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Motivation: Direct product results for randomness

Another Motivation: later ...

General question:

o x random

o y random

o x and y independent

o Is xy random?
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Classical information and algorithmical information

o Shannon entropy, H(X) =" P(X = x)log P(X = x).
Length of the minimal average description of random variable X.

o Algorithmical plain complexity, C(x).
Length of the minimal algorithmical description of individual string x.

o Algorithmical prefix-free complexity, K(x).
Length of the minimal algorithmical prefix-free description of individual string
X.
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Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.
10100
/—/\ﬁ . .
o 0101...01 has a short description.

o flipping a coin 10 times: 011000101010110010101000101001011 ... 100:
description &~ 10 bits.
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Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.
10100

f—/\ﬁ . .
o 0101...01 has a short description.

o flipping a coin 10 times: 011000101010110010101000101001011 ... 100:
description ~ 101 bits.

Definition:

C(x) = min{|p| | U(p) = x};

Clx|y) =min{|pl | U(p,y) = x}.

where U is a fixed universal Turing machine.
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Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.
10100

/—J\ﬁ . .
o 0101...01 has a short description.

o flipping a coin 101% times: 011000101010110010101000101001011 ... 100:

description ~ 101 bits.

Definition:

C(x) = min{|p| | U(p) = x};

Clx|y) =min{|pl | U(p,y) = x}.

where U is a fixed universal Turing machine.

Definition:

K(x) = min{|p| | U(p) = x};

K(x | y) =min{|p| | U(p,y) = x},

where U is a fixed prefix-free universal Turing machine.
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Mutual information

o I(y : x) = quantity of information in y about x.

o Classical information theory: /(Y : X) = H(X) — H(X | Y).

o Algorithmical information theory: I(y : x) = C(x) — C(x | y).
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Symmetry of Information

o Symmetry of Information (classical): /(x:y) =1I(y : x).
o Symmetry of Information (algorithmical): /(x : y) = I(y : x)£O(log n).
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Symmetry of Information

o Symmetry of Information (classical): /(x:y) =1I(y : x).
o Symmetry of Information (algorithmical): /(x : y) = I(y : x)£O(log n).

o For some strings x and y, the +O(log n) is necessary.
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Symmetry of Information

o Symmetry of Information (classical): /(x:y) =1I(y : x).

©

Symmetry of Information (algorithmical): /(x : y) = I(y : x)£O(log n).

©

For some strings x and y, the £0O(log n) is necessary.

(+]

But for some strings, it is not.

©

THEOREM [Z, 2011]. For all strings x and y,

() < I(y : x) + O(log I{y : x)) + O(CP (x| n) + CO(y | n)).
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Symmetry of Information

o Symmetry of Information (classical): /(x:y) =1I(y : x).
Symmetry of Information (algorithmical): /(x : y) = I(y : x)£O(log n).

©

For some strings x and y, the £0O(log n) is necessary.

©

(+]

But for some strings, it is not.

THEOREM [Z, 2011]. For all strings x and y,

©

() < I(y : x) + O(log I{y : x)) + O(CP (x| n) + CO(y | n)).

(+]

COROLLARY. If x and y are random, then

I(y : x) = O(1) IFF I(x : y) = O(1).
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Randomness direct product

The key part of the proof is to analyze C(xy | n) vs. C(x | n)+ C(y | x).
w = [C(xy [ n) = C(x | n) = Cly [ x)]
We show w = O(log I(x : y)) + O(C®)(x | n) + CA(y | n)).

We get the direct product result:

x  random, y random, x and y independent = xy random.
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The key part of the proof is to analyze C(xy | n) vs. C(x | n) + C(y | x).
w=|C(xy | n) = C(x| n) = Cly | x)|

We show w = O(log /(x : y)) + O(CP(x | n) + CP(y | n)).

We get the direct product result:

x ~Jandom, y random, x and independent = xy random.
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Randomness direct product

The key part of the proof is to analyze C(xy | n) vs. C(x | n)+ C(y | x).
w = [C(xy [ n) = C(x | n) = Cly [ x)]
We show w = O(log I(x : y)) + O(C®)(x | n) + CA(y | n)).

