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Abstract

Bridge provides a challenging problem for Artificial Intelligence research due to 

the game being stochastic (from the shuffling of the cards), hidden information (from not 

being able to see opponents cards) and from the general complexities of the game. 

Research into Computer Bridge is in its relative infancy, with the American Contract 

Bridge League holding the first World Championships Computer Bridge competition in 

1997. With Bridge being a game that is more probabilistic and intuitive than Chess, it 

may be a better avenue of research for evaluating human-like intelligence. 

This paper will explore the possibility of applying Case Base Reasoning to the 

game of Bridge and will discuss the problems that arise from trying to do so, while 

comparing Case Base Reasoning to other techniques used in Artificial Intelligence.  
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Chapter1:

Case-Based Reasoning

1.1 Introduction

Case-based reasoning (CBR) is a technique that attempts to solve new problems 

by looking at the solutions to similar problems and using those to construct solutions to 

new problems1. The success of CBR is directly tied to the notion of similar problems 

having similar solutions. If a given task has similar problems that have wildly different 

solutions, then CBR is almost certainly doomed to fail for that task. But, if similar 

problems do have similar solutions, then CBR may provide a novel technique which is 

both simple and effective2.

The first part of a CBR system is the case base. A case base is effectively a 

database with a series of past prototype cases. A case should accurately describe the 

problem, state the given solution, and then somehow describe the success of that solution 

to the given problem. Once it comes time to find a solution for a new problem, the 

problem is compared against all previous problems within the case base. A similarity 

function is then used to calculate how similar the current problem is to each of the cases 

in the case base and the most similar cases are retrieved. Once the most similar cases 

have been found, the results of their solutions are evaluated. At this stage the CBR 

system may apply an adaptation function which would attempt to take the existing 

solution and makes it applicable to the current problem. 

1 Mántaras et al, “Retrieval, reuse, revision, and retention in case-based reasoning”, in The Knowledge 
Engineering Review 20(03): 215 – 240 2006
2 Riesbeck, C. and R. Schank. “Inside Case-Based Reasoning”. Hillsdale, NJ.: Lawrence Erlbaum 1989.
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Once the solution has been applied to a new problem, the results can be recorded 

and a new case can be authored and placed in the case base. While not immediately 

obvious, this actually means that CBR is a machine learning technique. The more cases it 

encounters, the more prototypical cases it has to address new problems.  Sometimes a 

proposed solution will not work, so when another similar problem is discovered a 

different solution used to the one previously can be attempted. Effectively this means that 

as the system attempts to solve more problems, the better it should become at solving 

them, although this will be dependant on a good application of CBR.  

There are several motivations for wanting to use a system like this. One such 

motivation is that the system offers justification for the choices it makes. A justification 

is simply a similar case or a series of similar cases that were retrieved and used in 

determining the solution given. A rule based system’s form of justification would have 

been to return back a series of executed rules which may happen to be far too elaborate or 

abstract for the user to follow. A system like an artificial neural network would not be 

able to offer any justification at all. Being able to look at a previous case and seeing that 

the solution used is straight forward and also helps in fine tuning and debugging. If the 

CBR system generates a response that is very inappropriate for a new problem, the 

justification case can be generated and the engineer dealing with the system can then 

discern why an inappropriate case was used. 

Conceptually, it is possible to build up a database which contains every possible 

problem instance in a domain with optimal answers for each. This would result in the 

problem domain being optimally solved. A CBR system could achieve the same result by 

having a good representative set of cases and an adaptation function which together 

captures the essence of the important aspects of the domain. More commonly however, a 

CBR system does not set out to give optimum results every time, and instead settles on 

good rather than optimal solutions. In fact, in a lot of CBR applications such as imperfect 

information games it would be impossible to give optimum results every single time 

without clairvoyance as elements such as luck and chance make it impossible to get 

perfect results every single time. 
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Perhaps the biggest advantage of using a CBR system is its conceptual simplicity 

and the ease of which one can often be implemented. A rule based approach in most 

domains would require the input of a domain expert to achieve good performance. This is 

obviously prohibitive for any individual who wishes to create such a system who does not 

have access to a domain expert. Even if an expert is available, it is possible that they 

simply cannot express how to solve problems in their domain as a series of rules, either 

because they are unsure actually as to what rules they are using, or because they use 

something more abstract like pattern recognition. A CBR system can be developed by a 

novice to the domain, without a domain expert, with relatively few lines of code, and still 

achieve very good performance simply by developing a good case base. 

In summary, a CBR system has the following components:

1. A domain over which it is attempting to solve problems.

2. A way to describe each case in a given domain

3. A collection of cases, known as a case base

4. A similarity function for computing similarity among cases, and a way of fetching 

similar cases 

5. An adaptation function for applying similar solutions to the case base.

The CBR life cycle is usually a cyclical process, composed of the six ‘REs’ as defined in 
Watson(2003)3. 

1. REtrieve the most similar case(s). 
2. REuse the case(s) to attempt to solve the problem. 
3. REvise the proposed solution if necessary. 
4. REview the proposed solution to determine whether it is worth retaining. 
5. REtain the new solution (if need be) as part of a new case. 
6. REfine the case-base over time. 

The following figure helps illustrate this process.

3 Watson, I. D. (2003). “Applying knowledge management: techniques for building corporate memories”. 
Amsterdam ; Boston, Morgan Kaufmann, c2003.
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1.2 The domain and adaptation

A domain comprises of a problem space and a solution space. The problem space 

is essentially every single possible problem situation in the domain, and the solution 

space is every possible solution that can be put forward. The problem space can be fairly 

small, for instance a CBR might be developed for a simple travel agent lookup system 

where a user chooses a country and a month of the year in which they would like to visit 

that country. The solution space would however be quite large, as it would include all the 

ways for a user to get to any place in the world at any given time using any mode of 

transport or accommodation in their system. In Bridge, the problem space is incredibly 

large as the possible number of deals is 52! / (13!)4, which evaluates to 

53,644,737,765,488,792,839,237,440,000 different deals. The solution space is much 

smaller as there are only 113 possible contracts that can be established in any given deal. 
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The success of a CBR system hinges on similar problems having similar 

solutions4. The following diagram attempts to show this relationship in a CBR system.

By comparing a new problem instance with similar problems, a solution can be 

hypothesized by estimating the solution based on similar solutions to similar problems. 

The adaptation function is used to create an estimation that takes into account the 

differences between the existing cases and the new problem. This allows results from 

cases with distant similarity to still be informative. Failing to include an adaptation 

function can mean that trying to get an answer from a case less than a certain threshold 

such as 80% will be completely fruitless.  But care needs to be made when designing an 

adaptation function. It often requires a fairly extensive level of domain knowledge to 

adequately change and adapt an answer to similar cases with any degree of accuracy. 

Making a perfect adaptation function would be virtually the same as creating a rule base 

4 Leake, D. B. “Case-Based Reasoning: Experiences, Lessons, & Future Directions”. Cambridge, MA, 
AAAI Press / MIT Press 1996.
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program that automatically knows what to do for any given hand. Besides being difficult 

to do, using a complicated adaptation function can slow down the system too much on a 

very large case base.

 Some CBR systems forego the use of an adaptation function. A CBR system may 

decide not to use adaptation because the creation of such a function is too difficult to do 

without extensive knowledge elicitation, or because of the time required to compute an 

adapted answer.  These systems may instead prefer to use a larger case base to receive a 

larger number of almost identical cases, providing an almost identical answer. Some CBR 

systems may be working with problems simple enough that no adaptation function is 

required.

1.3 The Case and the Case Base

As the domain can be quite large case design can be crucial to the success of the 

CBR system. If the system for authoring cases is lacking in detail, then it cannot 

adequately differentiate between cases. Missing out key detail in the case representation 

can lead to cases being matched as being identical when there are actually fundamental 

differences between them. Unless these differences are evident within the case 

representation, the system will never be able to tell the difference. Conversely however, a 

case representation that is too obtuse may make the task of creating a good CBR more 

difficult than it should be. A more complicated case representation would very well likely 

result in a more complicated similarity or adaptation function, which would slow down 

case retrieval and potentially result in worse performance than a system using a simpler 

case representation.

The cases themselves are not distilled knowledge. They simply describe actual 

events.  This is one of the biggest advantages of using a CBR system over a rule based 

system. Usually, describing and authoring a case is far simpler than generating an 

elaborate set of rules that attempt to cover every possible problem that can be thrown at 
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it.  Sometimes there may already be an established convention for representing cases in 

that domain.

Once a way of describing a case has been decided upon, the case base has to be 

generated. Sometimes such a database may already exist, and all that is required is 

developing a way to interface that database with the CBR system. When it comes to 

applying CBR to games, this could mean simply taking a series of cases from the 

historical play of actual experts. If the domain lends itself well to CBR, and if the system 

has been well designed, this can mean the CBR system makes expert decisions without 

any training time, without having to elicit knowledge from domain experts, with 

relatively little source code and while still offering justifications for decisions made. 

Sometimes however, no existing database exists for populating the case base for 

the CBR system. In this case a case base may be generated just through attempting 

random actions and recording the results. Even cases which apply bad logic are 

informative if there is a way to measure how successful each action was. If the system 

can tell that one particular decision was a bad one, then it can decide to perform some 

other type of action next time it encounters a similar case. This approach would mean a 

certain amount of time would have to be used in training the CBR system so that it gave 

good or even adequate results, but it means a case base can be generated even in the 

absence of any existing prototypical cases.     

  

1.4 The Similarity Function

Creating a case base can be an incredibly straight forward affair. Sometimes all it 

requires is taking an existing database and using it. However, for the system to work it 

needs a similarity function. The goal of this function is that for any two cases, it can give 

a value to represent how similar the two cases are. Usually this is represented as a 

percentage.  The most common way of computing similarity is through using the K-

Nearest Neighbor (KNN) algorithm. Informally, KNN will compute the similarity 

between the current hand and every other hand in the case base, and then the K most 
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similar cases are retrieved, and the most commonly successful action from those cases is 

the one used. More formally, global similarity is computed as follows:

ii

N

i
i WSTfSTSimilarity ×=∑

=

),(),(
1

Here, T refers to the target case for which we wish to compute the similarity, and S refers 

to all the cases that we are comparing it with in our case base.  The function f refers to the 

similarity function, the variable i refers to each individual attribute in the case, the 

constant n refers to the size of the case base and Wi refers to a weighting for attribute i  

that is used for evaluating the relative weight or value that any individual attribute will 

hold while calculating similarity.

