
CDMTCS
Research
Report
Series

Who Is Afraid of
Randomness?

C. S. Calude
University of Auckland, New Zealand

CDMTCS-143
September 2000

Centre for Discrete Mathematics and
Theoretical Computer Science



Who Is Afraid of Randomness?∗

Cristian S. Calude
Department of Computer Science

University of Auckland

Private Bag 92019, Auckland

New Zealand

E-mail: cristian@cs.auckland.ac.nz

We finally understand. Things are the way they are because they can’t be otherwise.
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1 Introduction

Randomness–the mark of anxiety, the cause of disarray or misfortune, the cure for boring repetitiveness,
is, like it or not, one of the most powerful driving forces of life. Is it bad? Is it good? The struggle
with uncertainty and risk caused by natural disasters, market downturns or terrorism is balanced by the
role played by randomness in generating diversity and innovation, in allowing complicated structures to
emerge through the exploitation of serendipitous accidents.

To many minds any discussion about randomness is purely academic, just another mathematical or
philosophical pedantry. False! Randomness could be a matter of life or death, as in the case of Sudden
Infant Death Syndrome (SIDS), a merciless child-killer.

The present paper describes some difficulties regarding the mathematical modelling of randomness,
contrasts silicon-computer generated pseudorandom bits with quantum-computer “random” bits, suc-
cinctly presents the algorithmic definition of randomness proposed by algorithmic information theory
and the relations between randomness and (logical) incompleteness, briefly presents some applications
of algorithmic randomness in physics and finishes by advocating “experimental mathematics”, a quasi-
empirical, more pragmatic manner view of mathematics.

2 Various Meanings

The term random has a variety of meanings. For example, in mathematics a ‘random object’ usually
means a typical object, that is, one that does not seem to have any particular structure or properties
that single it out among the other objects of its kind. In computer science ‘random access memory’
(RAM) refers to the place in a computer where the operating system, application programs, and data
in current use are kept so that they can be quickly reached by the computer’s processor.1

Collins English Dictionary2 lists four meanings for random: 1) lacking any definite plan or prear-
ranged order; haphazard, 2) having a value which cannot be deterministic but only described proba-
bilistically; chosen without regard to any characteristics of the individual members of the population so
that each has an equal chance of being selected, 3) bank (chiefly Brit.), 4) in a purposeless fashion; not
∗Draft paper to be discussed at the Millennium Symposium “Defining the Science of Stochastics”, Würzburg, Germany,

October, 2000.
1The term suggests that any storage location can be accessed directly. Originally, the term distinguished regular core

memory from offline memory, usually on magnetic tape in which an item of data could only be sequentially accessed.
Perhaps it should have been called “nonsequential memory” because RAM access is hardly random. Note that other forms
of storage such as the hard disk and CD-ROM are also accessed directly but the term random access is not used to these
forms of storage.

2Third edition, Harper Collins, 1991.



following any prearranged order. Its origin is traced to the French randon (from randir, to gallop) and
German rinnan, to run.

3 Is Randomness Simple?

I am convinced that the vast majority of my readers, and in fact the vast majority of scientists
and even nonscientists, are convinced that they know what ‘random’ is. A toss of a coin is
random; so is a mutation, and so is the emission of an alpha particle.. . . Simple, isn’t it?

wrote Kac in a famous paper [30]. Well, no! Kac knew very well that randomness could be called
many things, but not simple, and in fact his essay shows that randomness is complicated, and it can be
described in more than one way, even by mathematicians and scientists.

We will illustrate this with a simple, almost trivial, example. Marilyn vos Savant3 is (in)famous for
questioning Wiles’ proof of Fermat’s Last Theorem and Einstein’s relativity theory in her controversial
book [58]. Vos Savant runs every Sunday the column Ask Marilyn in the Parade Magazine (New York).
In the 9 September 1990 column she described the following game: you are on a show and you are given
the choice of three doors, behind which there are two goats and a flashy car. You choose one door, say
door 3, and the host, who knows where the car is, opens another door, behind which there is a goat. She
then gives you the choice of remaining with the first choice, i.e. door 3, or switching to another door
(door 1 or door 2).4 What should you do?

Vos Savant advises to change your mind, to switch doors, arguing that with the first choice you have
only one-third chance of winning, but with the second choice you are doubling the odds to two-thirds.
Her advice has generated instantly a prompt reaction of disagreement from the public!5 Even the famous
mathematician P. Erdös is reported by Hoffman [28] (p. 253) to have said in the first instance: ‘It should
make no difference’.

The answer is rather simple as the following brute force enumeration of possibilities shows: if you
choose to stick with door 3, then you get one-third chance of winning

Door 1 Door 2 Door 3 Outcome
car goat goat loose
goat car goat loose
goat goat car win

Table 1. Stick with your first choice

but if you change your mind you get two-thirds:

Door 1 Door 2 Door 3 Outcome
car goat goat win
goat car goat win
goat goat car loose

Table 2. Change your mind

A minor modification in the game reveals the conundrum: assume that after the first door was open
a person no participating in the show, so not knowing what door was originally chosen, is asked to pick
up one of the remaining two unopened doors. In this case chances that she makes a right guess are
fifty-fifty, and the reason comes from her being disadvantaged of not knowing the original choice. When
evidence clashes so violently with intuition people, even experts, are shaken.