We get the direct product result:

x  random, y random, x and y independent = xy random.
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(+]

©

©

te=C(x|n)ty = Cly [ x),t = Clxy [ n)

We want to estimate w = t, +t, — t

The construction uses information A = (t, t,, w)

A can be encoded in a self-delimited way using A bits, for

A < 2logw + O(log I(x : y) + CO(x | n) + CO(y | n).
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Build a 2" x 2" table, with rows and
columns indexed by n-bit strings

Color cell (u, v) with 1if C(uv | n) <t; i_w
0 otherwise. v | 11
uz 0 0
S = set of 1-cells
S, = set of 1-cells in row u .
We have |S| < 201, x 1 1

Let 2™~ < |S,| < 2™,
F = the set of rows with > 2m~1 1's

We have |F| < 52l < 2t-m+2,
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x is in F; F can be enumerated given information A
So: C(x | n,N)<t—m+2+ 0O(1).
y isin S4; Sy can be enumerated given x and A

So: C(y | x,A) < m+ O(1).
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x is in F; F can be enumerated given information A

So: C(x | n,N)<t—m+2+ 0O(1).

y isin S4; Sy can be enumerated given x and A

So: C(y | x,A) < m+ O(1).

C(x| mA)+C(y | x,N) <t+0(1) =t +t, —w+ O(1).
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x is in F; F can be enumerated given information A

So: C(x | n,N)<t—m+2+ 0O(1).

y isin S4; Sy can be enumerated given x and A

So: C(y | x,A) < m+ O(1).

C(x| mA)+C(y | x,N) <t+0(1) =t +t, —w+ O(1).
tc — O(A\)+t, — O(\) <ty +t, —w+ O(1).
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x is in F; F can be enumerated given information A

So: C(x | n,N)<t—m+2+ 0O(1).

y isin S4; Sy can be enumerated given x and A

So: C(y | x,A) < m+ O(1).

C(x| mA)+C(y | x,N) <t+0(1) =t +t, —w+ O(1).
tc — O(A\)+t, — O(\) <ty +t, —w+ O(1).

w < O(N).
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x is in F; F can be enumerated given information A

So: C(x | n,N)<t—m+2+ 0O(1).

y isin S4; Sy can be enumerated given x and A

So: C(y | x,A) < m+ O(1).

C(x| mA)+C(y | x,N) <t+0(1) =t +t, —w+ O(1).

tc — O(A\)+t, — O(\) <ty +t, —w+ O(1).

w < O(N).

Recall that A\ < 2logw + O(log I(x : y) + C@®(x | n) + CA(y | n)).
We obtain: w = O(log/(x : y) + C®(x | n) + C®)(y | n)). QED
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Randomness direct product for prefix-free complexity

o Direct product theorem  for plain complexity: If C(x | n) > n— ¢, and
C(y | x) > n—c, then C(xy | 2n) > 2n— O(c).
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Randomness direct product for prefix-free complexity

o Direct product theorem  for plain complexity: If C(x | n) > n— ¢, and
C(y | x) > n—c, then C(xy | 2n) > 2n— O(c).

o Does the direct product theorem hold for prefix-free complexity?
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Randomness direct product for prefix-free complexity

©

Direct product theorem  for plain complexity: If C(x | n) > n— ¢, and
C(y | x) > n—c, then C(xy | 2n) > 2n— O(c).

©

Does the direct product theorem hold for prefix-free complexity?

o DEFINITION: x is weakly K-random if K(x | n) > n—c.

©

DEFINITION: x is strongly K-random if K(x | n) > n+ K(n) — c.
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Randomness direct product for prefix-free complexity

Direct product theorem  for plain complexity: If C(x | n) > n— ¢, and
C(y | x) > n—c, then C(xy | 2n) > 2n— O(c).

©

Does the direct product theorem hold for prefix-free complexity?

©

o DEFINITION: x is weakly K-random if K(x | n) > n—c.

©

DEFINITION: x is strongly K-random if K(x | n) > n+ K(n) — c.

THEOREM (Direct product for weak K-randomness) [Z2'2012] If
K(x|n)>n—c, and K(y | x) > n—c, then K(xy | 2n) > 2n— O(c).