Creating a similarity function is usually not as straightforward as obtaining a case 

base. Decisions need to be made that may be difficult to make without the input of a 

domain expert. For instance, what should the size of K be? If it is too large, then it may 

retrieve cases that are too dissimilar to be of use. If K is too small, then it may not look at 

enough cases to give a well informed answer. Another decision needs to be the exact 

weightings for each attribute in the case base. If these weightings do not accurately 

reflect the attributes actual importance in the domain, then it will incorrectly assess the 

cases similarity. The way in which similarity should be calculated for each attribute is 

also highly important, and not always immediately obvious. A given similarity function 

may well give a very accurate and useful result for similarity, but if it is too complicated 

then the system will struggle to compute the similarity for all cases in the case base. 

Having a poor similarity function will also mean that cases retrieved may not be the most 

relevant or useful.

It is difficult to create a similarity function with any real certainty about the 

weightings. The person designing the system will be required to make judgment calls on 

what they should be. Knowledge of how the similarity function should be implemented 

and what weightings to give to individual attributes can be obtained via knowledge 

elicitation. At the very least, that kind of information would be easier to obtain than a 

complex series of rules on the domain. Without access to a domain expert, the software 
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engineer can simply attempt to guess the similarity function and weightings. If the case 

base that is being used has large numbers of very similar cases it will not actually matter 

too much so long as the similarity function and weightings are good enough to recognize 

very similar or identical cases. If that is the case, then fine tuning the weightings or 

similarity function will not necessarily make much difference at all, as the same identical 

or very similar cases will be retrieved regardless. But as the case base is more sparse and 

diverse, the more important it is to have an accurate similarity function to find cases that 

are informative. 
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Chapter 2

Games in AI

2.1 Introduction

Serious attempts at making computer programs capable of playing games began 

in the middle of the twentieth century. Several papers in the 1950s on chess and checkers 

started decades of interesting research on how to make a program that could play these 

games at a competitive level5.  One big motivation for the popularity in research for game 

Artificial Intelligence is the possibility of using common reproducible environments 

suitable for testing new search, learning, and pattern recognition algorithms.  As the level 

of these programs increases, often they become contenders at the highest level of human 

play, making for several historical Man versus Machine showdowns, such as Tinsley and 

Chinook, and Kasparov and Deep Blue. Some games, such as Checkers, are now 

completely solved with optimum play6. Others, such as Go, still struggle to play at the 

novice level even with elaborate techniques7. Games where human play is significantly 

above that of computer play has prompted unique research into the psychology of players 

in an attempt to create programs that can mimic human cognition. 

Once a given game playing AI has reached world champion status, the question 

remains as to whether that is the ultimate satisfying goal? Is there any more need for 

research into AI that can play that game?  Perhaps the AI could be improved further to be 

more efficient, or to perform slightly better than the current computer champion. But 

improved efficiency would not be a particularly exciting goal, and nor for the most part 

would it be a sufficient one.  Perhaps the more interesting aspect of game AI is seeing 

5 C. E. Shannon. Programming a computer for playing chess. Philosophical
Magazine, 41 (7th series)(314):256–275, 1950.
6 Schaeffer et al, “Checkers is Solved” Science 14 September 2007: 1518-1522
7 Jacek Mandziuk  “Computational Intelligence in Mind Game”,  Springer Berlin / Heidelberg 
2007, Page 413
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what techniques work for what kinds of games. For instance, chess and checkers have 

had the largest success using brute force search algorithms, whereas the top computer 

backgammon player was developed using neural networks8. By experimenting with 

different techniques, and analyzing their success and failure, the problems unique to each 

game have been more thoroughly defined and analyzed.  Some of the most interesting 

tasks involve creating solutions to problems that do not require domain specific 

knowledge, with training techniques such as neural networks or with case base reasoning.

2.2 Chess

Chess is perhaps the most widely researched game in Artificial Intelligence.  The 

first well known Chess playing automaton was The Turk, created by Baron Wolfgang von 

Kempelen and revealed in 1770.  The Turk seemed to be an automaton capable of expert 

play, defeating famous individuals such as Napolean and Empress Catherine Russia.  For 

eighty-four years The Turk was demonstrated throughout Europe and America before 

being destroyed in a fire in 1854. Three years later, it was revealed that The Turk had 

been a hoax, and there had been a Chess expert sitting inside the machinery the entire 

time, controlling the moves played from within. It would take until the 20th century until 

machines were actually capable of performing the same kind of feats as The Turk.

 Perhaps the first working automaton to play Chess was El Ajedrecista9 in 1912, 

although it only played one end game situation where it controlled King and Rook against 

the players King. The automaton was guaranteed victory every single game it played, 

although it would not necessarily win the game in the smallest number of moves. By the 

standard of today, the automaton is not particularly remarkable, but at the time it was 

considered revolutionary. Still, it was a long way off from performing the kinds of 

miracles that The Turk seemed to be able to perform more than a hundred years earlier. 

This level of play would have to wait until the creation of computers.

8 Ibid, page 411
9 http://en.wikipedia.org/wiki/El_Ajedrecista

15



 In the last fifty years many attempts at creating a potent Chess playing computer 

bots have been made including Kaissa, Mac Hack, Chess 4.6, Belle, Cray Blitz, Hitech 

and Deep Thought10. This research and development of chess playing programs 

cumulated in the creation of Deep Blue.  Deep Blue was created by IBM and in 1997 

managed to defeat Gary Kasparov in a highly televised chess match.  After his defeat, 

Gary Kasparov accused Deep Blue of being another Turk. Kasparov claimed that IBM 

had pitted a Master chess player against him who used the computational power of Deep 

Blue to make informed choices11 . To demonstrate the plausibility of this, Gary 

Kasparov has since created a variant of chess known as Advance Chess where players 

would partner up with analytical computer bots to improve their level of play. 

Kasparov pointed out several instances within the match where Deep Blue played 

like it was a human. First was in game two, where Kasparov attempted to sacrifice a 

pawn for a long term positional advantage. Kasparov reasoned that computer chess 

players are generally greedy and would take pieces for a short term advantage. It also 

turned out that one of Deep Blue’s moves was a terrible error, and Kasparov could have 

threatened a perpetual check. The mystery was how a brute force algorithm could miss 

such a disastrous outcome within its own horizon? But regardless of whether Gary 

Kasparov’s accusations were correct, the algorithm employed by Deep Blue is a highly 

effective one.   

Deep Blue relied on brute force searching of game trees, specifically minimax 

trees with alpha-beta pruning. Using brute force to search many moves ahead is a simple 

but effective solution to the problem, with the most complicated portion being the 

heuristics which state whether or not a board position is a good one to be in. With this 

algorithm, a more powerful computer will actually play better than a slower one as it 

would allow the faster system to search more moves within the allocated time. With the 

increase in computational power, modern day chess playing programs employing brute 

force enjoy even more powerful searching capability than Deep Blue with modern 

programs like Fritz, Hydra, and Deep Junior continuing to play Grand Masters though 

with significantly less media attention than the Kasparov and Deep Blue match. While 

10 http://www.sciencenews.org/sn_arc97/8_2_97/bob1.htm
11 Hal Vogel “ Game Over: Kasparov and the Machine”, 23 January 2004 (UK), Documentary
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this approach is certainly effective, and would be considered a milestone from an 

engineering and programming point of view, there is still room to explore other methods 

which may closer map human cognition. 

David Sinclair in a paper in 199812 applied Case Base Reasoning to Chess.  It 

involved 16,728 games from current Chess grandmasters using a variety of strategies, and 

used Principal Component Analysis and the notion of “chunks” for encoding cases. A 

case-base would be retrieved for each individual board position, and the move made was 

recorded within the system. When new board positions are encountered the case base is 

searched for the most similar cases, as is usual in a CBR system.  Sinclair found that with 

a strict similarity metric in place, the quality of cases retrieved is very high, but fewer of 

them are retrieved. When relaxing the similarity metric, more cases are retrieved, but that 

they were of less quality.

2.3 Checkers

The approach for checkers has historically been the same as chess. However, it 

was a much simpler game. Only half the tiles on the board are used, and all pieces are 

identical before they turn into kings. As such, the game tree generated has a much lower 

branching factor and far more moves ahead can be evaluated by an Artificial Intelligence 

which wishes to brute force its way through the game. Jonathan Schaeffer of The 

University of Alberta created Chinook, which would become the first computer winner of 

a human world championship through the same method of brute force search that would 

later be adopted by Deep Blue13. The basic design was the same, with opening and end 

game databases, efficient search trees, and a well tuned board evaluation function. When 

Chinook became the winner of the checkers world championship it utilized an impressive 

end game database where any situation where there were seven pieces left on the board 

could guarantee either a win or a draw for Chinook, so long as victory had not already 

been decided. By 2007 Schaeffer managed to solve the game of Checkers entirely with a 

12 David Sinclair “Using Example-Based Reasoning for Selective Move Generation in Two Player 
Adversarial Games ” Proceedings of the Fourth European Workshop on Case-Based Reasoning  
(EWCBR-98): 1998, pages 126–135.
13 J. Schaeffer, R. Lake, P. Lu, and M. Bryant. “Chinook: The world manmachine
checkers champion”. AI Magazine, 17(1):21–29, 1996.
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game database that would guarantee at the very least a tie in every match it played, from 

start to finish. 

Blondie24 was a checker playing computer program created by David Fogel with 

a very different approach to the game14. It utilized a machine learning algorithm that 

combined a genetic algorithm with a neural network. Blondie24 initially trained just by 

playing repeated games against itself. Then, Blondie24 was unleashed onto the Internet 

Gaming Zone masquerading as a 24 year old blonde woman. Blondie24 played against 

165 people online and managed to achieve a rating of 2048, ranking her higher than 

99.61% of the player population on The Zone. Blondie24 only ever managed to beat 

Chinook on its novice difficulty so in regards to playing ability Blondie24 was inferior to 

Chinook. However, Blondie24 did not have any expert knowledge on how to play 

checkers at all. Programs like Deep Blue and Chinook had to get expert knowledge for 

programming their heuristic functions, while Blondie24 could theoretically have been 

programmed by a complete checker novice. The ability to play checkers was drawn from 

the experience of the games it played.