The following Mathematica code simulates the game and computes the odds for both strategies:

3She thinks of herself as the person with the highest recorded IQ (an amazing 228 featured on page 26 of the 1989
edition of the “Guinness Book of World Records Hall of Fame”).

4Actually, this was the Monty Hall dilemma faced by guests on the classic American TV game show “Let’s Make a
Deal”.

5Many letters came from professional mathematicians and statisticians; see also the web site “Marilyn is Wrong!” at
http://www.wiskit.com/marilyn/.
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Myproced[ ] := (
Montylist = {0, 0, 0};
n = Random[Integer, {1, 3}];
Montylist = Delete[Insert[Montylist, 1, n], 4];
c = Random[Integer, {1, 3}]; k = k + Extract[Montylist, {c}];
Montylist = Delete[Montylist, c];
s = s + Extract[Montylist, {1}] + Extract[Montylist, {2}]);

Clear[Montylist, k, s, m, n];
k = 0; s = 0; m = 1;
Do[Myproced[ ], {m, 10000000}];
{k, s} // TableForm

Running it on various samples has produced the results in the following table, results which are
consistent with the above discussion.

No of simulations/strategy 10 100 1, 000 10, 000 1, 000, 000 10, 000, 000
Keep the door 30 321 3,326 33,413 337,700 3,333,764

Change the door 70 679 6,6674 66,587 666,300 6,666,236

Table 3. Simulation results

4 More Difficulties

Suppose that one is watching a simple pendulum swing back and forth, recording 0 if it swings clockwise
at a given instant and 1 if it swings counterclockwise. Suppose further that after some time the record
looks as follows:

10101010101010101010101010101010.

At this point one would like to deduce a “theory” explaining the experiment. The “theory” should
account for the data presently available and make “predictions” about future observations. How should
one proceed? It is obvious that there are many “theories” that one could write-down for the given data,
for example:

10101010101010101010101010101010000000000000000000000000000000 . . .
10101010101010101010101010101010111111111111111111111111111111 . . .
10101010101010101010101010101010001001001001001001001001001001 . . .
10101010101010101010101010101010000111000111000111000111000111 . . .
10101010101010101010101010101010101011101110010110100011000111 . . .

Consistently with the requirements formulated above, each “theory” starts with the experimental
data (which is finite) and continues with “predictions” about how the system future (which is potentially
infinite). The results of the experiment have a simple pattern, always 01’s, so probably the best prediction
is that the system will continue to produce 01’s for ever. Is there any rational, objective way of deciding
among various possible “theories” that does not rely only upon intuition? Occam’s razor states that
the “best” theory is the “simplest” theory. Now the question becomes: What is a “simple theory”?
For Solomonoff [52] the “simplest theory” is the one with the shortest length, i.e. the one printed by a
shortest length computer program. First we have to produce the experimental data; then, we have to
“guess” a continuation. For example, the following program will account for the first sequence:

PRINT 10101010101010101010101010101010, PRINT 0.

Can we do it better? Given the regularity of the record a considerable shorter program can be written
to produce it, namely the program “PRINT 01 16 times”. This program can be used to print out the
first four “theories” above:

PRINT 10 16 times, PRINT 0
PRINT 10 16 times, PRINT 1
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PRINT 10 16 times, PRINT 001
PRINT 10
PRINT 10 16 times, PRINT 000111

The program “PRINT 01 16 times” can be generalised to a “law” expressed by the program “PRINT
01 X times”. Note that the length of printouts predicted by this program grows much more rapidly
than the length of itself. Can one write a simple program to print the fifth and last “theory”? In this
case the continuation of the experiment does not follow an obvious pattern . . . or maybe there is no
such pattern. To understand this “theory” we will follow Chaitin [18] who was interested in defining the
“complexity” of finite binary strings. A typical question motivating this approach is: Are the first one
million of digits of the binary expansion of the number π less complex than a string produced by flipping
a fair coin one million times?6 Chaitin defined the complexity of a finite binary string as the size of the
smallest program which calculates it. If the string can be compressed into a very short program then one
would conclude that the string has a pattern, that it follows a law, that it is simple; if the string cannot
be compressed at all, then it is maximally complex or random. Let’s test this idea on some examples.
Suppose that someone claims to have tossed a fair coin 64 times and the result is:

x = 0101010101010101010101010101010101010101010101010101010101010101

Then, the experiment is repeated and the result is:

y = 1010101010010010101001011011000110001100111100110011111000011011

Almost everyone would be surprised or suspicious to see x, but the string y probably would be
acceptable. Why? Here is typical flawed explanation: the probability of x is extraordinarily small, i.e.
2−64, so it is unreasonable to believe that x has been actually produced by a real experiment. However,
from a probabilistic point of view there is nothing special about x: all of the 264 possible strings of
length 64 have identical probabilities of appearance, i.e. 2−64. The difference between x and y is not
probabilistic, but structural : x is ordered, but there is no apparent pattern in y.7 Laplace [31], pp.16-17,
was, in a sense, aware of the above difficulty:

