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Abstract

This essay is intended as a contribution to The Once and Future

Turing edited by S. Barry Cooper and Andrew Hodges, which will
be published by Cambridge University Press as part of the Turing
Centenary celebration.

Talk presented Monday 10 January 2011 at a workshop on “Randomness,
Structure, and Causality: Measures of complexity from theory to applica-
tions” organized by Jim Crutchfield and Jon Machta at the Santa Fe Insti-
tute in New Mexico. Material displayed in boldface is what was written on
the blackboard.

I want to thank the organizers for inviting me here. I haven’t visited
the Santa Fe Institute for many years. I’m delighted to be back, and I
have something radically new to talk about. I think the time is now ripe to
combine theoretical computer science with biology and to begin developing
a theoretical mathematical biology.

Theoretical Biology
Mathematical Biology

I believe we already have the mathematical tools to begin developing such a
theory.
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For many years I have thought that it is a mathematical scandal that we
do not have a proof that Darwinian evolution works. I want to find the sim-
plest toy model of evolution for which I can prove that evolution will proceed
forever, without ending. My emphasis is on biological creativity, something
that has somehow gotten lost in the standard accounts of Darwinian evolu-
tion.

I’m aware of the fact that there is a vast literature on biology and
evolution—good work, I have nothing against it—but I’m going to ignore
most of it and go off in a different direction. Please bear with me.

There is a nice mathematical theory of evolution called “population genet-
ics.” But in population genetics by definition there is no creativity, because
population genetics defines evolution to be changes in gene frequencies in
response to selective pressures, and deals with a fixed finite pool of genes.
Instead, I am interested in where new genes come from, in how creativity
takes place.

Another way to explain my motivation is this. The leading technology
of the previous century was based on digital software, computer program-
ming languages. And the leading technology of this new century will be
bio-technology, which is based on a natural digital software, namely DNA.

Artificial Digital Software: Programming Languages
Natural Digital Software: DNA

These two technologies will converge. It is no accident that people talk
about computer viruses and cyber-warfare and about developing an immune
system to protect cyber-assets. And what I am saying is that this isn’t just
a metaphor. We can take advantage of this analogy to begin developing a
mathematical theory of evolution.

Darwin begins his book On the Origin of Species by taking advantage of
the analogy between artificial selection by animal and plant breeders, the
successful efforts of his wealthy neighbors to breed champion milk produc-
ing cows, racehorses and roses, and natural selection due to Malthusian
limitations. I want to utilize the analogy between the random evolution of
natural software, DNA, and the random evolution of artificial software, com-
puter programs. I call this proposed new field “metabiology,” and it studies
random walks in software space, hill-climbing random walks of increasing
fitness.

Evolution of Mutating Software

2



Random Walks in Software Space

Random walks are an idea that mathematicians feel comfortable with.
There is a substantial literature on random walks. And I am just proposing
a random walk in a richer space, the space of all possible programs in a given
computer programming language, which is a space that is large enough to
model biological creativity.

So I basically start with two observations. Firstly that DNA is pre-
sumably what computer scientists call a “universal programming language,”
which means that it is sufficiently powerful to express any algorithm—in
particular evo-devo teaches us to think of DNA as a computer program. Sec-
ondly, at the level of abstraction that I am working in my models, there is no
essential difference between mathematical creativity and biological creativ-
ity, and so I can use mathematical problems for which there are no general
methods in order to challenge my organisms and force them to keep evolving.

DNA = universal programming language
math creativity = biological creativity

Emil Post who is forgotten but whose work was at the level of that of Kurt
Gödel and Alan Turing considered that the whole point of incompleteness and
uncomputability was to show the essential role of creativity in mathematics.
The emphasis on formal methods provoked by the computer temporarily
obliterated Post’s insight, but metabiology picks up the torch of creativity
again.

To repeat, the general idea is that we are all random walks in program
space! Our genomes are digital software that has been patched and modified
for billions of years in order to deal with changes in the environment. In fact,
I propose thinking of life as evolving software, and considering biology to be
a kind of software archeology. Instead of La Mettrie’s L’Homme machine
(1748), we now have L’Homme software.

