Symmetry of Information: a closer look

Marius Zimand
Towson University

WTCS 2012, Auckland

Motivation: Direct product results for randomness

Another Motivation: later ...
General question:

- x random
- y random
- x and y independent
- Is $x y$ random?

Classical information and algorithmical information

- Shannon entropy, $H(X)=\sum_{x} P(X=x) \log P(X=x)$.

Length of the minimal average description of random variable X.

- Algorithmical plain complexity, $C(x)$. Length of the minimal algorithmical description of individual string x.
- Algorithmical prefix-free complexity, $K(x)$. Length of the minimal algorithmical prefix-free description of individual string x.

Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.

- $\overbrace{0101 \ldots .01}^{10^{100}}$ has a short description.
- flipping a coin 10^{100} times: $011000101010110010101000101001011 \ldots 100$: description $\approx 10^{100}$ bits.

Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.

- $\overbrace{0101 \ldots .01}^{10^{100}}$ has a short description.
- flipping a coin 10^{100} times: $011000101010110010101000101001011 \ldots 100$: description $\approx 10^{100}$ bits.

Definition:

$C(x)=\min \{|p| \mid U(p)=x\}$;
$C(x \mid y)=\min \{|p| \mid U(p, y)=x\}$,
where U is a fixed universal Turing machine.

Algorithmical (a.k.a Kolmogorov) complexity

Kolmogorov complexity of a string is the length of its shortest description.
10^{100}

- $\overbrace{0101 \ldots 01}$ has a short description.
- flipping a coin 10^{100} times: $011000101010110010101000101001011 \ldots 100$: description $\approx 10^{100}$ bits.

Definition:

$C(x)=\min \{|p| \mid U(p)=x\}$;
$C(x \mid y)=\min \{|p| \mid U(p, y)=x\}$,
where U is a fixed universal Turing machine.
Definition:
$K(x)=\min \{|p| \mid U(p)=x\}$;
$K(x \mid y)=\min \{|p| \mid U(p, y)=x\}$,
where U is a fixed prefix-free universal Turing machine.

Mutual information

- $I(y: x)=$ quantity of information in y about x.
- Classical information theory: $I(Y: X)=H(X)-H(X \mid Y)$.
- Algorithmical information theory: $I(y: x)=C(x)-C(x \mid y)$.

Symmetry of Information

- Symmetry of Information (classical): $I(x: y)=I(y: x)$.
- Symmetry of Information (algorithmical): $I(x: y)=I(y: x) \pm O(\log n)$.

Symmetry of Information

- Symmetry of Information (classical): $I(x: y)=I(y: x)$.
- Symmetry of Information (algorithmical): $I(x: y)=I(y: x) \pm O(\log n)$.
- For some strings x and y, the $\pm O(\log n)$ is necessary.

Symmetry of Information

- Symmetry of Information (classical): $I(x: y)=I(y: x)$.
- Symmetry of Information (algorithmical): $I(x: y)=I(y: x) \pm O(\log n)$.
- For some strings x and y, the $\pm O(\log n)$ is necessary.
- But for some strings, it is not.
- THEOREM [Z, 2011]. For all strings x and y,

$$
I(x: y) \leq I(y: x)+O(\log I(y: x))+O\left(C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)
$$

Symmetry of Information

- Symmetry of Information (classical): $I(x: y)=I(y: x)$.
- Symmetry of Information (algorithmical): $I(x: y)=I(y: x) \pm O(\log n)$.
- For some strings x and y, the $\pm O(\log n)$ is necessary.
- But for some strings, it is not.
- THEOREM [Z, 2011]. For all strings x and y,

$$
I(x: y) \leq I(y: x)+O(\log I(y: x))+O\left(C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right) .
$$

- COROLLARY. If x and y are random, then

$$
I(y: x)=O(1) \text { IFF } I(x: y)=O(1)
$$

Randomness direct product

The key part of the proof is to analyze $C(x y \mid n)$ vs. $C(x \mid n)+C(y \mid x)$.
$w=|C(x y \mid n)-C(x \mid n)-C(y \mid x)|$
We show $w=O(\log I(x: y))+O\left(C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)$.
We get the direct product result:
$x \quad$ random, y random, x and y independent $\Rightarrow x y$ random.