In the game of heads and tails, if head comes up a hundred times in a row then this appears
to us extraordinary, because after dividing the nearly infinite number of combinations that
can arise in a hundred throws into regular sequences, or those in which we observe a rule that
is easy to grasp, and into irregular sequences, the latter are incomparably more numerous.

Instead of computing probabilities of specific strings let’s instead discuss the “typicalness” of some
strings with respect to some particular stochastic processes. For the process of flipping a fair coin,
incompressible strings are typical, and highly compressible strings are atypical. And, because the number
of highly compressible strings (of a given length) is small, the occurrence of such a string is extraordinary :
our surprise at seeing x is explained.

Of course, the above explanation is informal, and a lot needs to be done to turn it into a rigorous
theory. Before presenting some technical details let indulge ourselves in a simple counting analysis. A
string of length n will be said to be c–incompressible if its compressed length is greater than or equal
to n − c. For example, the 16–incompressible strings of length 64 are exactly the strings that can be
compressed to a length of 48 or larger. Note that every (n+1)–incompressible string is n–incompressible,
so every 5–incompressible string is 4–incompressible. Based on the fact that the number of strings of
length n is 2n, it turns out that at least half of all the strings of every length are 1–incompressible, at
least 3

4 are 2–incompressible, at least 7
8 are 3–incompressible, so on. In general, at least 1 − 1

2c of all
strings of length n are c–incompressible. For example, about 99.9% of all strings of length 64 cannot be
compressed by more than 16% and about 99.99999998% of these strings cannot be compressed by more
than 50%.

Note that a similar analysis can be done for the notion of entropy assigned by Shannon [49] to an
ensemble of possible messages. In case all messages are equally probable, the entropy gives the number
of bits needed to count all possibilities, expressing the fact that any message in the ensemble can be

6Record 1 for heads and 0 for tails.
7Of course, we may argue that the presence of the pattern 01 in x has no significance at all because a) the number of

tosses is relatively small, b) finding patterns and meanings is just a human subjective predilection.
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communicated using that number of bits. However, the entropy says nothing about the number of bits
needed to transmit any individual message in the ensemble.

A source of these difficulties comes from the fact that books on probability theory do not even attempt
to define randomness. In Beltrami [3] words:

The subject of probability begins by assuming that some mechanism of uncertainty is at work
giving rise to what is called randomness, but it is not necessary to distinguish between chance
that occurs because of some hidden order that may exist and chance that is the result of blind
lawlessness. This mechanism, figuratively speaking, churns out a succession of events, each
individually unpredictable, or it conspires to produce an unforeseeable outcome each time a
large ensemble of possibilities is sampled.

5 Two More Negative Results

In an extreme sense there is no such notions as “true randomness”, “genuine randomness”. Confining
again to binary sequences, we cite a theorem by van der Waerden which indicates a nontrivial regularity
shared by all sequences:

Theorem 1 In every binary sequence at least one of the two symbols must occur in arithmetical pro-
gressions of every length.

Note the nonconstructive nature of the proof of Theorem 1: there is no algorithm which will tell in
a finite amount of time which alternative is true: 0 occurs in arithmetical progressions of every length
or 1 occurs in arithmetical progressions of every length.

Even more disturbing, the answer to the question “how random is a coin toss?” seems to be: not too
much. Indeed, following Ford [24] and Jaynes [29], let’s look at the mechanics of the toss. The ellipsoid
of inertia of a thin disc is an oblate spheroid of eccentricity

√
2/2. The displacement does not affect the

symmetry of the spheroid, hence the polhodes circles remain concentric with the axis of the coin (cf.
Routh [43]), so the character of the tumbling motion of the coin while in flight is exactly the same for a
biased as an unbiased coin. There is however a subtle difference: for the biased coin the center of gravity
(not the geometrical center) describes the parabolic trajectory. According to the law of conservation
of angular momentum, the coin maintains a fixed direction in space, but not a fixed velocity (hence
tumbling “looks” chaotic). The direction is determined by the twist you give the coin at launching, but
doesn’t depend on whether the coin is or isn’t biased: the coin will show the same face when viewed
from that direction.8

Based on this observations you can “cheat” with extremely good results at the usual coin-toss game:
toss the coin with a twist so that the unit vector passing through the coin along its axis with its point
on the “heads” side makes an acute angle with fixed direction maintained by the angular momentum,
and catch it in a plan normal to that direction. On successive tosses you can let the magnitude of the
angular momentum and unit vectors vary subject to the above constraints, the tumbling will appear
chaotic.