To be more precise, I am studying the following toy model of evolution.
I have a single organism, and I try subjecting it to random mutations. If the
resulting organism is fitter, then it replaces the original organism.

Now let me explain this in more detail.
What are my organisms? Well, in his book The Selfish Gene, Richard

Dawkins teaches us that bodies are unimportant, they are just vehicles for
their genes. So I throw away the body and just keep the DNA.
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A better way to explain this is to remind you of the definition of life given
in John Maynard Smith and Eörs Szathmáry’s books The Major Transitions
in Evolution and The Origins of Life. They discuss two definitions of life.
The first is fairly obvious. A living being preserves its structure while taking
in matter and expelling matter, in other words it has a metabolism, and
furthermore it reproduces itself. Although this seems like a natural definition,
Maynard Smith and Szathmáry point out that a flame satisfies this definition.

However flames do not have heredity, fires do not remember if they were
started by a match or by a cigarette lighter, and therefore they do not evolve.

Therefore Maynard Smith and Szathmáry propose a more sophisticated
definition of life. You have life when there is heredity with mutations
and evolution by natural selection can take place.

This may seem like a tautology. Darwin’s theory may also seem to be a
tautology—the survival of the fittest is merely the survival of the survivors—
but natural selection is not a tautology. And this definition of life isn’t either,
because the whole point is to prove that there is something that satisfies
the definition. The point is to find the simplest system with heredity and
mutations that provably evolves.

So to make things as simple as possible, no metabolism, no bodies, only
DNA. My organisms will be computer programs. I still have to explain how
I do mutations, and what is my fitness measure.

For two years I worked on metabiology using what biologists call point
mutations: You change/delete/add one or more contiguous bits in your com-
puter program, and the probability of the mutations decreases exponentially
with the number of bits. In this way there is a non-zero probability to go
from any organism A to any other organism B in a single mutation, but if
all of the bits of A are changed this probability will be infinitesimal.

With point mutations I was able to begin working, I was able to get
an idea of what is going on, but the way forward was blocked; things were
awkward, the way that pioneering work in math usually is. Then a few
months ago, last summer, in July and August, I had a breakthrough.

I realized that from a mathematical point of view the right thing is to
consider algorithmic mutations, in which a mutation is a computer program
that is given the original organism A and that produces as its output the
mutated organism B. If this algorithmic mutation is an N -bit program, then
the mutation from A to B has probability 2−N .

N-bit algorithmic mutation A→ B has probability 2−N
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If we use the prefix-free programming languages of algorithmic information
theory, the total probability of all the programs will be less than one, as it
should be. This is how to get what is called a “normed measure,” and this
is a well-known technique.

Now there is again a non-zero probability to go from any organism A to
any other organism B in a single mutation step, but the probabilities are
very different. Consider, for example, the mutation that flips every bit of the
program A. Before, this mutation was possible but extremely unlikely. Now
it is a very simple and therefore a highly probable mutation.

If mutations are chosen at random, each mutation will be tried infinitely
often, and this bit-flip mutation will be tried very frequently, a fixed propor-
tion of the time in fact.

By the way, with algorithmic mutations it is possible that the mutation
program never halts and never outputs the mutated organism B. So you
cannot actually simulate our evolution model, because in order to do that
you would need to use what computer scientists, following Turing, call an
“oracle” for the halting problem. And we will need to use oracles again later
on, to decide whether the mutated organism B is fitter than the original
organism A. How do we do this? What is our fitness measure, our fitness
criterion?

Well, in order to get our organisms to evolve forever, we need to challenge
them with a mathematical problem that can never be solved perfectly, that
can employ an arbitrary amount of mathematical creativity. Our organisms
are mathematicians that are trying to become better and better, to know
more and more mathematics. What math problem shall we use to force
them to evolve?

The simplest extremely challenging problem is the Busy Beaver Problem,
which is intimately related to Turing’s famous Halting Problem. What is the
Busy Beaver Problem? That’s the problem of concisely naming an extremely
large positive integer, an extremely large unsigned whole number.