Randomness direct product

The key part of the proof is to analyze $C(x y \mid n)$ vs. $C(x \mid n)+C(y \mid x)$.
$w=|C(x y \mid n)-C(x \mid n)-C(y \mid x)|$
We show $w=O(\log I(x: y))+O\left(C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)$.
We get the direct product result:
$x \quad$ random, y random, x and x independent $\Rightarrow x y$ random.

$$
C(x \mid n)=n-O(1)
$$

$$
I(x: y)=O(1)
$$

Randomness direct product

The key part of the proof is to analyze $C(x y \mid n)$ vs. $C(x \mid n)+C(y \mid x)$.
$w=|C(x y \mid n)-C(x \mid n)-C(y \mid x)|$
We show $w=O(\log I(x: y))+O\left(C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)$.
We get the direct product result:
$x \quad$ random, y random, x and y independent $\Rightarrow x y$ random.

- $t_{x}=C(x \mid n), t_{y}=C(y \mid x), t=C(x y \mid n)$
- We want to estimate $w=t_{x}+t_{y}-t$
- The construction uses information $\Lambda=\left(t_{x}, t_{y}, w\right)$
- Λ can be encoded in a self-delimited way using λ bits, for

$$
\lambda \leq 2 \log w+O\left(\log I(x: y)+C^{(2)}(x \mid n)+C^{(2)}(y \mid n) .\right.
$$

Build a $2^{n} \times 2^{n}$ table, with rows and columns indexed by n-bit strings
Color cell (u, v) with 1 if $C(u v \mid n) \leq t$; 0 otherwise.
$S=$ set of 1-cells
$S_{u}=$ set of 1-cells in row u
We have $|S| \leq 2^{t+1}$.
Let $2^{m-1}<\left|S_{x}\right| \leq 2^{m}$.
$F=$ the set of rows with $>2^{m-1} 1$'s.

	v_{1}	v_{2}			
u_{1}	1	1	0	\ldots	\ldots
u_{2}	0	0	1	\ldots	\ldots
\cdot	\ldots				
\cdot	\ldots				
\cdot	\ldots				
\times		1	1		1
\cdot	\ldots				
\cdot	\ldots				
\cdot	\ldots				

We have $|F|<\frac{|S|}{2^{m-1}} \leq 2^{t-m+2}$.
x is in $F ; F$ can be enumerated given information Λ
So: $C(x \mid n, \Lambda) \leq t-m+2+O(1)$.
y is in $S_{x} ; S_{x}$ can be enumerated given x and Λ
So: $C(y \mid x, \Lambda) \leq m+O(1)$.
x is in $F ; F$ can be enumerated given information Λ
So: $C(x \mid n, \Lambda) \leq t-m+2+O(1)$.
y is in $S_{x} ; S_{x}$ can be enumerated given x and Λ
So: $C(y \mid x, \wedge) \leq m+O(1)$.
$C(x \mid n, \Lambda)+C(y \mid x, \Lambda) \leq t+O(1)=t_{x}+t_{y}-w+O(1)$.
x is in $F ; F$ can be enumerated given information Λ
So: $C(x \mid n, \Lambda) \leq t-m+2+O(1)$.
y is in $S_{x} ; S_{x}$ can be enumerated given x and Λ
So: $C(y \mid x, \Lambda) \leq m+O(1)$.
$C(x \mid n, \Lambda)+C(y \mid x, \Lambda) \leq t+O(1)=t_{x}+t_{y}-w+O(1)$.
$t_{x}-O(\lambda)+t_{y}-O(\lambda)<t_{x}+t_{y}-w+O(1)$.
x is in $F ; F$ can be enumerated given information Λ
So: $C(x \mid n, \Lambda) \leq t-m+2+O(1)$.
y is in $S_{x} ; S_{x}$ can be enumerated given x and Λ
So: $C(y \mid x, \Lambda) \leq m+O(1)$.
$C(x \mid n, \Lambda)+C(y \mid x, \Lambda) \leq t+O(1)=t_{x}+t_{y}-w+O(1)$.
$t_{x}-O(\lambda)+t_{y}-O(\lambda)<t_{x}+t_{y}-w+O(1)$.
$w<O(\lambda)$.
x is in $F ; F$ can be enumerated given information Λ
So: $C(x \mid n, \Lambda) \leq t-m+2+O(1)$.
y is in $S_{x} ; S_{x}$ can be enumerated given x and Λ
So: $C(y \mid x, \wedge) \leq m+O(1)$.
$C(x \mid n, \Lambda)+C(y \mid x, \Lambda) \leq t+O(1)=t_{x}+t_{y}-w+O(1)$.
$t_{x}-O(\lambda)+t_{y}-O(\lambda)<t_{x}+t_{y}-w+O(1)$.
$w<O(\lambda)$.
Recall that $\lambda \leq 2 \log w+O\left(\log I(x: y)+C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)$.
We obtain: $w=O\left(\log I(x: y)+C^{(2)}(x \mid n)+C^{(2)}(y \mid n)\right)$. QED