The above scenario may seem too simple. Still, Jaynes [29], p. 1005, makes the following interesting
remark:

While accepting this criticism, we cannot suppress the obvious comment: scanning the liter-
ature of probability theory, isn’t it curious that so many mathematicians, usually far more
careful than physicists to list all the qualifications needed to make a statement correct, should
have failed to see the need for any qualifications here?

What about tossing a quantum mechanical coin? Before answering this question let’s pause a minute
to look at pseudorandom bits.

8With the exception when the direction is perpendicular to the axis of the coin when no face will be visible.
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6 Computer-Generated Pseudorandom Bits

All modern computers have “pseudorandom number generators” capable to produce “pseudorandom
numbers”. A variety of clever algorithms have been developed which generate sequences of numbers
which pass many statistical tests used to distinguish “random” sequences from those containing some
pattern or internal order. Any computer can only feign randomness; thinking otherwise is not only
wrong, but as von Neumann said,

Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.

Scientists all over the world use millions and millions of computer-generated pseudorandom numbers
with realising that although these numbers pass a good deal of statistical tests for randomness they are
not genuinely random; more troublesome, very little is known about how nonrandom these numbers are
and in which ways these nonrandomness might affect the results.9

I’m worried about the way people use probability theory models. . . . It seems to me there is a
lot of automated, nonthinking use of probability theory. People write down probabilistic models
and often assume standard postulates of randomness. But frequently their assumptions are
just crazy and their conclusions are meaningless.

said P. Diaconis about 15 years ago (reported by Kolata [35]). Today things are not really better and
using pseudorandom numbers as if they were random is still dangerous.

7 Quantum Random Bits

Randomness is at the very heart of quantum physics. When a physical state that is in a superposition of
states is measured, then it collapses into one of its possible states in a completely unpredictable way–we
can only evaluate the probability of obtaining various possible outcomes. An extreme view is to claim
with Peres [39] that

in a strict sense quantum theory is a set of rules allowing the computation of probabilities for
the outcomes of tests which follow specific preparations.

According to Milburn [38], p.1, a fundamental quantum principle is

physical reality is irreducible random.10

Quantum mechanics “seems”11 capable to produce, with probability one, truly random strings. To
describe a way to do it we need some elementary facts about qubits.

A classical bit (e.g. the position of gear teeth in Babbage’s differential engine, a memory element or
wire carrying a binary signal, in contemporary machines) is a system comprising many atoms. Typically,
the system is described by one or more continuous parameters, for example, voltage. Such a parameter
is used to separate the space into two well-defined regions chosen to represent 0 and 1. Manufacturing
imperfections, local perturbations may affect, so signals are periodically restored toward these regions
to prevent them from drifting away. An n-bit register of memory can exist in any of 2n logical states,
from 00 . . . 0 (n zeros) to 11 . . . 1 (n ones).

A quantum event in which we have two possible mutually exclusive outcomes is the elementary act
of observation: all knowledge of the physical world is based upon such acts. An elementary act of
observation is simultaneously like a coin-toss and not like a coin-toss. The information derived from
an elementary act of observation is no more than a single bit, but there is more on it than that. To

9G. Marsaglia found simple randomness tests not passed by typical computer-generated pseudorandom numbers; today
many algorithms produce pseudorandom numbers passing Marsaglia’s tests, but it is not unlikely that other simple tests
will be constructed that show up the new pseudorandom generators. Other examples have been discussed by Maddox [33].

10HotBits is an web resource (see http://www.fourmilab.ch/hotbits/) that claims to produce “genuine random num-
bers” generated by a process fundamentally governed by the inherent uncertainty in the quantum mechanical laws of
nature. HotBits are generated by timing successive pairs of radioactive decays detected by a Geiger-Müller tube interfaced
to a computer.

11We write “seems” because this is a postulate, not a fact deduced from the axioms of any model of quantum mechanics.
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mark this difference Schumaker [48] has coined the name qubit. A quantum bit, qubit, is typically a
microscopic system, such as an atom or nuclear spin or polarized photon. For example, the state of a
spin- 1

2 particle, when measured, is always found to be in one of two possible states, represented as

|+ 1
2
〉 (spin-up) or | − 1

2
〉 (spin-down).

Due to quantization (see more in Calude and Păun [15]) one can use one spin state to represent
0, and the other spin state to represent 1. There is nothing special about spin systems–any 2-state
quantum system can be equally used to represent 0 and 1. What is really special here is the existence
of a continuum of intermediate states which are superpositions of 0s and 1s. Unlike the intermediate
states of a classical bit (for example, any voltages between the “standard” representations of 0 and 1)
which can be distinguished from 0 and 1, but do not exist from an informational point of view, quantum
intermediate states cannot be reliably distinguished, even in principle, from the basis states, but do have
an informational “existence”.