Why does this require creativity? Well, suppose you have a large number
N and you want to name a larger number. You can go from N to N + N , to
N times N , to N to the Nth power, to N raised to the Nth to the Nth N
times. So to name large numbers you have to invent addition, multiplication,
exponentiation, hyper-exponentiation, and this requires creativity.

Busy Beaver Problem: N + N, N2, NN , NNNN···

(N times)
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There is a beautiful essay on the web about this by the quantum computer
complexity theorist Scott Aaronson, “Who Can Name the Biggest Number?,”
which I highly recommend and that explains what a fundamental problem it
is.

So that’s my fitness measure. Each of my software organisms calculates
a single number, a single positive integer, and the bigger the number, the
fitter the organism. The current organism A has a particular fitness N ,
and then we try a random mutation, according to the probability measure
that I already explained, and if the resulting organism B calculates a bigger
number, then it replaces A. Otherwise we try mutating A again.

Note that again we are implicitly making use of an oracle, because ran-
domly mutating A will often produce a B that never halts and never cal-
culates anything, so that we cannot determine if B is fitter than A—if B
produces a number bigger than A does—by merely running B. We need to
skip mutations that produce an invalid program B, as well as mutations that
never produce a mutated organism B.

And to measure evolutionary progress, to measure the amount of biologi-
cal creativity that is taking place, the rate of biological creativity, we use the
so-called Busy Beaver function BB(N), which is defined to be the biggest
positive integer that can be named with a ≤ N bit program. (This is a
more refined version of the Busy Beaver function. The original Busy Beaver
function BB(N) was the biggest integer calculated by a Turing machine with
≤ N states.)

BB(N) = largest positive integer named in ≤ N bits

BB(N) grows faster than any computable function of N , because BB(N)
is essentially the same as the longest run-time of any ≤ N bit program that
eventually halts. So if BB(N) were computable that would give us a way to
solve the halting problem.

Okay, now let’s see what happens if we start with a trivial organism, for
example the one that calculates the number 1, and we carry out this hill-
climbing random walk. We apply mutations at random and look how fast the
fitness will grow. In fact, to calibrate how fast cumulative random evolution
will work, let’s see where it falls between

• brainless exhaustive search, in which the previous organism A is
ignored and we try a new organism B at random (in other words, the
mutations are produced by programs that are chosen at random as
before, but that are not given any input),
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• and the fastest possible evolution that we can get by picking a com-
putable sequence of mutations in the best possible manner in order to
make the fitness grow quickly, which I call “intelligent design.”1

The designer isn’t the diety, he is the mathematician who finds the best
possible sequence of mutations to try.

Here is what happens with these three different evolution regimes:

Exhaustive Search reaches fitness BB(N) in time ≈ 2N

Intelligent Design reaches fitness BB(N) in time N
Cumulative Evolution reaches fitness BB(N) in time between N2 and N3

My unit of time is the number of mutations that are tried. For example,
I try one mutation per second. Note that the fitness increases faster than
any computable function of the time, which shows that genuine creativity is
taking place. If the organisms were improved mechanically, algorithmically,
then the fitness would only grow as a computable function of the time. Of
course the creativity is actually coming from the implicit use of an oracle:
Each time we try a mutation and are told if the resulting B is fitter than the
original organism A, we get at most one more bit of creativity and we can
advance from BB(N) to BB(N + 1). That is the best we can do, and that is
what intelligent design accomplishes.

Exhaustive random search takes time that grows exponentially in N to
get to BB(N), because exhaustive search is ergodic, it is searching the entire
space of possible organisms. That is not at all what happens in real evolution:
The human genome has 3× 109 bases, but in four billion years the biosphere
has only been able to try an infinitesimal fraction of the astronomical number
43×109

of all possible DNA sequences of that size. Evolution is not at all
ergodic.

