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Abstract. We propose a new type of quantum computer which is used
to prove a spectral representation for a class S of computable sets. When
S 2 S codes the theorems of a formal system, the quantum computer
produces through measurement all theorems and proofs of the formal
system. We conjecture that the spectral representation is valid for all
computably enumerable sets. The conjecture implies that the theorems of
a general formal system, like Peano Arithmetic or ZFC, can be produced
through measurement; however, it is unlikely that the quantum computer
can produce the proofs as well, as in the particular case of S. The analysis
suggests that showing the provability of a statement is di↵erent from
writing up the proof of the statement.

1 Introduction

Mathematical results are accepted only if they have been proved: the proof con-
cludes with the proven statement, the theorem. The proof comes first and justifies
the theorem. Classically, there is no alternative scenario.

The genius mathematician Srinivasa Ramanujan discovered nearly 3900 re-
sults [2], many without proofs; nearly all his claims have been proven correct.
Ramanujan first recognised a true statement and only later that statement was
proven, hence accepted as a theorem. While we don’t know how Ramanujan’s
mind was able to “discover” mathematical true facts, we can ask whether there
is a way to understand, and possibly imitate, his approach.

In this paper a new type of quantum computer is used to prove a spectral
representation for a class S of computable sets is proved. For every S 2 S we
construct a quantum system in such a way that the elements of S are exactly the
eigenvalues of the Hermitian operator representing an observable of the quantum
system, i.e. the spectrum of the operator. In particular, S can be represented
by the energy of the associated quantum system. The operator associated to
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S 2 S has a special numerical form which guarantees that by measurement we
get both the element and the proof that the element is in S. We conjecture that
the spectral representation is valid for all computably enumerable sets.

When S 2 S codes the theorems of a formal system, then the associated
quantum computer produces through measurement the theorems of the formal
system and their proofs. The conjecture implies that every theorem of a general
(recursively axiomatisable) formal system, like Peano Arithmetic or ZFC, can
be produced through measurement. However, we argue that in this general case
the quantum procedure produces, like Ramanujan, only the true the statement,
but not its proof. Of course, the proof can be algorithmically generated by a
classical algorithm, albeit in a possibly very long time (such a computation
makes sense only for statements recognised as “interesting”). For example, if the
Riemann hypothesis is produced by the quantum procedure we will know that
the famous hypothesis is true. However, to have a formal proof—whose existence
is guaranteed by the correctness of the quantum procedure—we may need to run
a very long classical procedure. The proof obtained in this way could be rather
unsatisfactory, as it may not convey the “understanding”, the reason for which
the Riemann hypothesis holds true (see also [4]). Although such a proof may not
make us “wiser” [1], it may stimulate the search for better arguments.

The paper is structured as follows. In Section 2 we present the basic quantum
mechanical facts necessary for describing our quantum systems. In Section 3 we
describe a class of computable sets for which we can prove in Section 4 the rep-
resentability theorem and its application to quantum provability (in Section 5).
In Section 6 we discuss the generalisation of the quantum procedure to all com-
putably enumerable sets and in Section 7 its application to quantum provability
for arbitrary formal systems.

2 Quantum mechanical facts

We start with some basic facts on quantum mechanics needed for this paper. The
quantum mechanical arguments are presented at the level of mathematical rigour
adopted in quantum mechanics textbooks written by physicists, for example,
Dirac [5] and Mahan [8].

A state of a quantum system is represented by a vector in a Hilbert space H.
The vector and the space are called state vector and state space, respectively. The
dynamical variables of a system are quantities such as the coordinates and the
components of momentum and angular momentum of particles, and the energy
of the system. They play a crucial role not only in classical mechanics but also in
quantum mechanics. Dynamical variables in quantum mechanics are represented
by Hermitian operators on the state space H. A dynamical variable of the system
is called an observable if all eigenvectors of the Hermitian operator representing
it form a complete system for H. Normally we assume that a measurement of
any observable can be performed upon a quantum system in any state (if we
ignore the constructive matter, which is one of the points of this paper).