Case-Based Reasoning has also been applied to checkers.  CHEBR (CHEckers 

case-Based Reasoning) was created by Jay Powell, and used Automatic Case 

Elicitation15. As the game is played in real time cases are added to the case base. The 

system has a series of observations, or states, and a set of actions, which is a design 

similar to that used in planners. When the system comes across a new problem, it will 

first check in the case base for similar problems in the past to decide on which action to 

take, and in the lack of guidance it will perform a random action. It then evaluates 

whatever action was taken, and records firstly whether it was valid, and secondly how 

successful the move was. It was shown that despite the domain being defined so loosely, 

it could still get to a sufficient playing level just by playing more games.

14  David B. Fogel  “Blondie24: Playing at the Edge of AI”  , Morgan Kauffman,  2001
15 Powell, J. H., B. M. Hauff, J. D. Hastings. “Utilizing Case-Based Reasoning and Automatic Case 
Elicitation to Develop a Self-Taught Knowledgeable Agent”. Proceedings of the Workshop on Challenges  
in Game AI, Nineteenth National Conference on Artificial Intelligence. 2004
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2.4 Poker

Poker is a very different game to those mentioned previously. One of the biggest 

difficulties in creating an artificial intelligence that plays poker at a competitive level is 

that Poker is an impartial information game because other cards are hidden. Because of 

the stochastic nature of the game, it is impossible to solve Poker in the same manner that 

checkers was solved. It also means that a game tree search algorithm used in Deep Blue 

and Chinook simply do not lend themselves to this kind of game play. Poker is not a 

game just about probabilities, as it is a competitive game and players are expected to deal 

with bluffing and deception.   This means that such programs will typically have to 

implement features such as opponent modeling, risk management techniques, and 

probabilistic functions. 

Poker is a game of deception. With poker, the notion of objectively playing the 

game optimally is hard to define because of the uncertainty of the opponents cards. Due 

to this hidden information, ‘optimal play’ would have to be derived from probabilities, 

but it will also have to depend on the play of the opponent. For example, if a player never 

bluffs even in extreme circumstances, then it would be wise to assume they have a strong 

hand when they continue to raise, whereas no such assumption should be made about a 

player who wildly bluffs whenever their hand is weak. One possibility for a program to 

deal with this is to make no assumptions about the player and to develop a statistical 

model of their style of play as more games are played against that opponent. Another 

possibility would be to train a neural network to achieve this task, with the same learned 

function to be used against all people it plays against. 

The University of Alberta Poker Research Group headed by Jonathan Schaeffer, 

who also worked on Chinook, has been working on a number of poker playing programs 

for a number of years16. Two programs that have come out of this research are Poki17 and 

PsOpti18. Poki was designed to play against a full table of players on the poker table, and 

16 http://www.cs.ualberta.ca/~games/poker/  as of 20/10/2008
17 Davidson, A. “Opponent modeling in poker: Learning and acting in a hostile and uncertain environment.” 
Master's thesis, University of Alberta 2002.
18 Billings, D., N. Burch, et al. “Approximating game-theoretic optimal strategies for full-scale poker”. 
Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence.  2003
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PsOpti was designed with play against only one opponent in mind. Poki was tested 

extensively against real people using fake money, and was found to generate a profit on 

average, and was estimated to be at intermediate playing strength. Poki was developed as 

a rule based program. To create such a program and have it be effective, those creating 

the program either have to be domain experts or have access to a domain expert from 

which they can elicit knowledge from. Programs like Poki operate by having a series of 

ad hoc rules which represent codified knowledge elicited from an expert on how to play 

well. The problem with such programs is that their performance is often limited by the 

ease of which a domain expert can actually come up with a series of rules by which to 

play the game. With most reasonably complex games simply using a set of rules will not 

be enough to make a player an expert. There will be too many situations for an expert to 

realistically cover completely. An expert will tackle new problem instances using 

reasoning, logic, and past experience on similar experiences. The process of eliciting 

knowledge can take a very long time, and additionally can require large amounts of 

written code.  

A variant of Poki and another poker playing program from the University of 

Alberta called Loki use a technique known as simulation19. Simulation works by 

randomly considering different possible assignments of cards they may have, then 

performing a game tree search on each of those possibilities, and finally using the results 

of these game trees to inform as to which move should be taken. To determine in these 

game trees whether a player would fold, call, or raise, a probability triple (f , c, r ) was 

generated and used to guess what their action would be. The way in which this 

probability triple would be constructed would be through the use of rules, or game-

specific information. Loki and Poki both used opponent modeling techniques to help 

inform the betting decisions that would be made by each player. 

CBR has been applied to poker in Jonathan Rubin’s poker playing program 

CASe-based Poker player (Casper)20.  Casper is the main influence in this project’s attempt at 

19 Billings, D., L. Peña, et al. “Using probabilistic knowledge and simulation to play poker”. Proceedings of  
the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications of  
artificial intelligence conference innovative applications of artificial intelligence: 697-703. 1999
20 Jonathan Rubin,  “Casper: Design and Development of a Case-Based Poker Player”, Masters Thesis, 
University of Auckland 2007
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applying CBR to Bridge. Casper generated its case base from games played by Pokibot and 

Simbot, both created from the University of Alberta Poker Research Group, and both of 

which had been shown to be fairly successful playing against human opponents for money. 

Both had been developed through extensive knowledge elicitation from a domain expert. By 

using a case base developed from the play of both these programs, Casper effectively 

bypassed the knowledge elicitation phase. 

The different rounds of poker, preflop, flop, turn, and river, were all listed as separate 

cases within Casper’s case base. Each case has a set of attributes which are unique to that 

particular stage of the game, such as number of players, hand strength, pot odds, and so forth, 

and each attribute has its own similarity metric to be calculated using a simple ratio.  

The results were very favourable for Casper. It was first played against the 

University of Alberta poker playing programs, using a set of hand picked weights. The results 

are as follows.
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Casper01 and Casper02 both managed to break roughly even in their play against the 

University of Alberta programs, despite not having elicited knowledge. Casper01 and 

Casper02 differed only in that Casper02 had a larger case base. Casper was tested against a 

variety of these bots, including Jagbot an aggressive non-adaptive player, using a variety of 

weights, including ones generated from play. Then Casper was put online and played against 

real human opponents. 

21 ibid
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In this case, Casper was the version of Casper with hand picked weights and 

enlarged case base, and CasperGeneral was using derived weights. When playing with non-

real money, Casper seems to have won a constant profit on average. The  next obvious step 

was to put Casper online against real people, for real money, and to hope that riches 

followed. 

22 ibid
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Unfortunately, when played for real money, Casper made a constant loss. There 

could be a number of reasons why the results differed so much from when it was played with 

false money. One obvious possibility, though not expressed in Rubin’s Thesis, is that it was 

not playing on a fair playing field. It could be that there was an agent on the server side who 

Casper was playing against that had some kind of unfair advantage, such as being able to 

dictate the deals, or having perfect knowledge as to the hands of their opponents. The shape 

of this downward trend does look like one that would trap an individual with a gambling 

problem.  A constant downward trend is usually partnered with an upward trend that makes 

up for most of the losses incurred, but which is then replaced by an even more severe 

downward trend until the losses are even greater, before starting another upwards trend. 

However, there is another reason for this downward trend proposed by Rubin that is also very 

plausible. 

23 ibid
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One observation made by Rubin is that people who play poker online for real money 

are likely to be stronger players than those that play for fake. Additionally, the way they play 

the game will be quite different. When playing for fake money, a player might be more ready 

to make very large bids because they are not losses they actually have to incur. When playing 

against real people for real money, the average similarity of cases for preflop, flop , and turn, 

were less than 50%, and was only 69% for the river, compared to the roughly 90% average 

that Casper enjoyed against the University of Alberta programs. 

In summary, Casper enjoyed excellent performance considering it used no 

knowledge elicitation in its creation. It has also shown that CBR can do very well in an 

imperfect information game such as Poker. This leaves the possibility of it being applied to 

other games, which may also be played online against real people, and perhaps for real 

money, using the same techniques. 

2.5 Bridge

Bridge has more in common with Poker than it does with Chess or Checkers in 

that it is also a stochastic imperfect information game. However it also has a few extra 

complexities. It is a game played in partnership, and is far more complex and difficult for 

a new player to start and learn how to play. Chapter 3 will go more into the rules of 

Bridge. There has been less research into Bridge than there have been into other games 

discussed up to this point, including Poker, and most of the progress in Bridge has 

happened within the last two decades. One of the earliest papers on Bridge was authored 

by Berlekamp in 197624. This paper was not interested in how to actually play Bridge, but 

rather it was on how he had came up with a bidding scheme which could tell precisely 

which player had exactly what card, for every card in the deck, though this process was 

artificial as it required all four players to cooperatively work together, and the final bid 

was made without any regard to its viability for the play of the hand. In Zia Mahmood's 

book, Bridge, My Way (1992), Mahmood offered a one million pound bet that no four 

person team of his choosing would be beaten by a computer. In 1996 with the improved 

play of Computer Bridge players, Mahmood was forced to withdraw his bet25. 

24 Berlekamp, E. “Cooperative bridge bidding “ Information Theory, IEEE Transaction On , Volume 2,  
Issue 6, Nov 1976 Page(s): 753-756
25 http://www.imp-bridge.nl/articles/The_GIB2Zone.html
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Since 1997 the World Computer-Bridge Championship has been organized by the 

American Contract Bridge League, and have since then has had a number of recurring 

entries to the competition. The regular entrants are Bridge Baron, WBridge5, Jack, Micro 

Bridge, Q-Plus Bridge, and Blue Chip Bridge.  The first champion in 1997 was Bridge 

Baron. 

Bridge Baron developed by Stephen Smith, Dana Nau, and Thomas Throop 

apparently consists of “fifty-thousand lines of C code dedicated solely to the Bridge 

engine which calculates which bid to make and what cards to play26.”  The way in which 

Bridge Baron wrote its rules for bid play is typical of most of the Bridge playing 

programs. They utilize a set of ad hoc rules to find out what bids should be made. Most of 

the focus on improving the play of Bridge programs is on their performance during the 

play of the hand, not the bidding phase. Research into the bidding phase of Bridge is far 

more limited. The reason is likely because with elicited knowledge an effective bidding 

strategy can be put in place through a series of ad hoc rules, whereas the play of the hand 

is a complex game tree problem all in itself which lends itself to a variety of different 

search techniques. For instance, the papers written on Bridge Baron focus almost 

exclusively on it’s Hierarchical Task-Network planning techniques used for the play of 

the hand. However, this is only half the game, and the play of the hand can be futile if a 

good contract is not reached during the bidding phase. 