Note that in our toy model cumulative evolution is much faster than
exhaustive search, and fairly close to intelligent design. How come? In fact,
what is happening in this random evolution model is that we quickly evolve
very good lower bounds on the halting probability Ω. Knowing the halting
probability Ω with N bits of precision is essentially the same as knowing
BB(N). And the random mutations MK that rapidly increase the fitness are
ones that take a lower bound on Ω and see if they can add a 1 in the Kth

1You cannot use an oracle to jump directly to BB(N), BB(N +1), etc., because we are
only allowing a highly restricted use of oracles, in determining whether A → B is fitter
than A. Furthermore, to eliminate mutations that don’t produce a B from A.
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bit position after the decimal point. In other words, MK tries to see if the
current lower bound on Ω is still a lower bound if we add 2−K .

MK : Can we add 2−K to our lower bound on Ω?

If so, we add 2−K to our lower bound on Ω. If not, we try incrementing
another bit K at random. Intelligent design systematically tries MK for
K = 1, 2, 3, . . . Cumulative evolution is not much slower, because muta-
tion MK essentially only needs to name K, which can be done with log K +
2 log log K bits of prefix-free/self-delimiting software, and therefore has prob-
ability ≥ 1/K(log K)2 and will happen in time expected to be ≤ K(log K)2.
So cumulative evolution will try incrementing bits K = 1 through N of Ω in
order by time roughly

�

K≤N

K(log K)2 ≤ between N2 and N3.

This is an outline of the proof that Darwinian evolution works in my
model. For the details please see my University of Auckland Centre for
Discrete Mathematics and Theoretical Computer Science Research Report
CDMTCS-391 at this URL:

http://www.cs.auckland.ac.nz/CDMTCS//researchreports/391greg.pdf

I admit that this result seems a bit strange even to me, but I think that
it is a first step in a metabiological direction. It is the simplest model that
I can think of where you can prove that evolution works. It’s my attempt
to extract the mathematical essence of Darwin’s theory. To my surprise,
the organisms that rapidly evolve in this model are better and better lower
bounds on the halting probability Ω. In fact, the halting probabilities of all
possible universal Turing machines are rapidly evolving in parallel; there are
actually many halting probabilities, not just one. We will know N bits of
each Ω in time roughly between N squared and N cubed.

Why is Ω the organism that evolves? Well, it’s because a key thing in
Darwin’s theory is that evolution results from accumulating small changes
each of which is advantageous. Darwin worried that half an eye was useless
and was very concerned with the absence of intermediate forms. A chapter
in his book is “On the Imperfection of the Geological Record.” Ω is jam
packed with useful mathematical information and we can learn one bit of its
numerical value at a time, so that better and better lower bounds on Ω give
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us a highly probable evolutionary pathway by summing small nevertheless
advantageous changes.

As I said before, every mutation is tried infinitely often, and some are
pretty violent. There is a mutation that replaces an organism with fitness N
by a program that directly outputs N + 1 without doing any computation.
This is a pretty stupid organism, but it increases the fitness, and so this
mutation is successful whenever it is tried. How come random evolution
works in spite of such violent perturbations? Well, that’s because the memory
of the system resides in the fitness, which always increases. Knowing a very
large integer N enables us to calculate a very good lower bound on Ω. Just
look at all the programs up to N bits in size and run them for time N to see
which ones halt, and that gives you a better and better lower bound on Ω.

So this is my current best effort to find the Platonic ideal of evolution,
the simplest, most natural system that exhibits creativity and that I can
prove evolves by random natural selection. We get provable evolution, which
is a good first step, and which I think validates metabiology as a possible re-
search program, but we fail to get an increase in hierarchical structure in our
organisms—which are essentially just lower bounds on Ω—and hierarchical
structure is a very conspicuous feature of naturally-occurring organisms.

What about hierarchical structure?

I actually have two more toy models of evolution that I have studied,
not just the one I have explained. What varies in these models is the fitness
measure, and also the programming language. In my second model I use what
is called a “subrecursive” programming language, one that is not universal
and for which there is no halting problem. There is no halting problem
because this is a FORTRAN-like language in which each time you enter a
loop you know in advance exactly how many times it is going to be executed.