An n-qubit system can exist in any superposition of the form

Ψ =
11...1∑

x=00...0

cx|x〉, (1)

where cx are (complex) numbers such that
∑

x |cx|2 = 1. The exponential “explosion” represented by
formula (1) distinguishes quantum systems from classical ones: in a classical system a state is described
by a number of parameters growing only linearly with the size of the system, but quantum systems may
not admit such a description (because quantum states may be “entangled”).

Now consider the operator

Rθ =
(

cos θ −sin θ
sin θ cos θ

)
,

which rotates a qubit a|0〉+ b|1〉 through an angle θ. In particular, Rπ
4

transforms that state |0〉 into an
equally weighted superposition of 0 and 1:

1√
2
|0〉+ 1√

2
|1〉. (2)

So, to make a quantum device to produce random bits one needs to place a 2-state quantum system in
the |0〉 state, apply the operator Rπ

4
to rotate the state into the superposition (2), and the observe the

superposition. The act of observation produces the collapse into either |0〉 or |1〉, with equal chances.
Consequently, one can use the quantum superposition and indeterminism to simulate, with probability
one, a “fair” coin toss. Random digits produced with quantum random generators of the type described
above are, with probability one, free of subtle correlations that haunt classical pseudorandom number
generators. Of course, the problem of producing algorithmic random strings is still open. Indeed, let’s
assume that we have a classical silicon computer that simulates, using a high-quality pseudo-random
generator, the quantum mechanics dynamics and quantum measurement of a 2-state quantum system.
The simulated world will be statistically almost identical (up to some degree) with the “real” quantum
system. However, all simulated bits will be, in the long run, highly compressible. How can we be sure
that the “real” quantum system is not just a superpowerful pseudorandom generator?

8 Algorithmic Randomness

The discussion in the first section suggests two properties which should be possessed by any random
sequence:

1. a random sequence should be typical, that is it should belong to any “reasonable” majority;

2. a random sequence should be chaotic, that is no simple law should be capable to produce the terms
of the sequence.
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To address typicalness let’s isolate the set of all sequences having “all verifiable” properties that from
the point of view of classical probability theory are satisfied with “probability one” with respect to the
unbiased discrete probability. Let us denote by Σ the binary alphabet {0, 1} and by Σ∗ the set of all
binary strings. The unbiased discrete probability on Σ defined by the function h({0}) = h({1}) = 2−1

induces the product measure µ on the set of all Borel subsets of the set of all binary sequences Σω. If
x = x1x2 . . . xn is a string of length n, then the cylinder induced by x, xΣω, i.e. the set of all sequences
starting with x1x2 . . . xn, will have the probability µ(xΣω) = 2−n. This number can be interpreted as
“the probability that a sequence y = y1y2 . . .yn . . . has the first element y1 = x1, the second element
y2 = x2, . . . , the nth element yn = xn”. Independence means that the probability of an event of the
form yi = xi does not depend upon the probability of the event yj = xj . Note that every open set, i.e.
a union of cylinders, is µ measurable. Finally, S ⊂ Σω is a null set in case for every real ε > 0 there
exists an open set which contains S and has measure less than ε. For instance, every enumerable subset
of Σω is a null set.

A property P of sequences is said to be true almost everywhere (in the sense of µ) in case the set of
sequences not having the property P is a null set. The main example of such a property is the famous
Law of Large Numbers discovered by Borel (a first version of which was known to Jakob Bernoulli around
1700):

For every sequence x = x1x2 . . . xm . . . and natural number n ≥ 1, the limit of Sn(x)/n, when
n tends to ∞, exists almost everywhere in the sense of µ and has the value 1/2.12

In other words, there exists a null set S ⊂ Σω such that for every x not in S, we have Sn(x)/n = 1/2.
It is clear that a sequence satisfying a property false almost everywhere with respect to µ is very

“particular”. Accordingly, it is tempting to say that

a sequence x is “random” if it satisfies every property true almost everywhere with respect to
µ.

Unfortunately, we may define, for every sequence x, the property Px:

a sequence y satisfies Px if and only if for every n ≥ 1 there exists a natural m ≥ n such
that xm �= ym.

Every Px is an asymptotic property which is true almost everywhere with respect to µ and x does
not have property Px. Accordingly, no sequence can verify all properties true almost everywhere with
respect to µ. The above definition is vacuous!

Keeping in mind van der Waerden’s result (see Theorem 1 and the comment following it) we are led
to consider not all asymptotic properties true almost everywhere with respect to µ, but only a countable
set of such properties. So, the important question becomes: Which properties should be considered?
Clearly, the “larger” the chosen class of properties is, the “more random” will be the sequences satis-
fying those properties. A constructive selection seems to be suggested by both statistical practice and
philosophical intuition. One such definition, suggested by Martin-Löf [36, 37], is based on randomness
tests. We fix a standard recursive pairing function λk, y 〈k, y〉 defined on N×Σ∗ with values in Σ∗; here
N is the set of non-negative integers. For a set A ⊆ Σ∗ let Ak = {x ∈ Σ∗ | 〈k, x〉 ∈ A}. A Martin-Löf
test is an computably enumerable (c.e.) set A ⊂ Σ∗ such that µ(AiΣω) ≤ 2−i, for all natural i. The set⋂

i≥0(AiΣω) is the set of all sequences which do not pass the randomness test A. With this apparatus
we can say that a sequence x is Martin-Löf random if for every Martin-Löf test A, x /∈

⋂
i≥0(AiΣω).