©
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Randomness direct product for prefix-free complexity

©

Direct product theorem  for plain complexity: If C(x | n) > n— ¢, and
C(y | x) > n—c, then C(xy | 2n) > 2n— O(c).

©

Does the direct product theorem hold for prefix-free complexity?

o DEFINITION: x is weakly K-random if K(x | n) > n—c.

©

DEFINITION: x is strongly K-random if K(x | n) > n+ K(n) — c.

©

THEOREM (Direct product for weak K-randomness) [Z2'2012] If
K(x|n)>n—c, and K(y | x) > n—c, then K(xy | 2n) > 2n— O(c).

©

For strong K-randomness, the question is open.
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THEOREM (Direct product for weak K-randomness) [Z2'2012] If
K(x|n)>n—c, and K(y | x) > n—c, then K(xy | 2n) > 2n— O(c).

PROOF(sketch):

Notation: d is a self-delimiting encoding of d.
Su(d)={v | K(uv|n)<2n-2d}.

F(d) = {u] 1S.()] > 27},

We construct prefix-free program p; using conditional information x (basically
enumerating Sy(d)).

p1 on input dbin(i):

Check if bin(i) is written on n — d bits. If not, diverge.

Else, enumerate strings of length n such that K(xu | n) < 2n — 2d; output the
i-th such string.
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If there is i such that p;(d, i) outputs u, then K(u | x) < n—d+|d| < n—c (for
d sufficiently large).

So there is no i such that p;(d, i) outputs y.

There are two possible reasons:

(a) K(xy | n) > 2n — 2d; in this case we are done.

(b) There are 2"~ other strings enumerated before y.
But in case (b), |S«(d)| > 279, so x € F(d).

22n—2d

Note that |F(d)| < &= =2""1.

This implies (after some work), K(x | n) < n—d + |d| < n — c, contradiction.

So only (a) can happen. QED
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Randomness direct product for infinite sequences

o Van Lambalgen Theorem: x random, and y random conditioned by x <
x @ y is random.

o random means Martin-Lof random.

o = holds also for Schnorr random and constructive random.
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Resource-bounded complexity

o Space-bounded computation
CS*("(x) = min{|p| | U(p) = x in space < s(|x|)}

o Time-bounded computation
CTHM(x) = min{|p| | U(p) = x in time < t(|x|)}
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Randomness direct product for resource-bounded
complexity

o THEOREM (Direct product for space-bounded randomness)

If CS*(x | n)>n—c, CS5"(y|x)>n—c, then
CS*s("(xy | n) > 2n — O(c), for some constant a > 0.
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Randomness direct product for resource-bounded
complexity

o THEOREM (Direct product for space-bounded randomness)

If CS*(x | n)>n—c, CS5"(y|x)>n—c, then
CS*s("(xy | n) > 2n — O(c), for some constant a > 0.

o Randomness direct product for time-bounded complexity does not hold
(provided one-way permutations exist).

Take y - random, and x = f(y) where f is a one-way permutation.
CTPY(x | n) > n, CTPY(y | x) > n, but CTPY(xy | n) ~ n.
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Open problem for time-bounded complexity

Let x and y be such that
CTP¥(x|y)>n, CTPY(y | x) > n.

What can we say about CTP(xy | n)?

Conjecture: For some x and y, CTPY(xy | n) << 2n.

Marius Zimand (Towson U.) Symmetry of Information Feb 2012

17 / 28



The other motivation...

o Random objects are wonderful (think of random graphs, random strings, ...)

o Randomness is very useful in practice (polls, cryptography, algorithms,
games, etc.)

o But how do we get randomness?
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ES——————
How do we get randomness ...

o Randomness cannot be obtained from nothing (entropy cannot be increased).
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How do we get randomness ...

o Randomness cannot be obtained from nothing (entropy cannot be increased).
o We need to start with some form of randomness.

o Randomness direct product: From 2 n-bit sources of (close to) perfect
randomness, we get one 2n- bit source of (close to) perfect randomness
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How do we get randomness ...

o Randomness cannot be obtained from nothing (entropy cannot be increased).

We need to start with some form of randomness.

©

©

Randomness direct product: From 2 n-bit sources of (close to) perfect
randomness, we get one 2n- bit source of (close to) perfect randomness

©

From imperfect randomness sources, can we get better randomness?