The set of possible outcomes of a measurement of an observable O of a
system is the eigenvalue spectrum of the Hermitian operator representing O.
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Let {|m,�i} be a complete orthonormal system of eigenvectors of the Hermitian
operator A representing an observable O such that A|m,�i = m|m,�i for all
eigenvalues m of A and all �, where the parameter � designates the degeneracy
of the eigenspace of A. Suppose that a measurement of O is performed upon a
quantum system in the state represented by a normalized vector | i 2 H. Then
the probability of getting the outcome m is given by p(m) =

P
�

|hm,�| i|2,
where hm,�| i denotes the inner product of the vectors |m,�i and | i. Moreover,
given that the outcomem occurred, the state of the quantum system immediately
after the measurement is represented by the normalized vector

1p
p(m)

X

�

hm,�| i|m,�i.

The commutator between two operators A and B is defined to be [A,B] :=
AB�BA. Let O1, . . . ,Ok

be observables of a quantum system and let A1, . . . , Ak

be the Hermitian operators which represent O1, . . . ,Ok

, respectively. If the Her-
mitian operators commute to each other, i.e., [A

j

, A
j

0 ] = 0 for all j, j0 = 1, . . . , k,
then we can perform measurements of all O1, . . . ,Ok

simultaneously upon the
quantum system in any state. All dynamical variables which we will consider
below are assumed to be observables, and we will identify any observable with
the Hermitian operator which represents it.

In this paper we consider quantum systems consisting of vibrating particles.
The simplest one is the quantum system of one-dimensional harmonic oscilla-
tor, which consists only of one particle vibrating in one-dimensional space. The
dynamical variables needed to describe the system are just one coordinate x and
its conjugate momentum p. The energy of the system is an observable, called
Hamiltonian, and is defined in terms of x and p by

H =
1

2m
(p2 +m2!2x2),

where m is the mass of the oscillating particle and ! is 2⇡ times the frequency.
The oscillation of the particle is quantized by the fundamental quantum condition

[x, p] = i~, (1)

where ~ is Planck’s constant. The annihilation operator a of the system is defined
by

a =

r
m!

2~

✓
x+

ip

m!

◆
.

Its adjoint a† is called a creation operator. The fundamental quantum condition
(1) is then equivalently rewritten as

[a, a†] = 1, (2)

and the Hamiltonian can be represented in the form

H = ~!
✓
a†a+

1

2

◆
(3)

in terms of the creation and annihilation operators. In order to determine the
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values of energy possible in the system, we must solve the eigenvalue problem of
H. This problem is reduced to the eigenvalue problem of the observable N :=
a†a, called a number operator. Using the condition (2), the eigenvalue spectrum
of N is shown to equal the set N of all nonnegative integers. Each eigenspace of
N is not degenerate, and the normalized eigenvector |ni of N belonging to an
arbitrary eigenvalue n 2 N is given by

|ni = (a†)np
n!

|0i, (4)

where |0i is the unique normalized vector up to a phase factor such that a|0i = 0.
Since N is an observable, the eigenvectors {|ni} forms a complete orthonormal
system for the state space. It follows from (3) that the values of energy possible
in the system are

E
n

= ~!
✓
n+

1

2

◆
, (n = 0, 1, 2, . . . )

where the eigenvector of H belonging to an energy E
n

is given by (4).
Next we consider the quantum system of k-dimensional harmonic oscillators

which consists of k one-dimensional harmonic oscillators vibrating independently
without no interaction. The dynamical variables needed to describe the system
are k coordinates x1, . . . , xk

and their conjugate momenta p1, . . . , pk. The Hamil-
tonian of the system is

H =
kX

j=1

1

2m
j

(p2
j

+m2
j

!2
j

x2
j

), (5)

where m
j

is the mass of the jth one-dimensional harmonic oscillator and !
j

is 2⇡ times its frequency. The vibrations of k oscillators are quantized by the
fundamental quantum conditions

[x
j

, p
j

0 ] = i~�
jj

0 , [x
j

, x
j

0 ] = [p
j

, p
j

0 ] = 0. (6)

The annihilation operator a
j

of the jth oscillator is defined by

a
j

=

r
m

j

!
j

2~

✓
x
j

+
ip

j

m
j

!
j

◆
.