Martin-Löf [37] proved the existence of a universal Martin-Löf test, a test W with the property
that for every Martin-Löf test A there is a constant c such that An ⊆Wn+c, for all n. So, Martin-Löf ’s
definition can be rephrased as: A sequence x is Martin-Löf random if and only if x passes a universal
Martin-Löf test. This result captures “typicality”: for each Martin-Löf test A, the set

⋂
i≥0(AiΣω) is

constructively null, so

Theorem 2 Constructively, with probability one (in the sense of µ), every sequence is Martin-Löf-
random.

12Sn(x) = x1 + x2 + · · ·+ xn.
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Hence, from the probabilistic point of view, the set of random sequences is large. However, from
a topological point of view13 the situation is completely different (cf. Calude and Chiţescu [12]) as
Martin-Löf random sequences form a small set:

Theorem 3 The set of Martin-Löf random sequences is constructively a first Baire category set.

Solovay [53] proposed another measure-theoretic definition of random sequences aiming to capture
typicality: a sequence x is Solovay random if for every c.e. set A ⊂ Σ∗ such that

∑
i≥1 µ(AiΣω) < ∞,

there exists a natural N such that for all i > N, x /∈ AiΣω.

“Chaoticity” appears in the following two complexity-theoretic definitions (see Chaitin [17]): an
infinite sequence x is Schnorr random if there is a constant c such that H(x(n)) > n − c, for every
integer n > 0, and, apparently the stronger definition, an infinite sequence x is Chaitin random if
limn→∞H(x(n))− n =∞.14

Finally, we present Hertling and Weihrauch topological approach to define randomness [27]. A ran-
domness space is a triple (X, B, µ), where X is a topological space, B : N→ 2X is a total numbering of
a subbase of the topology of X, and µ is a measure defined on the σ-algebra generated by the topology
of X.15 Let (Wn) be a sequence of open subsets of X; a sequence (Vn) of open subsets of X is called
W–computable if there is a c.e. set A ⊆ N such that Vn =

⋃
π(n,i)∈A Wi for all n ∈ N.16 Next we define

W ′
i = W ′(i) =

⋂
j∈D(1+i)

Wj , for all i ∈ N, where D : N → {E | E ⊆ N is finite} is the computable
bijection defined by D−1(E) =

∑
i∈E 2i. Note that if B is a numbering of a subbase of a topology,

then B′ is a numbering of a base of the same topology. A randomness test on X is a B′–computable
sequence (Wn) of open sets with µ(Wn) ≤ 2−n, for all n ∈ N. We say that an element x ∈ X is called
Hertling–Weihrauch random if x �∈

⋂
n∈N Wn, for every randomness test (Wn) on X.

Consider now the canonical topology on Σω and the numbering B of a subbase (in fact a base) of
the topology is given by Bi = {stringi}Σω. The general definition applies, so we get: A sequence is
Hertling–Weihrauch random if it is random in the space (Σω, B, µ).

All the above approaches lead to the same class of sequences:

Theorem 4 Let x ∈ Σω. The following statements are equivalent:

1. The sequence x is Martin-Löf random.

2. The sequence x is Chaitin random.

3. The sequence x is Schnorr random.

4. The sequence x is Solovay random.

5. The sequence x is Hertling–Weihrauch random.

In what follows we will simply call “algorithmically random” a sequence satisfying one of the above
equivalent conditions. Theorem 4 motivates the following “randomness hypothesis” formulated in Calude
[7]:

A sequence is “random” if it satisfies one of the equivalent conditions in Theorem 4.
13As mentioned before, Σ comes equipped with the discrete topology and Σω is endowed with the product topology.
14H(x(n)) is the program-size complexity of the string x(n) = x1x2 . . .xn ∈ Σ∗, that is, the minimum length of a string

which produces x(n) on a universal self-delimiting Turing machine.
15Recall that a subbase of a topology is a set β of open sets such that the sets

⋂
W∈E

W , for finite, nonempty sets E ⊆ β

form a basis of the topology.
16The function π(n, i) is a computable bijection, for example, π(n, i) = (n + i)(n + i + 1)/2 + i.
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Various arguments supporting this hypothesis, e.g. algorithmically random sequences are Borel ab-
solutely normal17 have been analyzed in the literature, e.g. Calude [6].18 Here is recent argument due
to Fouché [25]: if X ⊆ Σω is a measure one Σ0

1 set, then it contains at least one algorithmically random
sequence. In particular, if X is Π0

1 set which contains some algorithmically random sequence, then it has
nonzero measure. So, if a Π0

1 event is reflected in some algorithmically random sequence, then the event
must be probabilistically significant.

