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Introduction

Definition [Chaitin Ω Number, Chaitin 1975]

Ω :=
∑

p∈DomU

2−|p|.

Here U is the optimal prefix-free machine.

Theorem [Calude & Nies 1997] Ω ≡wtt DomU .

Definition [Generalization of Chaitin Ω Number, Tadaki 1999]

Z(T ) :=
∑

p∈DomU

2−
|p|
T

for any real T > 0.

In the case of T = 1, Z(1) = Ω.

Theorem Suppose that T is a computable real with 0 < T ≤ 1. Then

Z(T ) ≡wtt DomU .
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Introduction

In this talk, we introduce an elaboration of the notion of weak truth-table
reducibility, called reducibility in query size f , where we try to follow the
fashion in which computational complexity theory is developed, while stay-
ing in computability theory.

Theorem [Calude & Nies 1997, posted again] Ω ≡wtt DomU .

Using the notion of reducibility in query size f , this theorem is elaborated
to show the unidirectionality between Ω and DomU .

Theorem [posted again] Suppose that T is a computable real with 0 <

T ≤ 1. Then Z(T ) ≡wtt DomU .

Using the notion of reducibility in query size f , this theorem is elaborated
to show the bidirectionality between Z(T ) and DomU .

Thus, the notion of reducibility in query size f can reveal a critical differ-
ence of the behavior between T = 1 and T < 1, which cannot be captured
by the notion of weak truth-table reducibility.
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Physical Motivation: Statistical Mechanical Interpretation of AIT

[Calude & Stay, Information and Computation 204 (2006)] pointed out that

Z(T ) is similar to a partition function in statistical mechanics.

• In statistical mechanics, the partition function Z is given as:

Z =
∑
n

e−
En
kT .

Here, n denotes the quantum number of an energy eigenstate of a quantum

system, En its energy, and T temperature.

• On the other hand, Z(T ) is given as:

Z(T ) =
∑

p∈DomU

2−
|p|
T (T > 0).

Thus, Z coincides with Z(T ) by performing the following replacements:

An energy eigenstate n ⇒ A program p ∈ DomU ,

The energy En of n ⇒ The length |p| of p,

Boltzmann constant k ⇒ 1/ ln 2.
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Physical Motivation: Statistical Mechanical Interpretation of AIT

In our former work, we developed the statistical mechanical interpretation
of algorithmic information theory (AIT, for short) where we introduced the
thermodynamic quantities into AIT by performing the following replace-
ments for the corresponding thermodynamic quantities of a physical system
at temperature T .

An energy eigenstate n ⇒ A string p in DomU ,

The energy En of n ⇒ The length |p| of p,

Boltzmann constant k ⇒ 1/ ln 2.

Partition function Z(T ) =
∑
n

e−
En
kT ⇒ Z(T ) =

∑
p∈DomU

2−
|p|
T ,

Free energy F (T ) = −kT lnZ(T ) ⇒ F (T ) = −T log2Z(T ),

Energy E(T ) =
1

Z(T )

∑
n

Ene
−En

kT ⇒ E(T ) =
1

Z(T )

∑
p∈DomU

|p|2−
|p|
T ,

Entropy S(T ) =
E(T )− F (T )

T
⇒ S(T ) =

E(T )− F (T )

T
.
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Physical Motivation: Statistical Mechanical Interpretation of AIT

Theorem [Tadaki 2008]

(i) If 0 < T < 1 and T is computable, then each of Z(T ), F (T ), E(T ), and
S(T ) converges to a real whose compression rate equals to T , i.e.,

lim
n→∞

H(Z(T )�n)
n

= lim
n→∞

H(F (T )�n)
n

= T,

lim
n→∞

H(E(T )�n)
n

= lim
n→∞

H(S(T )�n)
n

= T.

(ii) If 1 < T , then Z(T ), E(T ), and S(T ) diverge to ∞, and F (T ) diverges
to −∞.

Implication of (i): The compression rate of the values of all the thermo-
dynamic quantities equals to the temperature T .
Thermodynamic Interpretation of (ii): “Phase Transition” occurs at tem-
perature 1.

The purpose of this talk is to reveal a new aspect of the phase transition
at temperature T = 1, based on the notion of reducibility in query size f .
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Elaborating Weak Truth-Table Reducibility
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Weak Truth-Table Reducibility

Definition [Weak Truth-Table Reduction of A to B]

Let A,B ⊂ N. We say that A is weak truth-table reducible to B, denoted

A ≤wtt B, if there exist a total recursive function f : N → N and an oracle

Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input n ∈ N, M only queries natural numbers at most f(n).
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Elaborating Weak Truth-Table Reducibility

Definition [Weak Truth-Table Reduction of A to B]

Let A,B ⊂ N. We say that A is weak truth-table reducible to B, denoted
A ≤wtt B, if there exist a total recursive function f : N → N and an oracle
Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input n ∈ N, M only queries natural numbers at most f(n).