The adjoint a†
j

of a
j

is the creation operator of the jth oscillator. The funda-
mental quantum condition (6) is then equivalently rewritten as

[a
j

, a†
j

0 ] = �
jj

0 , (7)

[a
j

, a
j

0 ] = [a†
j

, a†
j

0 ] = 0. (8)

and the Hamiltonian can be represented in the form

H =
kX

j=1

~!
j

✓
N

j

+
1

2

◆
(9)

where N
j

:= a†
j

a
j

is the number operator of the jth oscillator. In order to
determine the values of energy possible in the system, we first solve the eigenvalue
problems of the number operators N1, . . . , Nk

. We can do this simultaneously
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for all N
j

since the number operators commute to each other, i.e., [N
j

, N
j

0 ] = 0
for all j, j0 = 1, . . . , k, due to (7) and (8). The eigenvalue spectrum of each N

j

is
shown to equal N using (7). We define a vector |n1, . . . , nk

i as the tensor product
|n1i ⌦ · · · ⌦ |n

k

i of |n1i, . . . , |nk

i, where each |n
j

i is defined by (4) using a
j

in
place of a. For each j, the vector |n1, . . . , nk

i is a normalized eigenvector of N
j

belonging to an eigenvalue n
j

2 N, i.e.,
N

j

|n1, . . . , nk

i = n
j

|n1, . . . , nk

i. (10)

All the vectors {|n1, . . . , nk

i} form a complete orthonormal system for the state
space. It follows from (9) that the values of energy possible in the system are

E
n1,...,nk = ~

kX

j=1

!
j

✓
n
j

+
1

2

◆
, (n1, . . . , nk

= 0, 1, 2, . . . )

The vector |n1, . . . , nk

i is an eigenvector of H belonging to an energy E
n1,...,nk .

The Hamiltonian (5) describes the quantum system of k-dimensional har-
monic oscillators where each oscillator does not interact with any others and
moves independently. In a general quantum system consisting of k-dimensional
harmonic oscillators, each oscillator strongly interacts with all others. Its Hamil-
tonian has the general form

P (a1, . . . , ak, a
†
1, . . . , a

†
k

), (11)

where a1, . . . , ak are creation operators satisfying the quantum conditions (7) and
(8), and P is a polynomial in 2k variables with coe�cients of complex numbers
such that (11) is Hermitian.1 For example, we can consider the quantum system
of k-dimensional harmonic oscillators whose Hamiltonian is

H =
X

j

~!
j

✓
a†
j

a
j

+
1

2

◆
+
X

j 6=j

0

g
jj

0a†
j

a
j

0 .

Here the interaction terms g
jj

0a†
j

a
j

0 between the jth oscillator and the j0th
oscillator with a real constant g

jj

0 are added to the Hamiltonian (9). Note,
however, that solving exactly the eigenvalue problem of an observable in the
general form of (11) is not an easy task.

3 A class of unary languages

In this section we introduce a class of unary languages for which the repre-
sentability theorem proven in the next section holds true.

Let N⇤ be the set of all finite sequences (x1, . . . , xm

) with elements in N
(m 2 N; for m = 0 we get the empty sequence "). Let

L((x1 . . . xm

), a) =

 
mY

i=1

{1xi}⇤
!
{1a}, (12)

for all (x1, . . . , xm

) 2 N⇤, a 2 N.
1 In the monomials appearing in P , the order of the variables x1, . . . , x2k does not mat-
ter. However, since aj and a

†
j do not commute, in substituting a1, . . . , ak, a

†
1, . . . , a

†
k

into the variables of P the order of these operators makes a di↵erence. Thus, the
operator (11) makes sense only by specifying this order.
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Theorem 1 Let L0 be the minimal class of languages L over {1} containing
the languages {1n} for every n 2 N, and which is closed under concatenation
and the Kleene star operation. Then, L0 = {L((x1, . . . , xm

), a) | (x1, . . . , xm

) 2
N⇤, a 2 N}.

Proof. The class L0 has the required properties because L(", a) =
{1a}, the concatenation of L((x1, . . . , xm

, a) and L((y1, . . . , yl), b) is
L((x1, . . . , xm

), a)L((y1, . . . , yl), b) = L((x1, . . . , xm

, y1, . . . , yl), a + b) and the
Kleene star of L((x1, . . . , xm

), a) is L((x1, . . . , xm

), a)⇤ = L((x1, . . . , xm

, a), 0).
In view of (12), L0 is included in every class L satisfying the properties in the
statement of the theorem. ut

Corollary 2. The class L0 coincides with the minimal class of languages L over
{1} which contains the languages {1n} and {1n}⇤, for every n 2 N and which is
closed under concatenation.