The definition of algorithmically random sequences depends upon the underlying measure µ. The
whole theory can be developed with respect to an arbitrary computable measure µ (see Martin-Löf [37]);
however, the general case is haunted by paradoxes as those described by Calude and Chiţescu [11].

It is not difficult to destroy randomness. For example, start with an algorithmically random se-
quence x1x2 . . . xn . . . over the alphabet {0, 1} and define a new sequence y1y2 . . . yn . . ., over the alphabet
{0, 1, 2}, by

y1 = x1, yn = xn−1 + xn, n ≥ 2.

Then, the new sequence is not algorithmically random. The motivation is simple: the strings 02 and
20 (and, infinitely many more others) never appear, so the sequence has clear regularities (which can,
actually, be detected by simple statistical randomness tests).

It is much more demanding to “generate” a truly random long string starting from an initial state with
a simple description.19 Note that the condition of simplicity of the initial state is crucial: starting from
an algorithmically random string one can generate, in a pure algorithmic way, many other algorithmically
random strings. For example, if x1x2 . . . x2n−1x2n is an algorithmically random binary string, then break
the string into pairs and then code 00, 01, 10, 11 by a, b, c, d: the result is again an algorithmically random
sequence. So, the problem is to start from an initial state which can be precisely controlled and has a
low program-size complexity and produce measurements of unbounded program-size complexity out its
natural dynamical evolution.

Finally let’s note that no algorithmically random sequence is computable, so no pseudorandom se-
quence is algorithmically random. The uncomputability of the algorithmic definition of randomness
makes it unsuited when it comes to generating a “practical” random sequence, or to check for “practical
randomness” a real world sequence.20 Algorithmically random sequences form an ideal class of sequences;
in a sense, algorithmically random sequences are to pseudorandom sequences as real numbers are to ra-
tionals. A series of papers by Pincus, Singer, Kalman [41, 40] proposed a computable randomness test
based on the so-called “approximate entropy”, which has found many practical applications (see also
Casti [16] and Beltrami [3]), but it is still far away from being understood from a theoretical point of
view. The approximate entropy may be thought as a “computable approximation” of the complexity-
theoretic definition of randomness. Indeed, using the algorithmic coding theorem (see Chaitin [19], Gács
[26], Calude [6]), a sequence is algorithmically random if and only if the entropy of its first N terms
comes ever closer to 1 as N grows. The approximate entropy computes the entropy of larger and larger
blocks of digits with respect to an estimation of probabilities given by the Law of Large Numbers, that
is, the probabilities are considered to be roughly equal to their relative frequencies.

9 Randomness and Incompleteness

In 1931 Kurt Gödel showed that if you assume a formal axiomatic system containing elementary arith-
metic is consistent, then you can prove that it is incomplete. Turing [55] showed that no mechanical
procedure, and therefore no formal axiomatic theory, can solve Turing’s halting problem, the question
of whether a given computer program will eventually halt. Turing’s argument was based on computable
real numbers. A real number is computable if there is a computer program or algorithm for calculating
its digits one by one; of course, nearly all real numbers are not computable. Turing showed that if

17Every string appears in an algorithmically random sequence with the probability 2−n, where n is the length of the
string.

18Bailey and Crandall [1] discussed a hypothesis which implies the normality of many natural real numbers, e.g. π, e. A
different approach was discussed in Pincus and Singer [41] and Pincus and Kalman [40].

19Note that human beings are not doing a better job in generating “random” bits as Shannon [50] has argued. Biases
observed in people’s preferences for popular lottery numbers are manifest. See also Bar-Hillel and Wagenaar [2].

20Such as a baby’s heart-beat: a healthy heart beats in an irregular rhythm, as it responds to a multitude of stimuli
from the brain, muscles, digestive organs, etc., and doctors believe that a symptom of SIDS is a strange tendency of the
heart to descend into a deadly regular pattern beating. See also [42].
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you could find a mechanical procedure to decide if a computer program will ever halt, then you could
compute a real number that is not actually computable, which is impossible.

In 1975 Chaitin [17] has introduce his Ω number, the probability that an arbitrary computer program
will eventually halt.21

The base two expansion of Ω is algorithmically random. The first 10,000 bits of ΩU include a tremen-
dous amount of mathematical knowledge. In Bennett’s words [4]:

[Ω] embodies an enormous amount of wisdom in a very small space . . . inasmuch as its first
few thousands digits, which could be written on a small piece of paper, contain the answers
to more mathematical questions than could be written down in the entire universe.