GIB created by Mathew Ginsberg however is a Bridge playing program that 

attempts to apply search to both the bidding and play of the hand phase.  On bidding 

Ginsberg has said “It is possible to use search-based techniques here also, although there 

is no escaping the fact that a large database of bids and their meanings is needed by the 

program. (Bidding is, after all, a communicative process; the meanings of the bids need 

to be agreed upon.)”27

For the bidding phase, GIB uses a Borel simulation. Given a bidding situation, the Borel 

simulation generates a number of different deals consistent with the information taken so 

26Smith Et Al,  “Success in Spades: Using AI Planning Techniques to Win the World
Championship of Computer Bridge”, IAAI-98/AAAI-98 Proceedings, pp. 1079–1086, 1998
27 Matthew L. Ginsberg  “GIB: Steps Toward an Expert-Level Bridge-Playing Program” Proceedings of  
the Sixteenth International Joint Conference on Artificial Intelligence: 584-593, 1999
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far from the players hand and current bidding. Then for each possible bid that can be 

made, paired with each deal generated, a database is queried which will project the likely 

outcome of the auction if the bid is made, and the bid with on average the best outcome is 

picked.  Ginsberg notes several problems with this approach. Firstly, it does not take into 

account double dummy techniques where the bids are intentionally leaving out 

information about the hand. Human experts often decide not to reveal too much 

information about their hands to their partner because that information is also declared to 

the opposition who may attempt to use it during the play of the hand. The database being 

used also can create difficulties. For instance, if the database assumes a more 

conservative play from the partner, then it will require a more aggressive approach from 

the player to compensate. Lastly, there may be gaps in the database for rare outlying 

cases, such as a 7D bid. Because the case is so rare, the problem will be encountered so 

infrequently that it may escape notice for a very long time. 

There have also been a couple of attempts at applying artificial neural networks to 

Bridge. DeLooze and Downey28 identified four different types of bids a player can make.

1. Asserting Bids. "By making this bid, I assert that my hand has these properties"

2. Denying Bids. "By making this bid, I deny that my hand has these properties"

3. Asking and Answering Questions Bids. "If your hand is of type 1, make bid 1; if it is 

of type 2, make bid 2, etc. (e.g. asking how many aces your partner has)

4. Interrupting Bids. "The primary purpose of this bid is to stop the opponents 

communicating”

DeLooze and Downey set up an artificial neural network implementing a Kohenen Map, 

and trained it using a convention system suggested by the American Contract Bridge 

League. The end result was a program capable of making Bridge bids named BridgeSom, 

however it was only developed to make asserting bids. The experimental method 

described in the paper however was not vigorous. It played twenty four distinct games 

against Jack, each followed up with a mirror match where the board positions were 

swapped to compare how the two programs bid on identical hands. The actual play of the 

hand was handled by Jack in both situations. All of the special bidding features of Jack 

28Delooze, L, L.; Downey J  “Bridge Bidding with Imperfect Information”,  Computational Intelligence  
and Games, 2007, CIG 2007, IEEE Symposium On 1-5 April 2007 Pages 368-373
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were disabled, and each board was setup for contracts in No Trumps rather than in 

specific suits. The evidence from this rather limited number of games played showed 

Jack outperformed BridgeSom, even with its features turned off, but not by a large 

margin. There are issues with using Jack to measure whether a bid was a good one made 

or not, as it uses a technique called simulation which generates a set of random deals that 

are consistent with the information provided and performs a game tree search on each. 

This simulation technique however is not deterministic since it depends on random deals. 

Also, BridgeSom did not use a large enough sample size to tell whether or not it really 

could make Bridge bids on par with Jack. But it does show a technique capable of 

making bids in Bridge, without knowledge elicitation, and the results of which can be 

expanded upon by extending its functionality to denying bids, asking and answering 

question bids, and interrupting bids. 

2.6 Other Games

The most well known Backgammon playing program is TD-Gammon written by 

Gerald Tesauro of IBM, which implements temporal difference learning and is the most 

archetypal example of success of machine learning applied to games29. The evaluation 

function for TD-Gammon is implemented using a multilayer perceptron neural network 

trained using backpropagation. According to assessments by two champion Backgammon 

players, Bill Robertie and Kit Woolsey, TD-Gammon’s level of play is at , or possible 

even above, the level of the worlds top Backgammon players. 

Another game where humans are outperformed by computer players is Othello. In 

1997 Michael Buro’s program Logistello beat world champion player Takeshi Murakami 

with a score of 6-030. Logistello's evaluation function is based on disc patterns and 

utilized a forward pruning method which cut short most of the irrelevant subtrees in the 

overall game tree. 

29 G. Tesauro. “Temporal Difference Learning and TD-Gammon”. Communications
of the ACM, 38(3):58–68, March 1995.
30 M. Buro. “Improving heuristic mini-max search by supervised learning.”
Artificial Intelligence, 134:85–99, 2002.
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The game of Go is considered one of the most demanding and challenging areas 

of research in game AI. Despite the game having simple rules, and only one kind of 

playing piece, no one has yet managed to create a program capable of playing the game 

well. Even the most advanced Go playing programs can be defeated by amateur players. 

One of the biggest reasons for this is that Go has an incredibly large branching factor 

which is so large it effectively eliminates any brute force search method. Several distinct 

features of the game also make analyzing a single static board arrangement several orders 

of magnitude slower than other games. 

 

Chapter 3

The Game of Bridge
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3.1 Introduction to Bridge

A game of bridge requires four players, a deck of cards, and a table. The four 

players will form two partnerships. Partners sit opposite each other on the table. It is 

usually customary to refer to the players by the compass positions with North and South 

being partners against East and West. The dealer distributes the shuffled cards amongst 

all four players, so each will have thirteen cards face down.  Each player can look at their 

own cards, but they cannot see their partners or their opponents. The game itself has two 

phases, a bidding phase, and then the play. The bidding phase is a section of the game 

where the partnerships try to establish a contract to be used in the play of the hand. This 

phase is the main focus of this dissertation. The play of the hand follows, and the contract 

states which suit is trumps (if any), and the number of tricks that need to be won for the 

declarers partnership to establish their contract.  At the end of play, the players count up 

the number of tricks won by each side to determine whether or not the contract had been 

made, and the number of any overtricks or undertricks. There are two main scoring 

systems used to calculate the score once the play of the hand has finished, one is Rubber 

Bridge, and the other is International Match Points.

3.2 The Bidding Phase

The objective in a game of Bridge is to bid and make a contract. Each bid a player 

makes has a number and a denomination. Each player has thirteen cards, and there are 

thirteen rounds in the play of the hand. The number on the bid states how many rounds of 

play that the partnership will need to win. Regardless of which bid a player has 

established, they will still need to win a majority of the tricks. The numbering has this in 

mind. The number of tricks they will need to win is six plus the number on the bid, so in 

the case of the contract 1S, the partnership will have to win seven tricks. If the bid was 

7S, the partnership would have to win all thirteen tricks. The denomination can be any of 

the suits, or ‘NT’ which stands for No Trumps. The denomination of the final bid made at 

the end of bidding will establish which suit should be trumps. 
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When a bid is made it must be a higher suit at the same level, or any suit at a 

higher level than one made previously. The bidding order is clubs, diamonds, hearts, 

spades, then no trump. So for instance, the bidding could go 1C, 1H, 1NT, 2D.  Also, the 

lowest bid that can be made is 1C, and the highest is 7NT.  Players also have the option 

to bid double and redouble. A double has the effect of increasing the trick score if the 

contract makes and the increasing the trick penalty if it fails. A redouble increases the 

bonus or penalty even further. A player can only give a double bid if the last bid made 

other than pass was their opponents. Also, a player can only redouble if the opponent 

attempted to make a double bid on their previous bid. A double is usually used by a 

player if they do not believe their opponents can make their contract. Finally, if all four 

players pass initially with no bids, the cards are reshuffled and a new game is played.

 3.3 The Play of the Hand

At the end of the bidding, one player will become declarer. Declarer is the first 

member of the partnership that bid whatever suit the contract is now in. The declarer has 

control of both their hand and that of their partner during the play. Their partner is then 

on referred to as Dummy, and they simply follow the instructions of the declarer. The 

player sitting on the declarers left makes the opening lead, placing a card on the table so 

all the other players can see it.  For all the other tricks, the person who won the previous 

trick has the lead. 

After the opening lead, the dummy displays their hand to the entire table, 

arranging the cards in suits with trumps on the right hand side. Their duty is simply to 

comply with whatever declarer’s instructions are as to what they should play. On any 

lead, the other players will have to follow the same suit as the one that has already bid so 

long as they can. If they do not have any card in that suit, they may play any card in their 

hand. Unless the card they play is in the trumps suit, it will automatically be discarded. If 

the card played is in trumps, then it can only be defeated by a card higher than it in the 

trump suit. When a player is leading, they can play any card in their hand. 

31



The card that wins the trick is the highest card dealt in the suit lead, unless a card 

in trumps is dealt. On any trick containing a trump, the highest trump wins the trick. At 

the end of each trick, if the trick is won for the partnership then the players put their card 

vertically face down. If the trick was lost, then they place it horizontally face down.  At 

the end of all three rounds, the cards are counted up. A contract is made perfectly if they 

won exactly the number of tricks they said they would. A partnership wins an overtrick 

for every trick they won on top of the established contract. The number of undertricks is 

the number of tricks the partnership was short of making the contract by. 

3.4 The value of a hand

To be able to know what to bid when information about the other players’ hands 

is limited, players need a way of evaluating the strength of their own hand. As such, there 

is a points system used for assessing the strength of a hand. Simply, points are given to 

each of the high cards. An Ace is worth four points, King is three, Queen is Two, Jack is 

1, and the other cards are not worth any points. As such, there are forty high card points 

in the entire deck. 

Additionally, the length of suits helps the trick taking potential of the hand. Some 

players choose to adjust their score based on suit length. If they have a void suit (one with 

no cards) they add three, if they have a suit with only one card, they add two, and a suit 

with only two cards adds one. However, players do not count a short suit in partner’s 

main suit as an asset, and they do not count short suits as assets for no-trump bids. This 

scoring scheme only comes into play once it has been established there is a good fit on 

one of the suits for the two partners. Points are then used to judge how high to bid.