Randomness direct product for prefix-free complexity

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.

Randomness direct product for prefix-free complexity

If x is random and y is random conditioned by x

then $x y$ is random

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.

Randomness direct product for prefix-free complexity

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.
- Does the direct product theorem hold for prefix-free complexity?

Randomness direct product for prefix-free complexity

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.
- Does the direct product theorem hold for prefix-free complexity?
- DEFINITION: x is weakly K-random if $K(x \mid n) \geq n-c$.
- DEFINITION: x is strongly K-random if $K(x \mid n) \geq n+K(n)-c$.

Randomness direct product for prefix-free complexity

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.
- Does the direct product theorem hold for prefix-free complexity?
- DEFINITION: x is weakly K-random if $K(x \mid n) \geq n-c$.
- DEFINITION: x is strongly K-random if $K(x \mid n) \geq n+K(n)-c$.
- THEOREM (Direct product for weak K-randomness) [Z'2012] If $K(x \mid n) \geq n-c$, and $K(y \mid x) \geq n-c$, then $K(x y \mid 2 n) \geq 2 n-O(c)$.

Randomness direct product for prefix-free complexity

- Direct product theorem for plain complexity: If $C(x \mid n) \geq n-c$, and $C(y \mid x) \geq n-c$, then $C(x y \mid 2 n) \geq 2 n-O(c)$.
- Does the direct product theorem hold for prefix-free complexity?
- DEFINITION: x is weakly K-random if $K(x \mid n) \geq n-c$.
- DEFINITION: x is strongly K-random if $K(x \mid n) \geq n+K(n)-c$.
- THEOREM (Direct product for weak K-randomness) [Z'2012] If $K(x \mid n) \geq n-c$, and $K(y \mid x) \geq n-c$, then $K(x y \mid 2 n) \geq 2 n-O(c)$.
- For strong K-randomness, the question is open.

THEOREM (Direct product for weak K-randomness) [Z'2012] If $K(x \mid n) \geq n-c$, and $K(y \mid x) \geq n-c$, then $K(x y \mid 2 n) \geq 2 n-O(c)$.

PROOF(sketch):
Notation: \bar{d} is a self-delimiting encoding of d.
$S_{u}(d)=\{v \mid K(u v \mid n) \leq 2 n-2 d\}$.
$F(d)=\left\{u| | S_{u}(d) \mid \geq 2^{n-d}\right\}$.
We construct prefix-free program p_{1} using conditional information x (basically enumerating $\left.S_{x}(d)\right)$.
p_{1} on input $\bar{d} \operatorname{bin}(i)$:
Check if $\operatorname{bin}(i)$ is written on $n-d$ bits. If not, diverge.
Else, enumerate strings of length n such that $K(x u \mid n) \leq 2 n-2 d$; output the i-th such string.

If there is i such that $p_{1}(d, i)$ outputs u, then $K(u \mid x) \leq n-d+|\bar{d}|<n-c$ (for d sufficiently large).

So there is no i such that $p_{1}(d, i)$ outputs y.
There are two possible reasons:
(a) $K(x y \mid n)>2 n-2 d$; in this case we are done.
(b) There are 2^{n-d} other strings enumerated before y.