Comment 3 i) If L is a finite unary language with more than one element,
then L 62 L0.
ii) The family L0 is a proper subset of the class of regular (equivalently, context-
free) languages.
iii) The language {1p | p is prime} is not in L0.

Consider the minimal class D0 of subsets of N containing the sets {b}, for
every b 2 N, and which is closed under the sum and the Kleene star operation.
Here the sum of the sets S, T is the set S+T = {a+b | a 2 S, b 2 T}; the Kleene
star of the set S is the set S⇤ = {a1 + a2 + · · ·+ a

k

| k � 0, a
i

2 S, 1  i  k}.

Theorem 4 The following equality holds true: L0 = {{1a | a 2 S} | S 2 D0}.

Based on the above theorem, we identify L0 with D0 in what follows.

4 The representation theorem

Can a set S 2 D0 be represented as the outcomes of a quantum measurement?
We answer this question in the a�rmative. First we show that the sets in D0

can be generated by polynomials with nonnegative integer coe�cients.

Proposition 5 For every set S 2 D0 there exists a polynomial with nonnegative
integer coe�cients F

S

in variables x1, . . . , xk

such that S can be represented as:

S = {F
S

(n1, . . . , nk

) | n1, . . . , nk

2 N}. (13)

Proof. Suppose that S 2 D0. It follows from Theorem 4 and (12) that there exist
a1, . . . , ak, a 2 N such that S = {a1n1 + · · ·+ a

k

n
k

+ a | n1, . . . , nk

2 N}. Thus,
(13) holds for the polynomial F

S

(x1, . . . , xk

) = a1x1 + · · ·+ a
k

x
k

+ a. ut

Comment 6 There exist infinitely many sets not in D0 which are representable
in the form (13).
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Motivated by Proposition 5, we show that every set

S = {F (n1, . . . , nk

) | n1, . . . , nk

2 N}, (14)

where F is a polynomial in k variables with nonnegative integer coe�cients, can
be represented by the set of outcomes of a constructive quantum measurement.
For this purpose, we focus on a quantum system consisting of k-dimensional
harmonic oscillators whose Hamiltonian has the form

H = F (N1, . . . , Nk

), (15)

where N1, . . . , Nk

is the number operators defined by N
j

= a†
j

a
j

with the annihi-
lation operator a

j

of the jth oscillator. Note that the substitution of N1, . . . , Nk

into the variables of F is unambiguously defined since the number operators
N1, . . . , Nk

commute to each other.
We say an observable of the form (11) is constructive if all coe�cients of P

are in the form of p+qi with p, q 2 Q. Thus, the Hamiltonian (15) is constructive
by definition. Actually, a measurement of the Hamiltonian (15) can be performed
constructively in an intuitive sense. The constructive measurement consists of
the following two steps: First, the simultaneous measurements of the number
operators N1, . . . , Nk

are performed upon the quantum system to produce the
outcomes n1, . . . , nk

2 N for N1, . . . , Nk

, respectively. This is possible since the
number operators commute to each other. Secondly, F (n1, . . . , nk

) is calculated
and is regarded as the outcome of the measurement of the Hamiltonian (15) itself.
This is constructively possible since F is a polynomial with integer coe�cients.
Thus, the whole measurement process is constructive in an intuitive sense too.

Theorem 7 For every set S of the form (14) there exists a constructive Hamil-
tonian H such that the set of all possible outcomes of a measurement of H is
S.

Proof. Consider the Hamiltonian H of the form (15). It is constructive, as we
saw above. We show that the eigenvalue spectrum of H equals to S.

First, using (10) we get

F (N1, . . . , Nk

)|n1, . . . , nk

i = F (n1, . . . , nk

)|n1, . . . , nk

i (16)

for every n1, . . . , nk

2 N. Thus, every element of S is an eigenvalue of H. Con-
versely, suppose that E is an arbitrary eigenvalue of H. Then there exists a
nonzero vector | i such that H| i = E| i. Since all vectors {|n1, . . . , nk

i} form
a complete orthonormal system for the state space, there exist complex numbers
{c

n1,...,nk} such that | i =
P

n1,...,nk
c
n1,...,nk |n1, . . . , nk

i. It follows from (16)
that X

n1,...,nk

c
n1,...,nkF (n1, . . . , nk

)|n1, . . . , nk

i =
X

n1,...,nk

c
n1,...,nkE|n1, . . . , nk

i.