3.5 Conventions
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The most complex portion of the bidding phase is the conventions. To reach an 

optimum contract without any undertricks or overtricks, partners have to exchange 

information. Without conventions, bids would just give a vague inkling of overall hand 

strength and suit preference. Conventions are used so that the partner will know 

unambiguously what a players hand looks like. Each player can even adopt their own set 

of conventions, and can potentially come up with their own if they so wish. The only 

requirement is that they need to inform their partner what their bidding conventions are, 

and also have to say what they are if their opponents ask.  A rule based Bridge playing 

program would have its own set of conventions encoded in, and have documentation 

explaining the rules used. Without knowing the conventions, it is difficult to tell what 

another player’s hand means. One example is two commonly used conventions which are 

mutually exclusive, the Strong Twos and Weak Twos. Strong Twos is a convention 

where players with a particularly strong hand in a particular suit will open at the two level 

instead of the one level to indicate extra strength in their hand. Weak Twos are used 

when a player actually has a hand too weak to open at the one level, but they have extra 

length in a particular suit. A Strong Two seems like it would be more intuitive, but the 

Weak Two is still very commonly used. As the player is unable to make a bid at the one 

level, it is likely that the opposing partnership will be able to make a contract, and 

opening at the two level will make it harder for them to exchange information about their 

hands and to reach an optimum contract. Both conventions are useful, but are obviously 

exclusive. They are identical looking bids that will mean very different things. 

A single partnership can have two players using different conventions. All that is 

required is that each player knows how they should interpret their partners bids. Some 

conventions, such as Gerber or Blackwood, ask for specific responses from the partner. If 

the partner does not use that convention, then that bid should not be made as there is a 

possibility that the partner does not know how to properly respond. 

3.6 Online Play
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There are several free and subscription based Bridge servers available to play on 

over the internet. As mentioned previously Jonathan Rubin’s Casper was the main 

driving motivation for attempting this project. In that project, after Casper had been 

trained against Poker playing programs developed at the University of Alberta, it was 

then moved online and played against real people for both fake and real money.  One 

long term goal in developing a CBR based Bridge playing program would be to also take 

it online. 

Currently, the largest online Bridge service would be Bridge Base Online31. It has 

over a hundred thousand active and registered users, and generally has several thousand 

people online at any given time32.  Bridge Base Online allows for a variety of scoring 

systems and tournament modes, and also offers the facility for players to play online for 

real money. 

Bridge Base Online encourages casual play between strangers. To accommodate 

the different bidding systems used by different players, players are required to fill out a 

convention card detailing the list of conventions used. 

31 http://www.bridgebase.com/
32 http://online.bridgebase.com/intro/introduction.php
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As this figure shows, the conventions that players use are heavily detailed, and can be 

easily modified by any player who wishes to use a different system. 

3.7 Bridge Probabilities

An important part of Bridge is mathematical probabilities. To decide on which 

strategy is going to have the highest likelihood of success, a declarer requires at least a 

rudimentary knowledge of bridge probabilities. The following are some a priori 

probabilities about how the deck can be dealt four ways.

High Card Points:

The Following table shows the probability (as a percentage) of a freshly dealt 

hand having a certain number of high card points. The actual maximum number of high 

card points a player could possibly have is thirty seven, but this table only goes up to 

twenty three as the possibility of getting any higher than that is so incredibly small.
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hcp Probability

0 0.4%

1 0.8%

2 1.3%

3 2.5%

4 3.3%

5 5.2%

6 6.6%

7 8.0%

hcp Probability

8 8.9%

9 9.4%

10 9.4%

11 8.9%

12 8.0%

13 7.0%

14 5.6%

15 4.5%

hcp Probability

16 3.3%

17 2.3%

18 1.6%

19 1.1%

20 0.6%

21 0.4%

22 0.2%

23 0.1%

33

The table above shows that the probability of falling within the point range of 7-12 points 

is around 52%. That is only five possible point scores out of forty seven.  

Hand Shape:

The following table shows the probability (as a percentage) of a fresh hand having 

a certain pattern. The # column corresponds to the number of different suit permutations 

there can be to give that particular shape. 

33 Table taken from www.wikipedia.org/Bridge_Probabilities/
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Patter
n

Probability #

4-4-3-2 21.55% 12

5-3-3-2 15.52% 12

5-4-3-1 12.93% 24

5-4-2-2 10.58% 12

4-3-3-3 10.54% 4

6-3-2-2 5.64% 12

6-4-2-1 4.70% 24

6-3-3-1 3.45% 12

5-5-2-1 3.17% 12

4-4-4-1 2.99% 4

7-3-2-1 1.88% 24

6-4-3-0 1.33% 24

5-4-4-0 1.24% 12

Patter
n

Probability #

5-5-3-0 0.90% 12

6-5-1-1 0.71% 12

6-5-2-0 0.65% 24

7-2-2-2 0.51% 4

7-4-1-1 0.39% 12

7-4-2-0 0.36% 24

7-3-3-0 00.27% 12

8-2-2-1 00.19% 12

8-3-1-1 00.12% 12

7-5-1-0 00.11% 24

8-3-2-0 00.11% 24

6-6-1-0 00.072% 12

8-4-1-0 00.045% 24

Pattern Probability #

9-2-1-1 0.018% 12

9-3-1-0 0.010% 24

9-2-2-0 0.0082% 12

7-6-0-0 0.0056% 12

8-5-0-0 0.0031% 12

10-2-1-
0

0.0011% 24

9-4-0-0 0.0010% 12

10-1-1-
1

0.0004% 4

10-3-0-
0

0.00015% 12

11-1-1-
0

0.00002% 12

11-2-0-
0

0.00001% 12

12-1-0-
0

0.0000003% 12

13-0-0-
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These thirty nine entries show all the different possible hand shapes that can occur. Five 

of them have more than a ten percent chance of occurring, and the most common is 

4-4-3-2. As there are twelve different permutations for this shape, there is about a 1.7% 

chance that any given two hands will have the 4-4-3-2 shape and share the same hand 

distribution. This figure is much lower for most other hand shapes, for instance the 

chance of having two hands that are 5-4-3-1 with the same suit distribution is 0.54%. 

Number of Possible Deals:

The next table shows the number of possible deals that can exist. As the 

difference between two suits that differ by one card, we might consider them 

indistinguishable if one has the two of hearts and the other has the three of hearts. An x 

corresponds to where we no longer care about the actual value of cards that low, but just 

their suit. So the first entry is where the only low card is those cards numbered with a 

two, and the last entry is where we do not care about any of the cards, but only their suits. 

To consider just how big the possible number of deals is, if you were to ask how 

much area someone would need to display all possible deals where each deal only took 

up one square millimeter, the answer would be more than a hundred million times than 

the size of the earth. 

34 Table taken from www.wikipedia.org/Bridge_Probabilities/
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Suit composition Number of deals

AKQJT9876543x 53,644,737,765,488,792,839,237,440,000

AKQJT987654xx 7.811,544,503,918,790,990,995,915,520

AKQJT98765xxx 445,905,120,201,773,774,566,940,160

AKQJT9876xxxx 14,369,217,850,047,151,709,620,800

AKQJT987xxxxx 314,174,475,847,313,213,527,680

AKQJT98xxxxxx 5,197,480,921,767,366,548,160

AKQJT9xxxxxxx 69,848,690,581,204,198,656

AKQJTxxxxxxxx 800,827,437,699,287,808

AKQJxxxxxxxxx 8,110,864,720,503,360

AKQxxxxxxxxx
x

74,424,657,938,928

AKxxxxxxxxxxx 630,343,600,320

Axxxxxxxxxxxx 4,997,094,488

xxxxxxxxxxxxx 37,478,624
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Chapter 4

First Attempt, CBridge1

4.1 The proposal

The intention of this project is to create a CBR system that applies itself to the 

game of Bridge. Jonathan Rubin’s CBR system Casper mentioned in Chapter 2 showed 

that CBR can work effectively for imperfect information games such as Poker. The 

intention was to try and extend this to another card game Bridge using the same 

methodology. 

The first attempt was CBridge1. The test was to see whether CBR could be 

applied to the simplest case of bidding, the opening bid. If it could not work here, then 

attempts to extend the system would be futile. The desire was to eventually have a full 

Bridge playing program that uses CBR successfully. This desire came out of the success 

of Casper, and seeing on overall lack of research into AI for Bridge compared to other 

games.  Bridge Baron, one of the worlds top Bridge playing programs is reportedly 

50,000 lines of C code, which are mostly ad hoc rules for the bidding and play of the 

hand written by a domain expert, and still only plays at the Intermediate level. With this 

in mind, a bridge playing program based on CBR would be an achievement even if it 

played at a lower level, due to a CBR implementation having a significantly shorter 

development time.

The intention of CBridge1 was to show how effective CBR could be with a 

simple implementation. As such, it uses a very straight forward application of CBR. 

CBridge1 uses an existing case base and does not revise it with its own additions. The 

similarity function is simple, favouring an implementation that is quick to compute and 

35 Table taken from www.wikipedia.org/Bridge_Probabilities/
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logically straight forward without the need for knowledge elicitation from a domain 

expert. CBridge1 also forgoes the use of an adaptation function as at this point of the 

game, all bids are valid, and many of the bids are made under very specific conventions 

and are difficult to adapt in terms of the running time required to do so, and the amount 

of code required to implement such a function. To adequately create an adaptation 

function for Bridge bidding would almost certainly require domain expertise.

4.2 The CBridge1 Case Base

As CBridge1 was designed with only the opening bid in mind, a fundamental 

problem arose. If CBridge1 only made the opening bid, and did not play the play of the 

hand, how could you measure success? Without such a way to quantify the success of the 

opening bid it would be impossible to generate a case base from scratch by making 

random bids. So, the idea was to get an established case base. One thought would be to 

try and find a repository of actual games played by actual experts. However there are two 

problems with this even if such a repository was found, one would be trying to find a way 

to efficiently automate the extraction of the information from the source, the other is a 

problem to do with conventions. As mentioned in the previous chapter, each player 

adopts a series of conventions which is meant to tell their partner what they have in their 

hand. However, players typically adopt any set of conventions that they want. The only 

requirement is that their partner knows what conventions they use beforehand. This is 

relevant even on the opening bid. Some players state that 1NT means that they have 

12-14 high card points, while others would have it at 14-16. If a case base was used from 

a large variety of different experts, then it is highly likely they would operate under 

different conventions, and the case base would be highly inconsistent as to what to bid in 

different situations. Additionally, if this program was to play against any humans, there 

would be a requirement to tell the partner what conventions are being used.  If the case 

base is populated by games using a large variety of different conventions, then its play 

would be inconsistent, and it would be impossible to give a list of conventions being 

used.  Because of this, all the cases must come from sources using identical conventions. 

