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Motivation: Direct product results for randomness

Another Motivation: later ...

General question:

x random

y random

x and y independent

Is xy random?
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Classical information and algorithmical information

Shannon entropy, H(X ) =
∑

x P(X = x) logP(X = x).
Length of the minimal average description of random variable X .

Algorithmical plain complexity, C (x).
Length of the minimal algorithmical description of individual string x .

Algorithmical prefix-free complexity, K (x).
Length of the minimal algorithmical prefix-free description of individual string
x .
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Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.

10100︷ ︸︸ ︷
0101 . . . 01 has a short description.

flipping a coin 10100 times: 011000101010110010101000101001011 . . . 100:
description ≈ 10100 bits.

Definition:

C (x) = min{|p| | U(p) = x};
C (x | y) = min{|p| | U(p, y) = x},
where U is a fixed universal Turing machine.

Definition:

K (x) = min{|p| | U(p) = x};
K (x | y) = min{|p| | U(p, y) = x},
where U is a fixed prefix-free universal Turing machine.
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Mutual information

I (y : x) = quantity of information in y about x .

Classical information theory: I (Y : X ) = H(X )− H(X | Y ).

Algorithmical information theory: I (y : x) = C (x)− C (x | y).
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Symmetry of Information

Symmetry of Information (classical): I (x : y) = I (y : x).

Symmetry of Information (algorithmical): I (x : y) = I (y : x)±O(log n).

For some strings x and y , the ±O(log n) is necessary.

But for some strings, it is not.

THEOREM [Z, 2011]. For all strings x and y ,

I (x : y) ≤ I (y : x) + O(log I (y : x)) + O(C (2)(x | n) + C (2)(y | n)).

COROLLARY. If x and y are random, then

I (y : x) = O(1) IFF I (x : y) = O(1).
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Randomness direct product

The key part of the proof is to analyze C (xy | n) vs. C (x | n) + C (y | x).

w = |C (xy | n)− C (x | n)− C (y | x)|

We show w = O(log I (x : y)) + O(C (2)(x | n) + C (2)(y | n)).

We get the direct product result:

x random, y random, x and y independent ⇒ xy random.
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tx = C (x | n), ty = C (y | x), t = C (xy | n)

We want to estimate w = tx + ty − t

The construction uses information Λ = (tx , ty ,w)

Λ can be encoded in a self-delimited way using λ bits, for

λ ≤ 2 logw + O(log I (x : y) + C (2)(x | n) + C (2)(y | n).
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Build a 2n × 2n table, with rows and
columns indexed by n-bit strings

Color cell (u, v) with 1 if C (uv | n) ≤ t;
0 otherwise.

S = set of 1-cells

Su = set of 1-cells in row u

We have |S | ≤ 2t+1.

Let 2m−1 < |Sx | ≤ 2m.
F = the set of rows with > 2m−1 1’s.

We have |F | < |S|
2m−1 ≤ 2t−m+2.

v1 v2
u1 1 1 0 . . . . . .
u2 0 0 1 . . . . . .
· . . .
· . . .
· . . .

x 1 1 1

· . . .
· . . .
· . . .
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x is in F ; F can be enumerated given information Λ

So: C (x | n,Λ) ≤ t −m + 2 + O(1).

y is in Sx ; Sx can be enumerated given x and Λ

So: C (y | x ,Λ) ≤ m + O(1).

C (x | n,Λ) + C (y | x ,Λ) ≤ t + O(1) = tx + ty − w + O(1).

tx − O(λ) + ty − O(λ) < tx + ty − w + O(1).

w < O(λ).

Recall that λ ≤ 2 logw + O(log I (x : y) + C (2)(x | n) + C (2)(y | n)).

We obtain: w = O(log I (x : y) + C (2)(x | n) + C (2)(y | n)). QED
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Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

If x is random and y is random conditioned by x

then xy is random

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



Randomness direct product for prefix-free complexity

Direct product theorem for plain complexity: If C (x | n) ≥ n − c , and
C (y | x) ≥ n − c , then C (xy | 2n) ≥ 2n − O(c).

Does the direct product theorem hold for prefix-free complexity?