Since the vectors {|n1, . . . , nk

i} are independent, we have

c
n1,...,nk(E � F (n1, . . . , nk

)) = 0, (17)

for all n1, . . . , nk

2 N. Since | i is nonzero, c
n̄1,...,n̄k is also nonzero for some

n̄1, . . . , n̄k

2 N. It follows from (17) that E = F (n̄1, . . . , n̄k

). ut
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5 An application to quantum provability

Let S be a set of the form (14). In the proof of Theorem 7, we consider the
measurement of the Hamiltonian of the form (15). In the case where the state | i
over which the measurement of the Hamiltonian is performed is chosen randomly,
an element of S is generated randomly as the measurement outcome. In this
manner, by infinitely many repeated measurements we get exactly the set S.

If the set S codes the “theorems” of a formal system S—which is possible
as S is computable—then F (n1, . . . , nk

) 2 S is a theorem of S and the numbers
n1, . . . , nk

play the role of the proof which certifies it.
Suppose that a single measurement of the Hamiltonian of the form (15) was

performed upon a quantum system in a state represented by a normalized vector
| i to produce an outcome m 2 S, i.e., a theorem. Then, by the definition
of theorems, there exists a proof n1, . . . , nk

which makes m a theorem, i.e.,
which satisfies m = F (n1, . . . , nk

). Can we extract the proof n1, . . . , nk

after
the measurement? This can be possible in the following manner: Immediately
after the measurement, the system is in the state represented by the normalized
vector |�i given by

|�i = 1p
C

X

m=F (n1,...,nk)

hn1, . . . , nk

| i|n1, . . . , nk

i,

where C is the probability of getting the outcome m in the measurement given:

C =
X

m=F (n1,...,nk)

|hn1, . . . , nk

| i|2 .

Since the number operators N1, . . . , Nk

commute to each other, we can perform
the simultaneous measurements of N1, . . . , Nk

upon the system in the state |�i.
Hence, by performing the measurements of N1, . . . , Nk

, we obtain any particular
outcome n1, . . . , nk

with probability |hn1, . . . , nk

|�i|2. Note that

X

m=F (n1,...,nk)

|hn1, . . . , nk

|�i|2 =
X

m=F (n1,...,nk)

|hn1, . . . , nk

| i|2 /C = 1.

Thus, with probability one we obtain some outcome n1, . . . , nk

such that m =
F (n1, . . . , nk

). In this manner we can immediately extract the proof n1, . . . , nk

of the theorem m 2 S obtained as a measurement outcome.

6 A conjecture

In the early 1970s, Matijasevič, Robinson, Davis, and Putnam solved negatively
Hilbert’s tenth problem by proving the MRDP theorem (see Matijasevič [9]
for details) which states that every computably enumerable subset of N is
Diophantine. A subset S of N is called computably enumerable if there exists
a (classical) Turing machine that, when given n 2 N as an input, eventually
halts if n 2 S and otherwise runs forever. A subset S of N is Diophantine
if there exists a polynomial P (x, y1, . . . , yk) in variables x, y1, . . . , yk with
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integer coe�cients such that, for every n 2 N, n 2 S if and only if there exist
m1, . . . ,mk

2 N for which P (n,m1, . . . ,mk

) = 0.

Inspired by the MRDP theorem, we conjecture the following:

Conjecture 8 For every computably enumerable subset S of N, there exists a
constructive observable A of the form of (11) whose eigenvalue spectrum equals
S.

Conjecture 8 implies that when we perform a measurement of the observable
A, a member of the computably enumerable S is stochastically obtained as a
measurement outcome. As we indefinitely repeat measurements of A, members
of S are being enumerated, just like a Turing machine enumerates S.

In this way a new type of quantum mechanical computer is postulated to
exist. How can we construct it? Below we discuss some properties of this hypo-
thetical quantum computer.