But in case (b), $\left|S_{x}(d)\right| \geq 2^{n-d}$, so $x \in F(d)$.
Note that $|F(d)| \leq \frac{2^{2 n-2 d}}{2^{n-d}}=2^{n-d}$.
This implies (after some work), $K(x \mid n)<n-d+|\bar{d}|<n-c$, contradiction.
So only (a) can happen. QED

Randomness direct product for infinite sequences

- Van Lambalgen Theorem: x random, and y random conditioned by $x \Leftrightarrow$ $x \oplus y$ is random.
- random means Martin-Löf random.
- \Rightarrow holds also for Schnorr random and constructive random.

Resource-bounded complexity

- Space-bounded computation

$$
C S^{s(n)}(x)=\min \{|p| \mid U(p)=x \text { in space } \leq s(|x|)\}
$$

- Time-bounded computation

$$
C T^{t(n)}(x)=\min \{|p| \mid U(p)=x \text { in time } \leq t(|x|)\}
$$

Randomness direct product for resource-bounded complexity

- THEOREM (Direct product for space-bounded randomness)

If $C S^{s(n)}(x \mid n) \geq n-c, C S^{s(n)}(y \mid x) \geq n-c$, then $\operatorname{CS}^{\alpha s(n)}(x y \mid n) \geq 2 n-O(c)$, for some constant $\alpha>0$.

Randomness direct product for resource-bounded complexity

- THEOREM (Direct product for space-bounded randomness)

If $C^{s(n)}(x \mid n) \geq n-c, C S^{s(n)}(y \mid x) \geq n-c$, then $C S^{\alpha s(n)}(x y \mid n) \geq 2 n-O(c)$, for some constant $\alpha>0$.

- Randomness direct product for time-bounded complexity does not hold (provided one-way permutations exist).

Take y - random, and $x=f(y)$ where f is a one-way permutation.
$C T^{\text {poly }}(x \mid n) \geq n, C T^{\text {poly }}(y \mid x) \geq n$, but $C T^{\text {poly }}(x y \mid n) \approx n$.

Open problem for time-bounded complexity

Let x and y be such that
$C T^{\text {poly }}(x \mid y) \geq n, C T^{\text {poly }}(y \mid x) \geq n$.

What can we say about $C T^{\text {poly }}(x y \mid n)$?

Conjecture: For some x and $y, C T^{\text {poly }}(x y \mid n) \ll 2 n$.

The other motivation...

- Random objects are wonderful (think of random graphs, random strings, ...)
- Randomness is very useful in practice (polls, cryptography, algorithms, games, etc.)
- But how do we get randomness?

How do we get randomness ...

- Randomness cannot be obtained from nothing (entropy cannot be increased).

How do we get randomness ...

- Randomness cannot be obtained from nothing (entropy cannot be increased).
- We need to start with some form of randomness.
- Randomness direct product: From $2 n$-bit sources of (close to) perfect randomness, we get one $2 n$ - bit source of (close to) perfect randomness

How do we get randomness ...

- Randomness cannot be obtained from nothing (entropy cannot be increased).
- We need to start with some form of randomness.
- Randomness direct product: From $2 n$-bit sources of (close to) perfect randomness, we get one $2 n$ - bit source of (close to) perfect randomness
- From imperfect randomness sources, can we get better randomness?

How do we get randomness ...

- Randomness cannot be obtained from nothing (entropy cannot be increased).
- We need to start with some form of randomness.
- Randomness direct product: From 2 n-bit sources of (close to) perfect randomness, we get one $2 n$ - bit source of (close to) perfect randomness
- From imperfect randomness sources, can we get better randomness?
- From imperfect randomness sources, can we get better and new randomness?

How do we get randomness ...

- Randomness cannot be obtained from nothing (entropy cannot be increased).
- We need to start with some form of randomness.
- Randomness direct product: From 2 n-bit sources of (close to) perfect randomness, we get one $2 n$ - bit source of (close to) perfect randomness
- From imperfect randomness sources, can we get better randomness?
- From imperfect randomness sources, can we get better and new randomness?

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ has close to full randomness.

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ has close to full randomness.

- From imperfect randomness sources, to better and new randomness.

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ has close to full randomness.

- From imperfect randomness sources, to better and new randomness. We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ conditioned by $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{t}$ has close to full randomness.

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ has close to full randomness.

- From imperfect randomness sources, to better and new randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ conditioned by $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{t}$ has close to full randomness.