Throughout history mystics and philosophers have sought a compact key to universal wisdom,
a finite formula or text which, when known and understood, would provide the answer to every
question. The use of the Bible, the Koran and the I Ching for divination and the tradition of
the secret books of Hermes Trismegistus, and the medieval Jewish Cabala exemplify this belief
or hope. Such sources of universal wisdom are traditionally protected from casual use by being
hard to find, hard to understand when found, and dangerous to use, tending to answer more
questions and deeper ones than the searcher wishes to ask. The esoteric book is, like God,
simple yet undescribable. It is omniscient, and transforms all who know it . . .Omega is in
many senses a cabalistic number. It can be known of, but not known, through human reason.
To know it in detail, one would have to accept its uncomputable digit sequence on faith, like
words of a sacred text.

In general, given the first n bits of ΩU one can decide whether U(x) halts or not on an arbitrary
program x of length at most n. However, it is worth noting that even if we get, by some kind of miracle,
the first 10,000 digits of Ω, the task of solving the problems whose answers are embodied in these bits is
computable but unrealistically difficult: the time it takes to find all halting programs of length less than
n from its n digits grows faster than any computable function of n.

Although the infinite amount of information contained in Ω’s digits is algorithmically incompressible,
it turns out that Ω is computably enumerable: it can be calculated by an infinite process during which
one can never know how close one is to the final value.22 In this way, the halting probability Ω shares two
apparently irreconcilable properties: ‘algorithmic randomness’ and ‘computable enumerability’. Recent
results due Calude, Hertlinger, Khoussainov, Wand [13], Slaman [51] and Solovay [54] and Calude [8, 9]
have increased our understanding of Ω and the depth and pervasiveness of its algorithmic randomness,
reinforcing the limits placed on the power of mathematical reasoning by this theory.

Here are the facts. Chaitin [17] has proven that no formal mathematical theory can determine more
than a finite number of digits of an Ω. One can explicitly compute a limit on the number of digits of Ω
that a specific theory can determine, but apparently it is not possible to prove constructively the theorem.
Solovay [54] has now constructed the ‘worst ever’ Ω for which no bit can be determined even with the
help of the most powerful formal axiomatic system used by mathematicians, known as Zermelo-Fraenkel
set theory (ZFC). Calude [9] has proven that that every computable enumerable random real is the
halting probability of some universal self-delimiting Turing machine for which ZFC (if sound) cannot
determine more than its initial block of 1 bits; Solovay construction leads to a real less than one-half, so
its binary expansion starts with a zero, hence ZFC cannot determine any bit of it. Finally, Calude [9]
has obtained the following constructive version of Chaitin’s incompleteness theorem:

Theorem 5 If ZFC is arithmetically sound and s = s1s2 . . . sn is a binary string, then we can construct
effectively a universal self-delimiting Turing machine U such that the following statements

“The 0th binary digit of the expansion of ΩU is 0”,

“The 1th binary digit of the expansion of ΩU is s1”,

21Technically, when run on a self-delimiting universal Turing machine; in fact, Ω depends upon the underlying self-
delimiting universal Turing machine U , ΩU , so we have a class of numbers not a number.

22A systematic run of all programs will produce better and better approximations, without being able to compute its
digits exactly.
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“The 2th binary digit of the expansion of ΩU is s2”,

...

“The (n + 1)th binary digit of the expansion of ΩU is sn”,

are true but unprovable in ZFC.

10 Algorithmic Randomness and Physics

Algorithmic information theory, mainly through the algorithmic coding theorem has been successfully
applied to a variety of physical problems (mainly in conjunction with Landauer’s principle [32]23): the
Maxwell demon paradox (Bennett [5], Zurek [56]), the irreversibility in classical Hamiltonian chaotic sys-
tems (Schack and Caves [45]), the characterization of quantum chaos within the framework of statistical
physics (Schack and Caves [46, 47]). The program-size complexity (algorithmic information) with re-
spect to two different universal machines differs at most by an unknown, additive, computer-dependent,
constant. This type of uncertainty is a serious issue of concern for a physical theory, so various attempts
have been made to eliminate it (see, for example, Schack [44]). A sharper versions of the algorithmic
coding theorem in which the uncertainty is reduced to a minimum or no assumption is made on the
computability of the semi-distribution was recently obtained in Calude, Ishihara and Yamaguchi [14].

11 Experimental Mathematics

The message of algorithmic information theory is that algorithmic randomness is as fundamental and
as pervasive in pure mathematics as it is in theoretical physics. This strongly supports “experimental
mathematics”, a quasi-empirical view of mathematics which sustains that although mathematics and
physics are different, it is more a matter of degree than black and white (see Chaitin [21, 22], Calude
and Chaitin [10]). Physicists are used to working with assumptions that explain a lot of data, but
that can be contradicted by subsequent experiments. Not mathematicians!. Even after Gödel, Turing,
Chaitin showed that Hilbert’s dream didn’t work, in practice most mathematicians carried on as before,
in Hilbert’s spirit. However, things are changing because of computers. It is easier to run a mathematical
experiment on a computer, but you can’t always find a proof to explain the results. So in order to cope
with complexity and urgency, mathematicians are sometimes forced to proceed in a more pragmatic
manner, like physicists. The results are not 100% sure, but the price is worth paying.
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