And now each program calculates a function, not an integer, and the
faster the function grows, the fitter the program.

N + N → N2 → NN → NNNN···

(N times)

A lot is known about subrecursive hierarchies (see for example the book
by my friend Cristian Calude, Theories of Computational Complexity), and
using all of this it is easy to show that the loop-nesting level of the programs
must increase without bound. So I also have a toy model of evolution in
which hierarchical structure provably emerges.
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In my third toy model of evolution, the programs are once more universal,
not subrecursive, and each program names what is called a “constructive
Cantor ordinal number.” Here are some examples of such numbers:

1, 2, 3, ω, ω + 1, ω + 2, 2ω, 3ω, ω2, ω3, ωω, ωωω
, ε0 . . .

In this model I conjecture that exhaustive search is the best that you can
do. In general, you expect that with arbitrary fitness landscapes exhaustive
search will be needed and you will not get cumulative evolution. The fitness
landscape has to be very special for Darwinian evolution to work.

So where does metabiology go from here? I expect that there is a spec-
trum of possible models of randomly evolving programs. More realistic mod-
els will limit the runtime of programs and thus avoid the need for oracles.
I expect there to be a trade-off between biological realism and what can
be proved: The more realistic the model, the more we will have to rely on
computer simulations rather than proofs.

Are there more realistic models?

There are many possibilities for future work. Besides limiting the run
time, one can try to incorporate populations or sex. Much remains to be
done. But one shouldn’t expect this theoretical mathematical biology to
ever become as realistic as theoretical physics. Biology is just too messy,
too far removed from mathematics. And although metabiology is promising
mathematically, it remains to be seen how relevant metabiology will ever be
to real biology. But as my wife Virginia Chaitin points out, metabiology
has already raised an interesting question for real biologists, which is how
powerful are mutational mechanisms in real organisms? How closely do real
organisms approach the powerful algorithmic mutations needed to make my
metabiological models work?

Another caveat about metabiology is that it does not study the origin
of life nor does it say anything about what may happen if we begin to take
charge of our biological destiny by doing genetic engineering and producing
children with designer genomes—with the best genes that money can buy.

I’d like to end with a few general remarks about biological creativity and
evolution.

The conventional view is that evolution is not unceasing; you adapt per-
fectly to your environment, and then you stagnate. And people claim that
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evolution is not about progress. The simple mathematical models that peo-
ple have built up to now, in biology and in economics, talk about stability
and fixed points, they do not talk about creativity.

But that is not the right way to think about biology. In biology nothing is
static, everything is dynamic. Viruses, bacteria and parasites are constantly
mutating, constantly probing, constantly trying to find a better way through
your defenses, constantly running through all the combinatorial possibilities.
Biology is ceaseless creativity, not stability, not at all. It’s an arms race, and
as Lewis Carroll’s Red Queen said, you have to run as fast as you can to stay
in the same place.2

This point is particularly well illustrated by the so-called paradox of sex
that is discussed at length in the section on the rotifer in Dawkins’ The
Ancestor’s Tale. In the standard view of Darwinian evolution, sex is prob-
lematic because supposedly selfish genes just want to copy themselves. But
with sex you immediately throw away half of your genome, which is not at
all selfish—would you call a person who gives away half of his money selfish?!
Nevertheless, there are very few parthenogenetic species and sex is almost
universal. How come?

Why is there sex?

The reason is that biology is actually all about constant creativity and
change; nothing is stable, just like in human affairs. And sex greatly speeds
up creativity. If there are several needed mutations, sex takes the maximum
of the time needed for each to occur randomly in order to get them all,
whereas parthenogenetically it takes the sum of the expected mutation times
instead of the maximum.

In summary, metabiology emphasizes biological creativity, not selfishness,
and it opens the door to a completely new interpretation of Darwinian evolu-
tion. It remains to be seen how far this path will lead, but the first steps are
encouraging. The mathematical tools are now in place to study the evolution
of mutating software. Theoretical computer science is theoretical biology.
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