The easiest way to go about this would be to take all the cases from the same source.
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The source that was chosen for the case base is WBridge5. WBridge5 is a Bridge 

playing computer program that has won the World Championships Computer Bridge in 

2005, 2007, and 2008, and is freely available online36. WBridge5 has facilities for playing 

games against itself and keeping logs. This became the source of the case base for 

CBridge1. As there was no other measure that could be used for evaluating how good a 

move is, CBridge1 makes the assumption that any decision made by WBridge5 is a good 

one.  When deciding on an opening bid, CBridge1 looks at its database of WBridge5 

games and performs KNN to retrieve the most similar cases. Then, CBridge1 just picks 

the most commonly made bid from the retrieved cases.  

This method is clearly an attempt to make a program that mimics WBridge5 

without knowing its implementation. As it has no other way of evaluating how good a bid 

is, it will never consistently outperform WBridge5 while only having WBridge5 cases in 

the case base. In the best case scenario, it would make the same bids as the World 

Computer Bridge Champion. The reason for this is because it is very difficult to come up 

with a good way to measure how good a bid is. One alternative would be to see whether 

the opening bid made could have resulted in a contract the partnership could win during 

the play of the hand. This would prove problematic on a number of conventions, where 

stating certain bids demands a response from the partner regardless of the strength of 

their hand. Usually though in response to an opening bid a player can pass if they have 

less than five points. This would mean that the initially bid contract would have to be 

played. While this would indicate when a bid should certainly not be made, it is not a 

very good measure of when it should be. A bid is meant to convey information to the 

partner. Opening with 3S would tell the partner that the player has a very strong hand 

with spades as the strong suit. The partnership may in fact have 3S as their perfect 

contract, but this could be because the partner happens to hold a strong spade suit, not the 

player. Going by this information which tells partner of a very strong spade suit, they 

would likely try to raise the bidding further which would result in a failed contract. As 

such, simply going by the bid that WBridge5 would suggest is simpler and likely more 

36 http://perso.chello.fr/yvescostel/
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accurate. Although this may seem like it intends to copy WBridge5, if a CBR program 

such as CBridge1 had access to a more varied case base that took cases from multiple 

sources but which stuck to a set series of conventions, then it could potentially play quite 

differently to WBridge5.

4.3 The CBridge1 Similarity Function

As the CBridge1 system was only playing the first opening bid, the only 

information available to the player is the cards in their own hand.  As this project lacked 

the input of a domain expert, the implementation of the similarity function is fairly 

simplistic. As such, it can calculate the similarity between two cases faster than if there 

was a complex implementation. Additionally, if CBridge1 succeeded with a relatively 

straightforward similarity function it would highlight the ability of CBR to work well 

with a minimum amount of domain expertise.

The focus of the similarity function implemented in CBridge1 takes into account 

the two most important factors used by human bridge players when deciding on bidding. 

The first is high card points.  Internally, all of the cases are read from the case base, and a 

list of Hand objects are created for each one. In the constructor of the Hand class, the 

number of high card points is calculated and stored as an instance variable.  Each Hand 

object will have a value for high card points somewhere between zero and forty.  A 

simple ratio of the two is calculated, and the weighting given to the attribute is fifty-one 

out of a possible one hundred. As such, the number of high card points is the attribute 

with the largest overall weight in the similarity function. This is because in a game of 

Bridge, high card points is the most important factor in deciding on whether or not to bid 

in the first place, and at which level. Most conventions have very strict requirements on 

the number of points that the player must have to make a certain bid, with usually only 

about one or two points of leeway. 

The second factor is the shape of the hand. This factor takes into account the 

length of each individual suit. While high card points will usually determine whether or 
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not to bid, and at which level, the shape of the hand will usually state which suits should 

be bid. To do this, a simple ratio is calculated based on the lengths of each individual suit. 

Each ratio for each suit is given a weighting of nine out of a possible one hundred, so in 

total this gives shape of the hand a weighting of thirty-six. 

The final factor taken into account in calculating similarity is the actual specific 

cards within each hand. Surprisingly, this is a factor not strongly taken into account by 

actual Bridge players. Generally, bids made do not describe particular cards within the 

hand and instead describe high card points and suit length.  Some bids however, do count 

on specific cards, for instance under the Blackwood convention a bid of 4NT is used to 

ask how many aces the partner has, and the bid replied would contain this information. 

Additionally, players will still look at the specific cards in the suit to find things such as 

trick winners, or sequences. This factor is still fairly small compared to the overall 

number of high card points and the shape of the hand however. As such, for every card 

which belongs in both hands, 1% is added to the similarity score, for a maximum of 13%.

4.4 CBridge1 Initial Results

The initial CBridge1 test ran with 2091 cases in the case base generated by 

WBridge5. The K value in the KNN algorithm was set to ten. CBridge1 was tested by 

going through each individual case, removing it from the case base, and then seeing 

whether CBridge1 could give the original bid based on the remaining cases in the case 

base. 

Of the 2091 cases in the case base, 1094 of them returned the correct original 

bids, which is around 52% of the time. In an attempt to try and improve these results, 

different values of K were attempted, and the results are shown in the following table.
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K Bids made 

correctly

Percentage correct Average Similarity

1 773 36.97% 85.20%
2 773 36.97% 83.85%
3 894 42.75% 82.88%
4 955 45.67% 82.11%
5 993 47.49% 81.45%
6 1034 49.45% 80.89%
7 1054 50.41% 80.39%
8 1069 51.12% 79.93%
9 1082 51.75% 79.50%
10 1094 52.12% 79.10%
11 1100 52.60% 78.72%
12 1109 53.04% 78.38%
13 1117 53.42% 78.06%
14 1111 53.13% 77.75%
15 1115 53.32% 77.47%
16 1114 53.28% 77.19%
17 1110 53.08% 76.92%
18 1112 53.28% 76.67%
19 1113 52.22% 76.43%
20 1114 53.28% 76.20%

These results are both disappointing and informative. It was expected that the first 

two values would share the same percentage correct, as when the two cases differed as to 

what bid to be made, the decision of the case with higher similarity is always favoured. 

What is surprising though is how cases even with 85% similarity use a different bid the 

majority of the time. Additionally, a very noticeable improvement can be observed very 

quickly by increasing the value of K, although these improvements plateau after a peak of 

53.42% bids being made correctly where K is set to 13. 

So what can be observed? The average similarity of cases retrieved starts 

dropping quite quickly. This would indicate that the problem space is quite diverse, and is 

expected as the number of possible deals is 52!/(13!)4. What seems most peculiar is that 

the information being provided by less similar cases is actually increasing the 
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performance of CBridge1.  But then, the results plateau out at around 50%.  But as the 

average similarity of retrieved cases continues to drop, the performance does not get any 

worse. In fact, this does not change even setting when the value of K is as high as sixty. 

It is about this point that a painful hypothesis is realized. A bid of PASS is the 

correct bid roughly half the time. As the value of K increases, a larger number of 

irrelevant cases are looked at. Roughly half of these will pass, and since the remaining 

hands will be on a variety of different bids, the pass will become the single majority. 

This hypothesis was tested, and the following table shows the results:

K Bids made correctly Percentage correct Number of Pass Bids

1 773 36.97% 1127
2 773 36.97% 1127
3 894 42.75% 1391
4 955 45.67% 1517
5 993 47.49% 1610
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6 1034 49.45% 1672
7 1054 50.41% 1722
8 1069 51.12% 1755
9 1082 51.75% 1790
10 1094 52.12% 1825
11 1100 52.60% 1845
12 1109 53.04% 1866
13 1117 53.42% 1880
14 1111 53.13% 1883
15 1115 53.32% 1900
16 1114 53.28% 1906
17 1110 53.08% 1921
18 1112 53.28% 1934
19 1113 52.22% 1936
20 1114 53.28% 1943

From this it is clearly evident the bid of PASS becomes more frequent as the value of K 

increases. For 1127 of the cases, PASS is the correct bid, which is around 53% of the 

cases, and which also happens to be the peak of CBridge1s performance. In short, when 

K reaches a sufficiently high level, CBridge1 will bid PASS 100% of the time. 

 Further investigation shows that the number of bids made correctly that are not 

pass bids is exceedingly low. When K is 1, the number of correct non-pass bids is 142, 

which is a mere 14.6% of the 970 cases that require a bid other than PASS. As K 

increases, the number of non-PASS cases solved decreases. 

4.5 How to improve CBridge1? 

Unfortunately, CBridge1 performance is not at an acceptable level even for just 

the opening move. A Bridge program that simply passes every move regardless of hand 

would not be classed as an intelligent opponent. There are a number of ways in which the 

program could be modified which may improve performance. First already shown and 

discussed is changing the value of K. By increasing K there was an obvious increase in 

the number of correct bids made, but in reality this was no improvement at all as it 

became more and more inclined just to pass.  The next obvious solution would be 
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increasing the size of the case base. It would be expected that the performance of 

CBridge1 would increase with a larger case base with more coverage of the problem 

space, but then query time for the case base will be an issue. Even with 2091 cases, the 

time it takes to perform leave one out testing is noticeable. To perform leave one out 

testing requires going over the case base of length n, n times over. An increase in the size 

of the case base will make meaningful experimentation difficult. Additionally, it took 

several weeks of automated game playing for the case base to be generated, as it took 

roughly five minutes for a single game to be played, and WBridge5 crashed frequently. 

While it is likely that 2091 cases is simply too few for CBridge1 to work competently, it 

is unknown whether the case base could ever be large enough while still being 

manageable to get adequate case coverage. As noted previously, the size of the domain is 

exceedingly large with 52!/(13!)4 different possible deals, and a case base with 2091 

cases is unlikely to catch many of the outlying cases. However, the probable distribution 

of the hands indicate that even with 2091 cases there is still likely to be a lot of very 

similar cases. About half the cases fall between the point range 7-12, and roughly twenty 

percent will have the distribution 4-4-3-2. As such, 2091 cases should be able to cover at 

least the more common hand distributions.