©

From imperfect randomness sources, can we get better and new randomness?
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ES——————
How do we get randomness ...

o From imperfect randomness sources, to better randomness.
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How do we get randomness ...

o From imperfect randomness sources, to better randomness.
We want (polynomial-time) computable f such that on input xq, ..., X
sources with partial randomness, f(xi,...,x;) has close to full randomness.
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How do we get randomness ...

o From imperfect randomness sources, to better randomness.
We want (polynomial-time) computable f such that on input xq, ..., X
sources with partial randomness, f(xi,...,x;) has close to full randomness.

o From imperfect randomness sources, to better and new randomness.

We want (polynomial-time) computable f such that on input xi, ..., X
sources with partial randomness, f(x,...,x;) conditioned by
X1, .- +5Xi—1,Xix1, - - - X¢ has close to full randomness.
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How do we get randomness ...

o From imperfect randomness sources, to better randomness.
We want (polynomial-time) computable f such that on input xq, ..., X
sources with partial randomness, f(xi,...,x;) has close to full randomness.

o From imperfect randomness sources, to better and new randomness.

We want (polynomial-time) computable f such that on input xi, ..., X
sources with partial randomness, f(x,...,x;) conditioned by
X1, .- +5Xi—1,Xix1, - - - X¢ has close to full randomness.

o The sources can be modeled by distributions, and randomness quality by
min-entropy.

f is a randomness extractor.
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How do we get randomness ...

o From imperfect randomness sources, to better randomness.
We want (polynomial-time) computable f such that on input xq, ..., X
sources with partial randomness, f(xi,...,x;) has close to full randomness.

o From imperfect randomness sources, to better and new randomness.

We want (polynomial-time) computable f such that on input xi, ..., X
sources with partial randomness, f(x,...,x;) conditioned by
X1, .- +5Xi—1,Xix1, - - - X¢ has close to full randomness.

o The sources can be modeled by distributions, and randomness quality by
min-entropy.

f is a randomness extractor.

o The sources can be modeled by strings or sequences, and randomness quality
by Kolmogorov complexity.

f is a Kolmogorov extractor.
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Kolmogorov extraction from one string

o Kolmogorov extraction from one string is impossible.

THEOREM. If f: {0,1}" — {0,1}™ is a uniformly computable family of
functions, there is a string x with C(x) > n— m and C(f(x) | n) = O(1).
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Kolmogorov extraction with advice

o Extraction from one source is possible if we have some non-uniform
information about the source.

o Question: How much information?

o THEOREM[FHPVW'06] For every rational o,e > 0, there exists f poly-time

computable and a constant k such that for every x with rate(x) > o, Jax
of length k such that rate(f(x,ax)) > 1 —e.
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Kolmogorov extraction with advice

o Extraction from one source is possible if we have some non-uniform

information about the source.

o Question: How much information? rate(x) = C(x)/|x|

o THEOREM[FHPVW'06] For every rational o,e > 0, there exis._| f poly-time

computable and a constant k such that for every x with rate(x) > o, Jax
of length k such that rate(f(x,ax)) > 1 —e.
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Kolmogorov extraction with advice

Extraction from one source is possible if we have some non-uniform
information about the source.

©

Question: How much information?

(]

(+]

THEOREM[FHPVW'06] For every rational o, e > 0, there exists f poly-time

computable and a constant k such that for every x with rate(x) > o, Jax
of length k such that rate(f(x,ax)) > 1 —e.

©

THEOREM[VV'02,Z'11] With constant advice, we cannot obtain
rate(f(x, ax)) =1 —o(1).
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Kolmogorov extraction with advice

©

Extraction from one source is possible if we have some non-uniform
information about the source.

Question: How much information?

(]

(+]

THEOREM[FHPVW'06] For every rational o, e > 0, there exists f poly-time

computable and a constant k such that for every x with rate(x) > o, Jax
of length k such that rate(f(x,ax)) > 1 —e.

©

THEOREM[VV'02,Z'11] With constant advice, we cannot obtain
rate(f(x, ax)) =1 —o(1).

THEOREM[Z'11] With w(1) advice, we can obtain rate(f(x, ayx)) = 1.