- The sources can be modeled by distributions, and randomness quality by min-entropy.
f is a randomness extractor.

How do we get randomness ...

- From imperfect randomness sources, to better randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ has close to full randomness.

- From imperfect randomness sources, to better and new randomness.

We want (polynomial-time) computable f such that on input x_{1}, \ldots, x_{t} sources with partial randomness, $f\left(x_{1}, \ldots, x_{t}\right)$ conditioned by $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots x_{t}$ has close to full randomness.

- The sources can be modeled by distributions, and randomness quality by min-entropy.
f is a randomness extractor.
- The sources can be modeled by strings or sequences, and randomness quality by Kolmogorov complexity.
f is a Kolmogorov extractor.

Kolmogorov extraction from one string

- Kolmogorov extraction from one string is impossible.

THEOREM. If $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a uniformly computable family of functions, there is a string x with $C(x)>n-m$ and $C(f(x) \mid n)=O(1)$.

Kolmogorov extraction with advice

- Extraction from one source is possible if we have some non-uniform information about the source.
- Question: How much information?
- THEOREM[FHPVW'06] For every rational $\sigma, \epsilon>0$, there exists f poly-time computable and a constant k such that for every x with rate $(x) \geq \sigma, \exists \alpha_{x}$ of length k such that $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right) \geq 1-\epsilon$.

Kolmogorov extraction with advice

- Extraction from one source is possible if we have some non-uniform information about the source.
- Question: How much information?

$$
\operatorname{rate}(x)=C(x) /|x|
$$

- THEOREM[FHPVW'06] For every rational $\sigma, \epsilon>0$, there exis. f poly-time computable and a constant k such that for every x with $\operatorname{rate}(x) \geq \sigma, \exists \alpha_{x}$ of length k such that $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right) \geq 1-\epsilon$.

Kolmogorov extraction with advice

- Extraction from one source is possible if we have some non-uniform information about the source.
- Question: How much information?
- THEOREM[FHPVW'06] For every rational $\sigma, \epsilon>0$, there exists f poly-time computable and a constant k such that for every x with rate $(x) \geq \sigma, \exists \alpha_{x}$ of length k such that $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right) \geq 1-\epsilon$.
- THEOREM[VV'02,Z'11] With constant advice, we cannot obtain $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right)=1-o(1)$.

Kolmogorov extraction with advice

- Extraction from one source is possible if we have some non-uniform information about the source.
- Question: How much information?
- THEOREM[FHPVW'06] For every rational $\sigma, \epsilon>0$, there exists f poly-time computable and a constant k such that for every x with rate $(x) \geq \sigma, \exists \alpha_{x}$ of length k such that $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right) \geq 1-\epsilon$.
- THEOREM[VV'02,Z'11] With constant advice, we cannot obtain $\operatorname{rate}\left(f\left(x, \alpha_{x}\right)\right)=1-o(1)$.
- THEOREM[Z'11] With $\omega(1)$ advice, we can obtain rate $\left(f\left(x, \alpha_{x}\right)\right)=1$.

Kolmogorov extraction from two strings

- Describing the sources:
$\operatorname{dep}(x, y)=\max \{C(x \mid n)-C(x \mid y), C(y \mid n)-C(y \mid x)\}$
(k, α) sources: $S_{k, \alpha}=\{(x, y) \mid C(x \mid n) \geq k, C(y \mid n) \geq k, \operatorname{dep}(\mathrm{x}, \mathrm{y}) \leq \alpha\}$

Kolmogorov extraction from two strings

- Describing the sources:
$\operatorname{dep}(x, y)=\max \{C(x \mid n)-C(x \mid y), C(y \mid n)-C(y \mid x)\}$
(k, α) sources: $S_{k, \alpha}=\{(x, y) \mid C(x \mid n) \geq k, C(y \mid n) \geq k, \operatorname{dep}(x, y) \leq \alpha\}$
- THEOREM[Z'10] When we extract from sources with $\operatorname{dep}(x, y)=\alpha$, the randomness deficiency of the output must be $\geq \alpha-O(\log \alpha)$.

Kolmogorov extraction from two strings

- THEOREM[Z'10] Let k, α be such that $k \geq \alpha+7 \log n$.

