2nd order

polynomial model of the template in Fig. 1(a)

the minimisers are γκ = eT
κg; κ = 1, . . . , kn: the

matching score is d(g, t|E) = gTg − ∑kn

κ=1 γ
2
κ and

the closest to g transformed template a is a =∑kn

κ=1 γκeκ. Figures 3 and 4 show the six and
twelve grey-coded eigen-images for the first and
second order polynomial deviation model, respec-
tively, of the template t in Fig. 1(a). Note that the
number of eigen-templates for the ith order model
grows as (i+1)(i+2), i.e. 20 and 30 eigen-templates
for the 3rd and 4th order models, respectively.

3 QP-Based Matching for Gen-
eral Non-Uniform Deviations

Limitations of low-order polynomial models can
be overcome with a more general non-parametric
model of spatially variant image contrast and off-
set. Let δgh:x,y = gx;y − gx−1;y and δgv:x,y =
gx,y − gx,y−1 denote grey level differences in the
image g between the nearest horizontal and vertical
neighbours, respectively (with the like notation for
t and a: δth:x,y = tx;y − tx−1;y, δah:x,y = ax;y −
ax−1;y, δtv:x,y = tx,y − tx,y−1, and δav:x,y = ax,y −
ax,y−1). The admissible contrast and offset devi-
ations of a from t are specified with a fixed range
E = [emin, emax]; 0 < emin ≤ emax, of factors
constraining the corresponding differences:

Δh:x,y ≤ δahx,y ≤ Δh:x,y

Δv:x,y ≤ δav:x,y ≤ Δv:x,y (3)

0 ≤ hx;y ≤ Q− 1

where

Δh:x,y =
{
eminδth:x,y if δth:x,y > 0
emaxδth:x,y otherwise

Δh:x,y =
{
emaxδth:x,y if δth:x,y > 0
eminδth:x,y otherwise

Δv:x,y =
{
eminδtv:x,y if δtv:x,y > 0
emaxδtv:x,y otherwise (4)

Δv:x,y =
{
emaxδtv:x,y if δtv:x,y > 0
eminδtv:x,y otherwise

Let A(t;E) denote the set of all the images a hav-
ing the admissible deviations of Eq. (3) from the
template t. For this general contrast and offset
model, the least-squares matching of g to t reduces
to the quadratic programming (QP) minimisation
of the Cartesian distance between g and a comply-
ing with the linear constraints of Eq. (3):

d(g, t|E) = min
a∈A(t;E)

∑
(x,y)∈R

(ax;y − gx;y)
2 (5)

Due to large sparse matrices involved, the QP prob-
lem of Eqs. (5) and (3) may be solved conveniently
with the Hildreth - D’Esopo algorithm [12, 13, 14]
that reduces the original QP problem to a simple
dual problem. Let us rewrite the original prob-
lem substituting fx,y = ax,y − gx,y and using the
Lagrangian

∑
(x,y)∈R

f2
x;y +

6∑
i=1

ui:x,yψi:x,y (6)

where ui:x,y ≥ 0; i = 1, . . . , 6, are the nonnegative
Lagrange multipliers for the constraints ψi:x,y ≤ 0:

ψ1:x,y = fx,y − fx−1,y − Δh:x,y + δgh:x,y

ψ2:x,y = −fx,y + fx−1,y + Δh:x,y − δgh:x,y

ψ3:x,y = fx,y − fx,y−1 − Δv:x,y + δgv:x,y

ψ4:x,y = −fx,y + fx,y−1 + Δv:x,y − δgv:x;y

ψ5:x,y = fx,y −Q+ 1 + gx;y

ψ6:x,y = −fx,y − gx;y

(7)

For brevity, the multipliers ui = 0 if the coordi-
nates x− 1 or y − 1 are outside their ranges in R.
Let ξi:x,y ≥ 0 be nonnegative variables such that
ui:x,yξi:x,y = 0. Then the Karush-Kuhn-Tucker
conditions for the QP problem of Eqs. (6) and (7)
have the following form assuming that (x, y) ∈ R,
(x− 1, y) ∈ R, and (x, y − 1) ∈ R, respectively:

−fx,y + fx−1,1 − ξ1:x,y = −Δh:x,y + δgh:x,y

fx,y − fx−1,y − ξ2:x,y = Δh:x,y − δgh:x,y

−fx,y + fx,y−1 − ξ3:x,y = −Δv:x,y + δgv:x,y

fx,y − fx,y−1 − ξ4:x,y = Δv:x,y − δgv:x;y

−fx,y − ξ5:x,y = −Q+ 1 + gx;y

fx,y − ξ6:x,y = −gx;y

(8)
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and

2fx,y + u1:x,y − u2:x,y − u1:x+1,y + u2:x+1,y

+u3:x;y − u4:x,y − u3:x,y+1 + u4:x,y+1

+u5;x,y − u6;x,y = 0
(9)

so that for all (x, y) ∈ R
fx;y = − (u1:x,y − u2:x,y − u1:x+1,y + u2:x+1,y

+u3:x;y − u4:x,y − u3:x,y+1 + u4:x,y+1

+u5;x,y − u6;x,y) /2
(10)

where ui:x,y = 0 if i = 1, 2 and x = 0 and i = 3, 4
and y = 0. The conditions of Eq. (8) lead to the
the dual QP problem [14]:

min{ΔTu + uTGu | u ≥ 0}

where the vectors Δ represent the constraints of
Eq. (3) and u the corresponding Lagrange multi-
pliers and G is the sparse matrix such that the
equalities 2Gu−ξ = −Δ obtained by substituting
Eq. (10) into Eq. (8) have the following form for
all (x, y) ∈ R (due to the limited space, only 3 out
of the 6 equations are shown below):

u1:x,y − u2:x,y + 1
2 (−u1:x+1,y + u2:x+1,y

−u1:x−1,y + u2:x−1,y + u3:x,y − u4:x,y

−u3:x,y+1 + u4:x,y+1 − u3:x−1,y + u4:x−1,y

+u3:x−1,y+1 − u4:x−1,y+1

+u5:;x,y − u6:x,y − u5:x−1,y + u6:x−1,y)
−ξ1:x,y = −Δh:x,y + δgh:x,y

(11)

−u1:x,y + u2:x,y + 1
2 (u1:x+1,y − u2:x+1,y

+u1:x−1,y − u2:x−1,y − u3:x,y + u4:x,y

+u3:x,y+1 − u4:x,y+1 + u3:x−1,y − u4:x−1,y

−u3:x−1,y+1 + u4:x−1,y+1

−u5:x;y + u6:x;y + u5:x−1,y − u6:x−1,y)
−ξ2:x,y = Δh:x,y − δgh:x,y

(12)

. . .

1
2 (−u1:x,y + u2:x,y + u1:x+1,y − u2:x+1,y

−u3:x,y + u4:x,y + u3:x,y+1 − u4:x,y+1

−u5:x,y + u6:x,y) − ξ6:x,y = −gx,y

(13)

The linear system of inequalities (11)–(13) under
the conditions ξ ≥ 0; u ≥ 0, and uTξ = 0 is
solved by an iterative process similar to the Gauss-
Seidel coordinate relaxation process for systems
of linear equations [12, 13, 14]. For the lattice
R with MN pixels, the vector u has (M − 1)N
components u1:x,y and (M−1)N components u2:x,y

for x = 1, . . . ,M −1 and y = 0, . . . , N −1; M(N −
1) components u3:x,y and M(N − 1) components
u4:x,y for x = 0, . . . ,M − 1 and y = 1, . . . , N − 1,
and MN components u5:x,y and MN components
u6:x,y for x = 0, . . . ,M − 1 and y = 0, . . . , N −
1. An individual iteration replaces each successive
component with a new value, u... = max{0, w...},
computed using the fixed current values of all other
components, e.g.

w1:;x,y = (−Δh:x,y + δgh:x;y) + u2:x,y

− 1
2 (−u1:x+1,y + [other terms from Eq. (11)])

(14)
w2:x,y = (Δh:x,y − δgh:x,y) + u1:x,y

− 1
2 (u1:x+1,y − [other terms from Eq. (12)]) (15)

. . .
w6:x;y = −2gx,y + u5:x,y

−[other terms from Eq. (13)] (16)

After this process converges to the final u-values,
the transformed template a that provides the mini-
mum matching score d(g, t|E) of Eq. (5) is obtained
using Eq. (10): ax,y = fx,y + gx,y.

In geometric terms, the solution of the dual QP
problem starts outside the constrained domain of
Eq. (8) and converges to the solution (Eq. (5)).
Convergence is reached when the maximum viola-
tions of the constraints

ε1 = maxx,y{δah:x,y − Δh:x,y, 0}
ε2 = maxx,y{−δah:x,y + Δh:x,y, 0}
ε3 = maxx,y{δav:x,y − Δv:x,y, 0}
ε4 = maxx,y{−δav:x,y + Δv:x,y, 0}
ε5 = maxx,y{ax,y −Q+ 1, 0}
ε6 = maxx,y{−ax,y, 0}

(17)

are below a fixed threshold.