©
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Kolmogorov extraction from two strings

o Describing the sources:

dep(x, y) = max{C(x [ n) = C(x | y), C(y | n) = C(y [ x)}
(k,a) sources: Sk o = {(x,¥)| C(x| n)>k,C(y | n) > k,dep(x,y) < a}
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Kolmogorov extraction from two strings

o Describing the sources:
dep(x,y) = max{C(x | n) — C(x | y), C(y | n) = C(y [ x)}
(k,a) sources: Sk o = {(x,¥)| C(x| n)>k,C(y | n) > k,dep(x,y) < a}

o THEOREM[Z'10] When we extract from sources with dep(x, y) = «, the
randomness deficiency of the output must be > o — O(log «).
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Kolmogorov extraction from two strings

o THEOREM[Z'10] Let k, o be such that kK > a + 7 log n.
There exists a Kolmogorov extractor E such that for all (x,y) € Sk.a,

@ [E(x,y)| = 2k,
@ C(E(x,y) | x) > 2k —a— O(log n).
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Kolmogorov extraction from two strings

o THEOREM[Z'10] Let k, o be such that kK > a + 7 log n.
There exists a Kolmogorov extractor E such that for all (x,y) € Sk.a,
@ |E(x,y)| =~ 2k,
@ C(E(x,y)|x)>2k —a— O(logn).

o THEOREM[Z'10] Let k, o be such that kK > a + 7 log n.
There exists a Kolmogorov extractor E such that for all (x,y) € Sk.a,
@ |E(x,y)l = k,
@ C(E(x,y) | x) = k = a = O(log n).
@ C(E(x,y) | y) 2 k—a— O(log n).
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Kolmogorov extraction from two strings

o THEOREM[Z'10] Let k, o be such that kK > a + 7 log n.
There exists a Kolmogorov extractor E such that for all (x,y) € Sk.a,

@ [E(x,y)| = 2k,
@ C(E(x,y) | x) > 2k —a— O(log n).

o THEOREM[Z'10] Let k, o be such that kK > a + 7 log n.
There exists a Kolmogorov extractor E such that for all (x,y) € Sk.a,

@ |E(x,y)| = k,
@ C(E(x,y) | x) >k —a— 0O(logn).
® C(E(x.y) | y) > k—a— Ologn).

o THEOREMI[Z'10] In the above theorems if k = Q(n), then E is poly-time
computable (but output length is a constant fraction of k).
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Kolmogorov extraction from infinite sequences

o Sources are sequences in {0,1}%.

o Quality of randomness: effective Hausdorff dimension dim(x).

dim(x) = inf @
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Kolmogorov extraction from infinite sequences

o Sources are sequences in {0,1}%.

o Quality of randomness: effective Hausdorff dimension dim(x).

dim(x) = inf w

o Miller's THEOREM [M'2008] Extraction from one source is impossible.

There exists x with dim(x) = 1/2 such that for every Turing reduction f, dim
(f(x)) <1/2.
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Kolmogorov extraction from infinite sequences

o DEFINITION[CaludeZ.08] x,y € {0,1}* are C-independent if for all n, m

C(xIn yim) > C(xIn) + C(y[m) — O(log n + log m).

o THEOREM][Z'08] Extraction from two C-independent sources is possible.

For every rational ¢ > 0, there exists a tt-reduction f such that for all x, y, if
x and y are C-independent, dim(x) > o, dim(x) > o, then dim(f(x, y)) = 1.
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Summary

Randomness direct product:
IF x random, y random, (x,y) independent THEN xy random.
o Holds for strings and plain Kolmogorov complexity randomness
(C(x|n)>n—c)
Holds for strings and weak prefix-free Kolmogorov complexity randomness
(K(x|n)>n—c¢)
Open for strings and strong prefix-free Kolmogorov complexity randomness
(K(x | n) > n+ K(n) - )
o Holds for infinite sequences and Martin-L&f randomness (van Lamabalgen
Theorem) (also for Schnorr randomness, constructive randomness)

©

©

Holds for space-bounded Kolmogorov complexity

(4]

Conjecture: Does not hold for poly-time resource bounded Kolmogorov
complexity

©
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La Multi Ani, Cris!

Thank you.

[m]
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