If we are to ignore increasing the size of the case base, this leaves two main ways 

to improve the performance of CBridge1. One would be modifying the similarity 

function to give a more accurate account of what factors are important in bidding, and the 

other would be to incorporate an adaptation function. Both would certainly need a degree 

of domain expertise to implement well. One possibility for the adaptation function would 

be to see whether the proposal is a suit bid and the suit matches the longest suit of that 

hand, and then adapting that response to bid the longest suit of the current hand instead. 

In the majority of bids for the opening hand this would be a correct adaptation, but under 

a lot of conventions this would be a misinterpretation of the intention of the bid, 

particularly if it took place somewhere other than the opening bid. 

A change in the similarity function could improve performance. One observation 

is that while simple ratios can be used to tell the cases apart, it is not the way actual 
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Bridge players would compare cases. Rather, they would say two hands are similar if 

they fell within a certain high card point range and have the same or similar distribution 

between the suits.  What this range is will depend on the convention. For instance, a 1NT 

bid might mean a balanced hand between 12-14 points. Under the current similarity 

function, a balanced hand with thirteen points and a balanced hand with eleven points 

would be counted just as similar to a hand with twelve high card points. A 1NT bid 

would be correct for a bid at twelve of thirteen high card points, but not for one at eleven. 

Perhaps then rather than using a ratio, different ranges dependant on the conventions 

being used, such as 12-14, should become well defined in the similarity function. Then 

the similarity function would take into account exactly the factors used by conventions in 

determining the bid.  This may also help compensate for a smaller case base.

4.6 CBridge1a

CBridge1a is the first attempt at improving CBridge1. CBridge1a takes CBridge1 

and adds a basic adaptation function. This function is the one mentioned previously, 

where all it does is it changes the suit bid if in the original hand it was the longest suit, 

and that suit differs from the longest suit in the current hand. This is in an attempt to try 

and break the majority that the PASS bid frequently got because the other bids were 

divided up into different suits. This function consolidates several of them so that more of 

the retrieved bids will be identical, and something other than PASS. 

 K Bids made correctly Percentage correct Number of Pass Bids

1 779 37.25% 990

2 779 37.25% 990

3 907 43.38% 1223

4 968 46.29% 1330

5 1004 48.02% 1418

6 1054 50.41% 1476
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7 1076 51.45% 1516

8 1098 52.51% 1545

9 1103 52.75% 1577

10 1116 53.37% 1602

11 1123 53.76% 1619

12 1131 54.09% 1639

13 1138 54.42% 1650

14 1136 54.32% 1651

15 1143 54.66% 1661

16 1142 54.62% 1667

17 1141 54.57% 1677

18 1146 54.81% 1684

19 1146 54.81% 1688

20 1146 54.81% 1694

The results show a slight improvement in the number of bids made correctly. 

Also, while the PASS bid still quickly dominates when K increases, on average there are 

a few hundred less pass bids than before. The decrease in PASS bids does not evenly 

match the number of correct non-PASS bids however the number of correct bids is still 

slightly improved. 

Attempts at modifying the similarity function however did not meet with similar 

success.  No other combination of weighted attributes matched the number of correct bids 

where K was low, and all had the problem of constantly bidding PASS when K was high. 

The first attempt was to set the similarity function to return 100% where the number of 

points was the same in both cases, and where they both had the same longest suit. This 

would certainly cause problems for any cases that were outliers with especially long suits 

or a high number of points, as the closest cases would return 0% similarity to them. But 

the idea was that perhaps in the area where there were a large number of cases, the bids 
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were being inferred from cases that were highly similar, but were just different enough to 

bid in an entirely different suit or give a pass. What occurred however was around 16% 

of correct bids where K was low, which steadily increased as once again CBridge1 would 

start bidding PASS more frequently as K was increased.  As K increased the average 

similarity of cases retrieved plummeted, and cases with 0% similarity were being used to 

inform the decision. Since roughly half of those cases would be a pass, it became 

significantly more likely for CBridge1 to pass. 

Other attempts were made trying to cluster cases into different point ranges based 

on conventions.  These ranges were 0-5, which typically should always result in a pass, 

6-10 which will result in a pass unless one suit is particularly long in which case it would 

be bid at the two level, 11-12 where suit bids could be made at the one level if they had 

good length, 13-15 where a bid should definitely be made either as a suit bid if one has 

good length or as a NT bid, and sixteen and above where either the suit should be bid at 

the one level, or an overcall to the three level is made to indicate a particularly strong 

hand. This unfortunately met with similar results. Even where K was low similarity was 

also low, around 70%, and the number of correct bids was around 18%. As K increased, 

average similarity decreased quickly, and the percentage of correct bids increased as 

CBridge1 would increase the number of PASS bids until the number of correct bids 

reached 53%, which is also the percentage of cases where PASS is the correct bid to 

make. Attempts at changing the weightings, making distinctions in the case base about 

minor and major suits, and even putting a bias against all cases that suggest a PASS 

resulted in the same outcome. Low correct bids were made where K is low, and where K 

is high every bid becomes a PASS bid, allowing for 53% of the cases to bid correctly.

4.7  Conclusions on CBridge1

The poor performance of CBridge1 can be attributed to several things. The first is 

poor case coverage. Simply, 2091 cases of Bridge games is not enough to provide even 

acceptable coverage of what bids should be made in the opening bid. On the same coin, 

increasing the size of the case base was difficult. The amount of time it took to generate 
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each case was prohibitive, as was the time it took to evaluate the entire case base. 

Despite this though, while the similarity function could find cases which did indeed look 

very similar, the bids which they could make would vary differently. Using that measure 

of similarity, it would be possible to have three hands, each differing from each other by 

one card, and still have them bid entirely differently. For instance, if one hand had eleven 

points and another twelve, the eleven point hand may likely pass, while the twelve point 

hand would bid. Two hands which differed in only one card may end up bidding in 

entirely different suits because the suit lengths were different. This means that cases even 

over 90% similar will give bids which are completely wrong for each other. Attempts at 

tightening the similarity function so that it strictly only gave value to those hands with the 

same number of points and the same suit length actually decreased performance due to 

poor case coverage. It is still possible perhaps for someone with good domain knowledge 

and a much larger case base than was used here to achieve results for the opening bid, but 

these initial results do cast a shadow of doubt over this.  

The adaptation function did help improve the bidding of CBridge1 slightly, but 

not enough to be the solution to the problems associated with the lack of case coverage. 

Its use may even have been inappropriate as it likely interfered with several bids made 

that was following a specific convention. Intuitively, adaptation should not be applied to 

Bridge in this manner. Many conventions are so situation specific that they should not be 

adapted at all, whereas others would be adapted in different ways. This adaptation 

function would only work on the opening hand,  and even then the increased performance 

was negligible. 

It is possible the reason why the results look so poor is because the way in which 

they are being tested was too harsh. For any given hand there might be several possible 

bids that could reasonably be made on it. It is likely that at least some of the bids 

proposed would have been acceptable as well, but were recorded as incorrect because it 

was not the same choice that WBridge5 made. However, in Bridge quite often there is 

only one bid that could reasonably be made, and retrieving any other cases would be 

completely wrong. 
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Perhaps the most ironic thing about this project was that a CBR system for Bridge 

was supposed to take less time to develop and code than a rule based system. Developing 

a rule based Bridge playing program for the opening bid would actually be trivial and 

would consist of a series of very simple rules, based off of the conventions being used. 

The difficulty that these programs face in writing rules for the bidding phase is writing 

them for later rounds of bidding than the opening. These later rounds actually pose an 

even greater difficulty for CBR systems trying to solve the problem.

4.8 What If CBridge1 Had Been Successful?

A good question to ask would be what would have happened if CBridge1 could 

acceptably play the opening hand? It is not impossible that if someone was to take the 

time to develop a much more extensive case base, and used a highly insightful similarity 

metric that they could have had greater success. However the next problem they would 

have is extending their CBR system to cover the entire bidding phase, and not just the 

opening bid.  This would be exceedingly difficult for the following reasons.

Firstly, the number of cases required to cover differing hands is already 

staggering. When the program has to consider on top of this a chain of bidding the 

complexity becomes even greater. For each additional round of bidding that the CBR 

system has to consider, the total number of possible cases multiples thirty seven fold, one 

for each possible bid. The number of rounds that the bidding could go on for is not fixed 

either. Bidding ends after three players have passed in a row, and everyone must have 

had to have a chance to bid once. 

Bidding could take the following form:

PASS PASS PASS PASS 1C PASS PASS DOUBLE PASS PASS DOUBLE PASS 

PASS 1D PASS PASS DOUBLE PASS PASS DOUBLE PASS PASS 1H

This style of bidding could go on until 7NT is reached, which would take 311 bids to 

reach. Although this style of bidding would never seriously occur, and usually bidding 

finishes in far fewer bids, it means Bridge is not divided up nicely into different bidding 
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phases like Poker. For a CBR program to be useful it should still be able to perform even 

with prolonged bidding. 

Second is the problem of knowing how to actually measure similarity on cases 

based on a chain of bidding. One (bad) possibility would be to just measure the hand 

similarity, ignore the bidding chain, and make the bid which the similar cases made in 

that particular round of bidding. This would completely ignore the bids made by both 

partner and opponent, and could not possibly perform well. Another way to deal with the 

problem might be to only compare the current problem with cases that have an identical 

chain of bidding. As pointed out previously, the share number of ways in which the cards 

can be dealt and the number of ways in which the bidding could go would mean this 

solution would only rarely be able to give any real answer at all. Perhaps some kind of 

ratio could be performed like was used in the opening bid? A straight line function that 

compared both the relative order of the suit bid, and the level on which it was bid could 

possibly be used. But the problem with this is that conventions often state specifically the 

exact suit which might be bid. For instance, the Gerber convention requires that the 

player bids in clubs. Comparing the Gerber bid with a bid at the same level in diamonds 

would make no sense at all. As it stands, there does not seem to be any sensible way to 

compare the similarity between chains of bidding.