There exists a Kolmogorov extractor E such that for all $(x, y) \in S_{k, \alpha}$,
(1) $|E(x, y)| \approx 2 k$,
(2) $C(E(x, y) \mid x) \geq 2 k-\alpha-O(\log n)$.

Kolmogorov extraction from two strings

- THEOREM[Z'10] Let k, α be such that $k \geq \alpha+7 \log n$.

There exists a Kolmogorov extractor E such that for all $(x, y) \in S_{k, \alpha}$,
(1) $|E(x, y)| \approx 2 k$,
(2) $C(E(x, y) \mid x) \geq 2 k-\alpha-O(\log n)$.

- THEOREM[Z'10] Let k, α be such that $k \geq \alpha+7 \log n$.

There exists a Kolmogorov extractor E such that for all $(x, y) \in S_{k, \alpha}$,
(1) $|E(x, y)| \approx k$,
(2) $C(E(x, y) \mid x) \geq k-\alpha-O(\log n)$.
(3) $C(E(x, y) \mid y) \geq k-\alpha-O(\log n)$.

Kolmogorov extraction from two strings

- THEOREM[Z'10] Let k, α be such that $k \geq \alpha+7 \log n$.

There exists a Kolmogorov extractor E such that for all $(x, y) \in S_{k, \alpha}$,
(1) $|E(x, y)| \approx 2 k$,
(2) $C(E(x, y) \mid x) \geq 2 k-\alpha-O(\log n)$.

- THEOREM[Z'10] Let k, α be such that $k \geq \alpha+7 \log n$.

There exists a Kolmogorov extractor E such that for all $(x, y) \in S_{k, \alpha}$,
(1) $|E(x, y)| \approx k$,
(2) $C(E(x, y) \mid x) \geq k-\alpha-O(\log n)$.
(3) $C(E(x, y) \mid y) \geq k-\alpha-O(\log n)$.

- THEOREM[Z'10] In the above theorems if $k=\Omega(n)$, then E is poly-time computable (but output length is a constant fraction of k).

Kolmogorov extraction from infinite sequences

- Sources are sequences in $\{0,1\}^{\omega}$.
- Quality of randomness: effective Hausdorff dimension $\operatorname{dim}(x)$. $\operatorname{dim}(x)=\inf \frac{C(x \mid n)}{n}$

Kolmogorov extraction from infinite sequences

- Sources are sequences in $\{0,1\}^{\omega}$.
- Quality of randomness: effective Hausdorff dimension $\operatorname{dim}(x)$. $\operatorname{dim}(x)=\inf \frac{C(x \mid n)}{n}$
- Miller's THEOREM [M'2008] Extraction from one source is impossible. There exists x with $\operatorname{dim}(x)=1 / 2$ such that for every Turing reduction f, dim $(f(x)) \leq 1 / 2$.

Kolmogorov extraction from infinite sequences

- DEFINITION[CaludeZ.08] $x, y \in\{0,1\}^{\omega}$ are C-independent if for all n, m $C(x \upharpoonright n y\rceil m) \geq C(x \mid n)+C(y \upharpoonright m)-O(\log n+\log m)$.
- THEOREM[Z'08] Extraction from two C-independent sources is possible. For every rational $\sigma>0$, there exists a tt-reduction f such that for all x, y, if x and y are C-independent, $\operatorname{dim}(x) \geq \sigma, \operatorname{dim}(x) \geq \sigma$, then $\operatorname{dim}(f(x, y))=1$.

Summary

Randomness direct product:
IF x random, y random, (x, y) independent THEN $x y$ random.

- Holds for strings and plain Kolmogorov complexity randomness ($C(x \mid n)>n-c)$
- Holds for strings and weak prefix-free Kolmogorov complexity randomness $(K(x \mid n)>n-c)$
- Open for strings and strong prefix-free Kolmogorov complexity randomness $(K(x \mid n)>n+K(n)-c)$
- Holds for infinite sequences and Martin-Löf randomness (van Lamabalgen Theorem) (also for Schnorr randomness, constructive randomness)
- Holds for space-bounded Kolmogorov complexity
- Conjecture: Does not hold for poly-time resource bounded Kolmogorov complexity

La Multi Ani, Cris!

Thank you.