Note that, in the definition of weak truth-table reducibility (wtt-reducibility,
for short), we only require the existence of the total recursive bound f on
the use for the oracle B.

In this talk, we introduce an elaboration of the notion of wtt-reducibility,
where the total recursive bound f on the use for the oracle B is explicitly
specified.

In doing so, in particular we try to follow the fashion in which computational
complexity theory is developed, while staying in computability theory.
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Elaborating Weak Truth-Table Reducibility

Definition [Weak Truth-Table Reduction of A to B]

Let A,B ⊂ N. We say that A is weak truth-table reducible to B, denoted

A ≤wtt B, if there exist a total recursive function f : N → N and an oracle

Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input n ∈ N, M only queries natural numbers at most f(n).

Recall that the notion of input size plays a crucial role in computational

complexity theory since computational complexity such as time complexity

and space complexity is measured based on it. Note that this is already

true in AIT since the program-size complexity is measured based on input

size.

Thus, in elaborating wtt-reducibility we consider a reduction between sub-

sets of {0,1}∗ and not a reduction between subsets of N as in the original

wtt-reducibility.
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Reducibility in Query Size f

Definition [Weak Truth-Table Reduction of A to B]

Let A,B ⊂ N. We say that A is weak truth-table reducible to B, denoted
A ≤wtt B, if there exist a total recursive function f : N → N and an oracle
Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input n ∈ N, M only queries natural numbers at most f(n).

The notion of wtt-reducibility is elaborated as follows:

Definition [Reduction of A to B in Query Size f ]

Let f : N → N, and let A,B ⊂ {0,1}∗. We say that A is reducible to B in query
size f if there exists an oracle Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input x ∈ {0,1}∗, M only queries strings of length at most
f(|x|).

11



Reducibility in Query Size f

For any fixed sets A and B, the new definition allows us to consider the
notion of asymptotic behavior for the function f which bounds the use of
the reduction, i.e., which imposes the restriction on the use of the compu-
tational resource (i.e., the oracle B).

Thus, even in the context of computability theory, we can deal with the
notion of asymptotic behavior in a manner like in computational complexity
theory.

The notion of wtt-reducibility is elaborated as follows:

Definition [Reduction of A to B in Query Size f ]

Let f : N → N, and let A,B ⊂ {0,1}∗. We say that A is reducible to B in query
size f if there exists an oracle Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input x ∈ {0,1}∗, M only queries strings of length at most
f(|x|).
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Reducibility in Query Size f

Note that in the elaboration we require the bound f(|x|) to depend only
on input size |x| as in computational complexity theory, and not on input x
itself as in the original wtt-reducibility.

We pursue a formal correspondence to computational complexity theory in
this manner, while staying in computability theory.

We apply the elaboration to sets which appear in AIT and demonstrate the
power of the elaboration.

The notion of wtt-reducibility is elaborated as follows:

Definition [Reduction of A to B in Query Size f ]

Let f : N → N, and let A,B ⊂ {0,1}∗. We say that A is reducible to B in query
size f if there exists an oracle Turing machine M such that

(i) A is Turing reducible to B via M , and

(ii) on every input x ∈ {0,1}∗, M only queries strings of length at most
f(|x|).
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Elementary Properties of Reducibility in Query Size f

Observation

Let f : N → N and g : N → N, and let A,B,C ⊂ {0,1}∗.

(i) If A is reducible to B in query size f and B is reducible to C in query

size g, then A is reducible to C in query size g ◦ f .

(ii) Suppose that f(n) ≤ g(n) for every n ∈ N. If A is reducible to B in query

size f then A is reducible to B in query size g.

(iii) Suppose that A is reducible to B in query size f . If A is not recursive

then f is unbounded.

Observation

For every A ⊂ {0,1}∗, A is reducible to A in query size n.

Here “n” denotes the identity function I : N → N with I(n) = n and not a

constant.

We follow the notation in computational complexity theory.
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Review of Chaitin Ω Number

15



Review: Program-size Complexity

Definition P ⊂ {0,1}∗ is called prefix-free if no string in P is a prefix of

another string in P .

Definition A partial recursive function M : {0,1}∗ → {0,1}∗ is called a

prefix-free machine if DomM is prefix-free, where DomM is the domain of
definition of M .

Definition For any prefix-free machine M and any x ∈ {0,1}∗,

HM(x) := min
{
|p|

∣∣∣ p ∈ {0,1}∗ &M(p) = x
}
.

Definition A prefix-free machine U is called optimal if, for every prefix-free

machine M , there exists d ∈ N such that, for every x ∈ {0,1}∗,
HU(x) ≤ HM(x) + d.