The next problem is finding a way to actually evaluate the bids made by the chain 

of bidding. In CBridge1 the measure was to just compare the bid made by CBridge1 with 

that of WBridge5.  This cannot work once a chain of bidding has been implemented. This 

is because subsequent bids are in reaction to the bids made by the partner and the 

opposition. Even if the player had the exact same cards in their hand as WBridge5 did, 

there is no guarantee that the opposition would have the same hand distribution, and also 

whether they would make the same bids.  Another possibility might be to play through 

the bidding phase, see what contract is made in the end, and then seeing whether the 

contract was won during the play of the hand. The problem with this is that it would then 

favour smaller bids with a greater chance of success, although the higher bids get more 

points. It would also ignore the chain of bids that were made to get there. If for instance 
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the program decided to jump bid to 4S even though it had neither points nor spades, the 

contract might be reached regardless because the partner was very strong in spades. So 

then the CBR system would measure that opening bid as a good answer, when it was 

actually nonsensical. The system could see another case in which the bidding was done 

flawlessly, however the game was lost due to inferior play during the play of the hand. 

That bidding then would be seen by the CBR system as having been incorrect. It is also 

possible that the chain of bidding was perfect up to a point, but it was the final bid, which 

was possibly established by the partner, which was incorrect. Then the system would 

mistakenly regard the entire chain of bidding as incorrect when it was only a small 

portion.  What if the player has a particularly weak hand and cannot bid or make any 

contract at all? Would it be measured incorrect if the player passed and formed no 

contract? If not, then how would it react if the player passed when they could have made 

a contract?

To avoid misjudging the entire chain of bids based on a bad final contract, one 

possibility might be to try and evaluate the merit of each bid independently. Once again, 

this begs the question on how they could be evaluated? Well, the most obvious way 

might be to test whether each individual bid made would be able to form a winning 

contract in its own right. This would be acceptable if bids were made in a manner where 

each bid made up to the contract bid should be able to win in its own right. Conventions 

will often throw away this notion entirely. One example convention where this would 

result in a disaster is the Splinter bid. This actually shows a void or singleton in the suit 

bid! It is possible that the suit bid is one that the opposition is very strong in, in which 

case a contract of that nature would not be expected to win. But the bid made is still 

highly informative to the partner and should not be considered incorrect.

The next problem is conventions. If the case base is developed against different 

opponents and with different partners, then the conventions they are using will differ. 

This will result in inconsistencies on how the CBR system should actually respond. The 

case base would have to be developed with consistency over the conventions used. A 

larger issue however is trying to get the CBR system to actually have any sort of 
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knowledge as to what the conventions mean. If the CBR player bids a 4NT under the 

Blackwood convention, the partners response bid will reply indicating how many aces 

they have. This is useful not only for figuring out what contract should be reached, but is 

also highly informative for the play of the hand, so this information should be stored. 

This will be a problem in general with a CBR system playing bridge, because it would 

lazily attempt to mimic the actions taken in the case base, without having any real 

knowledge as to what conventions are and what they mean. 

Lastly, because of the share size of the problem space for Bridge, the case base 

will probably have big difficulty dealing with any outliers. When it encounters one, the 

most similar cases will probably be too significantly different to give correct bidding. 

This will be an ongoing issue for a CBR system even if solutions were found for the other 

problems. Whenever an outlier is encountered, the bidding will likely suffer.

 4.8 Final Thoughts and Potential for Future Research

In hindsight, a CBR system is inappropriate for the game of Bridge. It has already 

been noted that similar hands often had very different bids, and that the size of the 

domain was too prohibitive for developing a case base. But besides that, there was a more 

fundamental problem to developing this system. Real players do not actually play the 

opening hand by attempting to remember past hands. Rather, they have a set series of 

rules, based on their set of conventions, which should describe their hand to the other 

player. The inspiration for CBR is the way some people approach problems by simply 

thinking of past situations, and how they explain things with cases and not rules. But 

when it comes to Bridge, the logic is different.  Even if this project had worked for the 

opening bid, it would have been very difficult to implement properly. Bidding is not 

about taking a hand as input, then using a function to determine which bid should be 
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used.  Rather, the point of it is for two partners to describe their hands to each other so 

they can make a decision about what sort of contract they should go with. 

Besides the opening bid, doing so is not a trivial matter of following rules. Players 

trying to form a contract have to deal with opponent players making bids which are there 

to disrupt communication between the players. Players also sometimes have to attempt to 

communicate to each other and make a contract while the opposition are also bidding to 

attempt to establish a contract. Sometimes choices need to be made such as whether a 

player should support their partners suit, or declare their own. These strategies are a 

higher level abstraction than merely the bids themselves, and are based heavily on their 

set of conventions. 

Someone attempting to apply CBR to Bridge again in the future will have a lot of 

difficulty, as this project has shown. But there are a number of things that a person could 

do that may, or may not, result in a CBR based program that can play good Bridge. The 

first observation is that the case base needs to be both large and diverse. The approach 

used in CBridge1 was to generate all the cases into a single case base. The problem with 

this is that it is difficult to find out how diverse  the case coverage is by looking at this 

single case base.  It also meant that testing was difficult. A more ideal situation would be 

to use a variety of different case bases, such that similar cases are all in the same case 

base. This way, each case base represents a different region of the problem space. 

Observing how  many cases are in each case base would give a good indication of how 

complete the case base is. 

The similarity function needs to be properly elicited by a domain expert. Ideally, 

it should be a well defined hierarchy which takes into account precisely what an expert 

will consider. It should work slightly differently than what is typical for a CBR program. 

Each node of the tree should represent each of the case bases referred to in the previous 

paragraph. The tree should only be used to find out which node the current case should be 

compared with. If the nodes are highly defined with very little room for cases to differ, 

then either a random subset or all the cases at that node could be retrieved for the KNN 
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comparison. Else, a second similarity function could be applied, such as the straight line 

function used in CBridge1, to return the most similar of the set of already highly similar 

cases in the node. If a similarity function used is similar to the one used in CBridge1, this 

means that each node could have around 2000-3000 cases and still be queried with leave 

one out testing. 

To get complete coverage of the problem domain, cases could be generated for 

each of the nodes independently. So if a program like WBridge5 has the facility to 

generate random cases with certain constraints, then domain coverage for even outliers 

could be achieved. This is a hard thing to guarantee if the cases are not generated without 

any constraints put on them. The tougher the restraints placed, the more nodes will exist 

in the hierarchy. For instance, the following figure highlights one possible way a 

hierarchy could be made.

As there are thirty nine possible hand shapes, with twenty four ways to split the four 

suits, and each node having up to thirty seven points, this would mean 3552 different 

nodes in the tree. Populating this would definitely be very tedious without automation, 

But if someone managed to populate each node with around 2000 cases, then it would 

have excellent case coverage. For the opening hand, a similarity function would only 

need to retrieve the similar cases. As each node could be tested independently from the 

rest, leave one out testing would still be plausible. The biggest issue would be in 

generating a case base big enough to populate it, as this would require 7,104,000 cases to 

completely fill. More realistically many of these nodes would be combined. For instance, 

there could be a single node [0-5] instead of five different nodes. It is crucial however 

that the way these divisions are made is informed by experts. 
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This would likely manage to solve the problems of applying CBR to the opening 

hand in Bridge. But there are other more fundamental issues that would need to be 

addressed if CBR was used to try and play the game completely. One criticism of 

CBridge1 is that it relied fully on WBridge5’s case base. While convenient, it may be 

better for CBridge1 to generate its own case base so that it could play distinctly from 

WBridge5. If CBridge1 is to put its own cases into the case base, then there needs to be a 

way for it to measure the success of a bid.  As mentioned previously, this is a very 

difficult thing to do. In fact, the only bid which could be tested fairly would be the final 

contract making bid. The other bids are used to inform what that bid should be. Anyone 

interested in making a CBR based program will face this problem. 

Additionally they will have to deal with the chain of bidding. The previous 

solution of tackling the overly large problem space of using the tree hierarchy will not 

straight forwardly work for a bidding chain. Given that there are thirty eight different 

bids that can be made, and the bidding can go on for quite some time, the possible 

number of bidding chains is hugely prohibitive. This cannot be solved with a straight 

forward application of CBR.

To get over these issues, an individual looking to solve this problem with CBR 

really should try to use a hybrid-CBR system that is informed by both cases and rules. To 

get over the huge branching factor of the possible bids that can be made, this information 

needs to be abstracted. For example, instead of choosing a suit and a bid, the choice 

might be something like “Show Partner strongest suit”, and then a series of rules would 

dictate how they should go about that. The hard part of bidding for players is a choice 

between abstract choices such as supporting partner’s suit, or forcing their own suit. As 

bids are received, rules can be used to interpret them. For instance, if the partner responds 

to a 1S bid with 2S, it might be established they have at least 5 points, and at least 3 

spades. So rather than a chain of bidding, a case could be a list of information shared, 

some information about partners hand, and the current level of bidding.  This level of 

information could perhaps be extracted from an existing case base, such as one from 
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WBridge5, but may very well be easier if it is generated solely by CBridge1.  This would 

mean generating a case base by having CBridge1 play against itself. Because the bids 

made are partially informed by rules, they would not be entirely random. For instance, it 

may bid PASS too soon, or may press a suit too far, but it would not bid in a suit which 

neither it nor partner were interested in. Rather attempting at guessing on a contract, 

rules would be used to suggest a contract based on the information from players hand and 

from what is received from partner,  and the case base would be used to decide on how 

best to inform partner about the hand,  how far a contract should be pushed, and on 

whether to accept the contract proposed by partner.  Such a program would no longer be 

purely CBR, but it would use the CBR methodology to inform on the sorts of things real 

Bridge players would actually look to past experience to decide on, while still preserving 

the knowledge of the game required to play at even a novice level.

Such a program will of course require a set of conventions. If it is generating its 

own case base, then by rights it can use any set of  conventions the author so chooses, 

whether it be one of the standard convention lists, or whether it follows the conventions 

of a domain expert from which knowledge is being elicited. It also means that the two 

working in partnership will have to use the same conventions.

In conclusion, this project met with little success. It could have potentially worked 

with a larger case base or with a tree hierarchy as described above, but time constraints 

leading up to the conclusion of this project meant these possibilities could not be 

physically explored.  This project does highlight the difficulties anyone attempting to 

apply CBR to Bridge will have, and also hopefully has put forward some suggestions as 

to how to solve these. It would be interesting if someone with access to a domain expert, 

or expert knowledge, could actually attempt a system as described here on possibility for 

further research. 
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