DEFINITION: x is weakly K -random if K (x | n) ≥ n − c .

DEFINITION: x is strongly K -random if K (x | n) ≥ n + K (n)− c .

THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

For strong K-randomness, the question is open.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 11 / 28



THEOREM (Direct product for weak K -randomness) [Z’2012] If
K (x | n) ≥ n − c , and K (y | x) ≥ n − c , then K (xy | 2n) ≥ 2n − O(c).

PROOF(sketch):

Notation: d is a self-delimiting encoding of d .

Su(d) = {v | K (uv | n) ≤ 2n − 2d}.

F (d) = {u | |Su(d)| ≥ 2n−d}.

We construct prefix-free program p1 using conditional information x (basically
enumerating Sx(d)).

p1 on input dbin(i):
Check if bin(i) is written on n − d bits. If not, diverge.
Else, enumerate strings of length n such that K (xu | n) ≤ 2n − 2d ; output the
i-th such string.
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If there is i such that p1(d , i) outputs u, then K (u | x) ≤ n− d + |d | < n− c (for
d sufficiently large).

So there is no i such that p1(d , i) outputs y .

There are two possible reasons:

(a) K (xy | n) > 2n − 2d ; in this case we are done.

(b) There are 2n−d other strings enumerated before y .

But in case (b), |Sx(d)| ≥ 2n−d , so x ∈ F (d).

Note that |F (d)| ≤ 22n−2d

2n−d = 2n−d .

This implies (after some work), K (x | n) < n − d + |d | < n − c , contradiction.

So only (a) can happen. QED
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Randomness direct product for infinite sequences

Van Lambalgen Theorem: x random, and y random conditioned by x ⇔
x ⊕ y is random.

random means Martin-Löf random.

⇒ holds also for Schnorr random and constructive random.
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Resource-bounded complexity

Space-bounded computation

CS s(n)(x) = min{|p| | U(p) = x in space ≤ s(|x |)}

Time-bounded computation

CT t(n)(x) = min{|p| | U(p) = x in time ≤ t(|x |)}
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Randomness direct product for resource-bounded
complexity

THEOREM (Direct product for space-bounded randomness)

If CS s(n)(x | n) ≥ n − c , CS s(n)(y | x) ≥ n − c , then

CSαs(n)(xy | n) ≥ 2n − O(c), for some constant α > 0.

Randomness direct product for time-bounded complexity does not hold
(provided one-way permutations exist).

Take y - random, and x = f (y) where f is a one-way permutation.

CT poly (x | n) ≥ n, CT poly (y | x) ≥ n, but CT poly (xy | n) ≈ n.
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Open problem for time-bounded complexity

Let x and y be such that

CT poly (x | y) ≥ n, CT poly (y | x) ≥ n.

What can we say about CT poly (xy | n)?

Conjecture: For some x and y , CT poly (xy | n) << 2n.
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The other motivation...

Random objects are wonderful (think of random graphs, random strings, ...)

Randomness is very useful in practice (polls, cryptography, algorithms,
games, etc.)

But how do we get randomness?
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How do we get randomness ...

Randomness cannot be obtained from nothing (entropy cannot be increased).

We need to start with some form of randomness.

Randomness direct product: From 2 n-bit sources of (close to) perfect
randomness, we get one 2n- bit source of (close to) perfect randomness

From imperfect randomness sources, can we get better randomness?

From imperfect randomness sources, can we get better and new randomness?
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How do we get randomness ...

From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x1, . . . , xt
sources with partial randomness, f (x1, . . . , xt) has close to full randomness.

From imperfect randomness sources, to better and new randomness.
We want (polynomial-time) computable f such that on input x1, . . . , xt
sources with partial randomness, f (x1, . . . , xt) conditioned by
x1, . . . , xi−1, xi+1, . . . xt has close to full randomness.

The sources can be modeled by distributions, and randomness quality by
min-entropy.

f is a randomness extractor.

The sources can be modeled by strings or sequences, and randomness quality
by Kolmogorov complexity.

f is a Kolmogorov extractor.
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Kolmogorov extraction from one string

Kolmogorov extraction from one string is impossible.