4 Experiments and Conclusions

Our experiments used the MIT face database [8]
containing 36 face images for each of ten persons.
Illumination directions vary from 0◦ to 75◦ ver-
tically and from 15◦ to 90◦ horizontally with in-
crements of 15◦. The image with almost frontal
illumination (0◦, 15◦) was selected as the proto-
type, t, for matching to other images. Figure 5
shows a subset of images of the same face from
this database.

Table 1: Average absolute pixel-wise squared distance,

s =
�

( 1
XY

D(g, t|E)) between the image g and the

closest transformed template, a, for 36 faces “MIT-

00004” from the MIT database (α and β – the vertical

and horizontal illumination angles, respectively); Ci –

concurrent correlation matching with ith order polyno-

mial model, and Q – QP-based matching.
α 0 45 75
β 15 45 75 90 15 45 75 90 15 45 75 90

C1 0 7.8 12 14 12 11 12 13 12 12 12 12
C2 0 7.8 12 13 10 11 12 12 12 12 11 11
C3 0 7.1 10 12 10 11 12 12 12 12 11 11
C4 0 6.5 10 11 10 10 11 11 12 11 11 11

Q 0 1.5 3.2 4.7 2.8 2.9 4.1 4.7 4.7 4.7 4.8 4.9

Transformations of the template by concurrent cor-
relation matching to the other images using the
first and second order polynomial contrast and off-
set models are shown in Figs. 6 and 7, respectively.
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90

Figure 5: Face “MIT-00004” [8] with varying vertical

(0◦–75◦) and horizontal (15◦–90◦) illumination direc-

tions.

0 45 75

15

45

75

90

Figure 6: Concurrent correlation: template (0◦; 15◦)
transformed under the first order polynomial model to

match the images in Fig. 5.

Results for QP-matching are given in Fig. 8. Ta-
ble 1 shows the average residual absolute distances
between the matched image, g, and the closest
transformed template, a, in Eq. (5). The QP itera-
tions were terminated after the maximum violation
of the constraints in Eq. (17) became less than 1 -
from 85 to 780 iterations in Fig. 8. These and sim-
ilar experiments with other images from the same

0 45 75

15

45

75

90

Figure 7: Concurrent correlation: template (0◦; 15◦)
transformed under the second order polynomial model

to match images in Fig. 5.

0 45 75

15

45

75

90

Figure 8: QP matching: template (0◦; 15◦) trans-

formed in the local range E = [0.25..4.0] to match

images in Fig. 5.

database showed that the proposed general model
and QP matching allow us to account better for
natural non-uniform contrast and offset deviations
due to varying illumination than up to 4th order
polynomial models.

Table 2 compares QP-matching to Lai’s matching
algorithm with the quadratic polynomial contrast
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model on the MIT database [8] by showing the
mean (Dmn), standard deviation (σD), minimum
(Dmin), and maximum (Dmax) values of the match-
ing scores D(g, t|E) in Eq. (5). These experiments
involved 30 template–target image pairs such that
different images of each person are matched only to
their own template (0◦, 15◦) and the test targets g
are either synthetic (namely, the template t trans-
formed by arbitrary uniform contrast and offset
changes or quadratic contrast variations shown in
Fig. 1(b)), or natural MIT database images with
large illumination differences with respect to the
templates.

Table 2: Distributions of the matching scores for the

QP-matching and Lai’s approach (within the brackets)

under synthetic uniform (SU); synthetic quadratic

(SQ), and (NNU) natural non-uniform contrast and

offset deviations.
Test Dmn σD Dmin Dmax

SU 1.7 [23] 0.4 [3.7] 0.4 [15] 7.1 [29]
SQ 64 [6.1] 1.6 [7.6] 49 [0.8] 85 [28]

NNU 4.4 [62] 0.6 [39] 0.2 [39] 11 [150]

Excepting the global quadratic contrast variations,
our QP-based matching for the general non-uniform
contrast and offset model outperformed Lai’s ap-
proach based on the polynomial model. The latter
matching works better in these experiments for the
quadratic contrast changes only because our gen-
eral model (Eq. (3)) forbids sign changes in local
signal differences in a template to preserve better
the natural appearance of the transformed images
whereas the quadratic contrast factors allow sign
changes. Due to relatively simple repetitive com-
putations at each step, QP-based matching offers
good prospects of specialised hardware implemen-
tation.
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