As in the proof of the MRDP theorem—in which a whole computation history
of a Turing machine is encoded in (the base-two expansions of) the values of
variables of a Diophantine equation—a whole computation history of a Turing
machine is encoded in a single quantum state which does not make time-evolution
(in the Schrödinger picture). Namely, a whole computation history of the Turing
machine M which recognises S is encoded in an eigenstate of the observable A
which is designed appropriately using the creation and annihilation operators.
To be precise, let | i =

P
n1,...,nk

c
n1,...,nk |n1, . . . , nk

i be an eigenvector of A
belonging to an eigenvalue n 2 S such that each coe�cient c

n1,...,nk is drawn from
a certain finite set C of complex numbers containing 0 and the set {(n1, . . . , nk

) |
c
n1,...,nk 6= 0} is finite. The whole computation history of M with the input n is
encoded in the coe�cients {c

n1,...,nk} of | i such that each finite subset obtained
by dividing appropriately {c

n1,...,nk} represents the configuration (i.e., the triple
of the state, the tape contents, and the head location) of the Turing machine M
at the corresponding time step. The observable A is constructed such that its
eigenvector encodes the whole computation history of M , using the properties
of the creation and annihilation operators such as

a†
j

|n1, . . . , nj�1, nj

, n
j+1, . . . , nk

i =
p

n
j

+ 1|n1, . . . , nj�1, nj

+ 1, n
j+1, . . . , nk

i,

by which the di↵erent time steps are connected in the manner corresponding to
the Turing machine computation of M . In the case of n /2 S, the machineM with
the input n does not halt. Consequently, the length of the whole computation
history is infinite and therefore the set {(n1, . . . , nk

) | c
n1,...,nk 6= 0} is infinite,

which implies, because all coe�cients belong to the finite set C of complex num-
bers, that the norm of | i is indefinite and hence | i is not an eigenvector of A.
In this manner, any eigenvalue of A is limited to a member of S.

Note that there are many computation histories of a Turing machine de-
pending on its input. In the proposed quantum mechanical computer, the mea-
surement of A chooses one of the computation histories stochastically and the
input corresponding to the computation history is obtained as a measurement
outcome. The above analysis shows that Conjecture 8 is likely to be true.
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The main feature of the proposed quantum mechanical computer is that
the evolution of computation does not correspond to the time-evolution of the
underlying quantum system. Hence, in contrast with a conventional quantum
computer, the evolution of computation does not have to form a unitary time-
evolution, so it is not negatively influenced by decoherence2, a serious obstacle
to the physical realisation of a conventional quantum computer.

Again, in contrast with a conventional quantum computer, this proposed
quantum mechanical computer can be physically realisable even as a solid-state
device at room temperature (the lattice vibration of solid crystal, i.e., phonons),
which strongly interacts with the external environment. A member of S is ob-
tained as a measurement outcome in an instant by measuring the observable
A. For example, in the case when the observable A is the Hamiltonian of a
quantum system, the measurement outcome corresponds to the energy of the
system. In this case, we can probabilistically decide—with su�ciently small er-
ror probability—whether a given n 2 N is in S: the quantum system is first
prepared in a state | i such that the expectation value h |A| i of the measure-
ment of the energy over | i is approximately n, and then the measurement is
actually performed. This computation deciding the membership of n to S ter-
minates in an instant if su�ciently high amount of energy (i.e., around n) is
pumped.

Kieu [7] proposed a quantum computation based on a Hamiltonian of the
form of (15), which is a very special case of (11) used in Conjecture 8. The
purpose and method of Kieu’s are both quite di↵erent from ours. His purpose is
to perform hypercomputation, i.e., to solve the membership problem for every
c.e. set. On the other hand, his method is based on adiabatic quantum compu-
tation and uses the MRDP theorem in a direct manner. Kieu uses only ground
states (i.e., the quantum states with the lowest energy), while the whole energy
spectrum is needed in our approach. These facts suggest that his method may
not be useful for proving Conjecture 8.

7 Quantum proving without giving the proof

In Section 5 we discussed the quantum provability for a formal system whose
theorems can be coded by a set S defined as in (14). When an element m is ob-
tained as an outcome of the measurement, we can extract the proof n1, . . . , nk

which certifies that m is a theorem of the formal system S, i.e., it satisfies
m = F (n1, . . . , nk

), by performing the second measurement over the state im-
mediately after the first measurement.