THEOREM. If f : {0, 1}n → {0, 1}m is a uniformly computable family of
functions, there is a string x with C (x) > n −m and C (f (x) | n) = O(1).
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Kolmogorov extraction with advice

Extraction from one source is possible if we have some non-uniform
information about the source.

Question: How much information?

THEOREM[FHPVW’06] For every rational σ, ε > 0, there exists f poly-time

computable and a constant k such that for every x with rate(x) ≥ σ, ∃αx

of length k such that rate(f (x , αx)) ≥ 1− ε.

THEOREM[VV’02,Z’11] With constant advice, we cannot obtain
rate(f (x , αx)) = 1− o(1).

THEOREM[Z’11] With ω(1) advice, we can obtain rate(f (x , αx)) = 1.
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Kolmogorov extraction from two strings

Describing the sources:

dep(x , y) = max{C (x | n)− C (x | y),C (y | n)− C (y | x)}
(k, α) sources: Sk,α = {(x , y) | C (x | n) ≥ k ,C (y | n) ≥ k,dep(x, y) ≤ α}

THEOREM[Z’10] When we extract from sources with dep(x , y) = α, the
randomness deficiency of the output must be ≥ α− O(logα).

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 23 / 28



Kolmogorov extraction from two strings

Describing the sources:

dep(x , y) = max{C (x | n)− C (x | y),C (y | n)− C (y | x)}
(k, α) sources: Sk,α = {(x , y) | C (x | n) ≥ k ,C (y | n) ≥ k,dep(x, y) ≤ α}

THEOREM[Z’10] When we extract from sources with dep(x , y) = α, the
randomness deficiency of the output must be ≥ α− O(logα).

Marius Zimand (Towson U.) Symmetry of Information Feb 2012 23 / 28



Kolmogorov extraction from two strings

THEOREM[Z’10] Let k , α be such that k ≥ α + 7 log n.
There exists a Kolmogorov extractor E such that for all (x , y) ∈ Sk,α,

1 |E(x , y)| ≈ 2k,
2 C(E(x , y) | x) ≥ 2k − α− O(log n).

THEOREM[Z’10] Let k, α be such that k ≥ α + 7 log n.
There exists a Kolmogorov extractor E such that for all (x , y) ∈ Sk,α,

1 |E(x , y)| ≈ k,
2 C(E(x , y) | x) ≥ k − α− O(log n).
3 C(E(x , y) | y) ≥ k − α− O(log n).

THEOREM[Z’10] In the above theorems if k = Ω(n), then E is poly-time
computable (but output length is a constant fraction of k).
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Kolmogorov extraction from infinite sequences

Sources are sequences in {0, 1}ω.

Quality of randomness: effective Hausdorff dimension dim(x).

dim(x) = inf C(x�n)
n

Miller’s THEOREM [M’2008] Extraction from one source is impossible.

There exists x with dim(x) = 1/2 such that for every Turing reduction f , dim
(f (x)) ≤ 1/2.
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Kolmogorov extraction from infinite sequences

DEFINITION[CaludeZ.08] x , y ∈ {0, 1}ω are C-independent if for all n,m
C (x�n y�m) ≥ C (x�n) + C (y�m)− O(log n + logm).

THEOREM[Z’08] Extraction from two C-independent sources is possible.

For every rational σ > 0, there exists a tt-reduction f such that for all x , y , if
x and y are C-independent, dim(x) ≥ σ, dim(x) ≥ σ, then dim(f (x , y)) = 1.
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Summary

Randomness direct product:

IF x random, y random, (x , y) independent THEN xy random.

Holds for strings and plain Kolmogorov complexity randomness
(C (x | n) > n − c)

Holds for strings and weak prefix-free Kolmogorov complexity randomness
(K (x | n) > n − c)

Open for strings and strong prefix-free Kolmogorov complexity randomness
(K (x | n) > n + K (n)− c)

Holds for infinite sequences and Martin-Löf randomness (van Lamabalgen
Theorem) (also for Schnorr randomness, constructive randomness)

Holds for space-bounded Kolmogorov complexity

Conjecture: Does not hold for poly-time resource bounded Kolmogorov
complexity
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La Multi Ani, Cris!

Thank you.
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