Actually, the proof n1, . . . , nk

may be generated slightly before the theo-
rem F (n1, . . . , nk

) is obtained, like in the classical scenario. As we saw in Sec-
tion 4, the measurement of F (N1, . . . , Nk

) can first be performed by simultane-
ous measurements of the number operators N1, . . . , Nk

to produce the outcomes
n1, . . . , nk

2 N; then, the theorem m = F (n1, . . . , nk

), classically calculated from

2 Decoherence, which is induced by the interaction of quantum registers with the
external environment, destroys the superposition of states of the quantum registers,
which plays an essential role in a conventional quantum computation.



Spectral Representation of Some C.E. Sets With an Application 11

n1, . . . , nk

, can be regarded as the outcome of the measurement of F (N1, . . . , Nk

)
itself.

In general, the set of all theorems of a (recursively axiomatisable) formal sys-
tem, such as Peano Arithmetic or ZFC, forms a computably enumerable set and
not a computable set of the form (14). In what follows, we argue the plausibility
that, for general formal systems, the proof cannot be obtained immediately after
the theorem was obtained via the quantum procedure proposed in the previous
section.

Fix a formal system whose theorems form a computably enumerable set. As
before we identify a formula with a natural number. Let M be a Turing machine
such that, given a formula F as an input, M searches all proofs one by one and
halts if M finds the proof of F . Assume that Conjecture 8 holds. Then there
exists an observable A of an infinite dimensional quantum system such that A is
constructive and the eigenvalue spectrum of A is exactly the set of all provable
formulae. Thus, we obtain a provable formula as a measurement outcome each
time we perform a measurement of A; it is stochastically determined which prov-
able formula is obtained. The probability of getting a specific provable formula
F as a measurement outcome depends on the choice of the state | i on which we
perform the measurement of A. In some cases the probability can be very low,
and therefore we may be able to get the provable formula F as a measurement
outcome only once, even if we repeat the measurement of A on | i many times.

Suppose that, in this manner, we have performed the measurement of A
once and then we have obtained a specific provable formula F as a measurement
outcome. Then, where is the proof of F? In the quantum mechanical computer
discussed in Section 6, the computation history of the Turing machine M is
encoded in an eigenstate of the observable A, hence the proof of F is encoded
in the eigenstate of A, which is the state of the underlying quantum system
immediately after the measurement.

Is it possible to extract the proof of F from this eigenstate? In order to
extract the proof of F from this eigenstate, it is necessary to perform an addi-
tional measurement on this eigenstate. However, it is impossible to determine
the eigenstate in terms of the basis {|n1, . . . , nk

i} completely by a single mea-
surement due the principle of quantum mechanics. In other words, there does
not exist a POVM measurement which can determine all the expansion coe�-
cients {c

n1,...,nk} of the eigenstate with respect to the basis {|n1, . . . , nk

i} up to
a global factor with nonzero probability. This eigenstate is destroyed after the
additional measurement and therefore we cannot perform any measurement on
it any more. We cannot copy the eigenstate prior to the additional measurement
due to the no-cloning theorem (see [3]); and even if we start again from the mea-
surement of A, we may have little chance of getting the same provable formula
F as a measurement outcome.

The above analysis suggests that even if we get a certain provable formula
F as a measurement outcome through the measurement of A it is very di�cult
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or unlikely to simultaneously obtain the proof of F .3 This argument suggests
that for a general formal system proving that a formula is a theorem is di↵erent
from writing up the proof of the formula. Of course, since F is provable, there
is a proof of F , hence the Turing machine M with the input F will eventually
produce that proof. However, this classical computation may take a long time
in contrast with the fact—via the measurement of A—it took only a moment to
know that the formula F is provable.

As mathematicians guess true facts for no apparent reason we can speculate
that human intuition might work as in the above described quantum scenario. As
the proposed quantum mechanical computer can operate at room temperature it
may be even possible that a similar quantum mechanical process works in the hu-
man brain those o↵ering an argument in favour of the quantum mind hypothesis
[10]. The argument against this proposition according to which quantum sys-
tems in the brain decohere quickly and cannot control brain function (see [11])
could be less relevant as decoherence plays no role in the quantum computation
discussed here.
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