Definition [Program-Size Complexity] We choose a particular optimal

prefix-free machine U as a standard one. Then the program-size complexity
(or Kolmogorov complexity) H(x) of x ∈ {0,1}∗ is defined by

H(x) := HU(x).
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Review: Chaitin Ω Number

Definition [Randomness of Real]

A real α is called random if n ≤ H(α�n) +O(1) for all n ∈ N+.

Here α�n denotes the first n bits of the base-two expansion of α− bαc.
The fractional part of α.

Definition [Chaitin Ω Number, Chaitin 1975]

Ω :=
∑

p∈DomU

2−|p|,

where U is the optimal prefix-free machine.

The first n bits of the base-two expansion of Ω solve the halting problem of

U for inputs of length at most n. Namely, for every n, if Ω�n is given, then

the list of all halting inputs for U of length at most n can be calculated.

Theorem [Chaitin 1975] Ω is random.
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Unidirectionality between Ω and DomU
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Prefixes of Real

In what follows, we investigate the relative computational power between

Ω and DomU , based on the notion of reducibility in query size f .

In the case of wtt-reducibility, we regard reals as subsets of N and then

study the wtt-reducibility between them since the wtt-reducibility is origi-

nally defined for a pair of subsets of N.

To be precise, in that case, each real α is identified with the subset of N
whose characteristic sequence is the base-two expansion of α.

On the other hand, the notion of reduction in query size f is originally

defined for a pair of subsets of {0,1}∗.

Thus, to investigate the relative computational power between a real and

a subset of {0,1}∗, based on the notion of reducibility in query size f , we

have to specify first how to identify a real with a subset of {0,1}∗.

We do this as follows.
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Prefixes of Real

We identify a real with a subset of {0,1}∗ as follows:

Definition [Prefixes of Real]

For each real α, the subset Pf(α) of {0,1}∗ is defined by

Pf(α) := {α�n| n ∈ N}.

Namely, Pf(α) is the set all prefixes of the base-two expansion of α−bαc.

The notion of prefixes of real would seem natural especially for AIT, since

the following holds.

Observation A real α is Chaitin random, i.e., n ≤ H(α�n) + O(1), if and

only if there exists d ∈ N such that, for every x ∈ Pf(α), |x| ≤ H(x)+ d.

Recall that the first n bits of the base-two expansion of Ω solve the halting

problem of U for inputs of length at most n.

This can be rephrased as follows.

Observation DomU is reducible to Pf(Ω) in query size n.
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Main Results: Reduction of Ω to DomU in Query Size f

Definition [Order Function] An order function is a non-decreasing and un-

bounded total recursive function f : N → N.

Theorem [Main Result I ]

For every order function f , the following two are equivalent:

(i) Pf(Ω) is reducible to DomU in query size f(n) +O(1).

(ii)
∑∞

n=0 2
n−f(n) < ∞ (Kraft inequality).

The implication (ii) ⇒ (i) results in:

Corollary Pf(Ω) is reducible to DomU in query size n+(1+ε) log2 n+O(1)

for every real ε > 0.

On the other hand, the implication (i) ⇒ (ii) results in:

Corollary Pf(Ω) is not reducible to DomU in query size n + log2 n +

O(1).

Corollary Pf(Ω) is not reducible to DomU in query size n+O(1).
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One‐Wayness

0110001011110011101101000001111111101000
n )(nf

011000101111001110110100000111111110100.0

001001
0011
1U Dom

011100110001100110
000110010
001001

nlength
)(l h f

01110111100110001110001000001100110
11110011101110001000001100110


n )(nf

)(length nf




nnf )( 


 )(2 nfn

)(f

with
 0n



Main Results: Reduction of DomU to Ω in Query Size f

Theorem [Main Result II ]

For every order function f , the following two are equivalent:

(i) DomU is reducible to Pf(Ω) in query size f(n) +O(1).

(ii) n ≤ f(n) +O(1).

The implication (ii) ⇒ (i) results in:

Corollary DomU is reducible to Pf(Ω) in query size n+O(1).

On the other hand, the implication (i) ⇒ (ii) says that the upper bound

“n+O(1)” of the query size in this corollary is, in essence, tight.
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One‐Wayness

0110001011110011101101000001111111101000
n )(nf

011000101111001110110100000111111110100.0

001001
0011
1U Dom

011100110001100110
000110010
001001

nlength
)(l h f

01110111100110001110001000001100110
11110011101110001000001100110


n )(nf

)(length nf




nnf )( 


 )(2 nfn

)(f

with
 0n



Definitions of Unidirectionality and Bidirectionality

Definition [Unidirectionality and Bidirectionality] Let A,B ⊂ {0,1}∗.

(i) We say that the computation from A to B is unidirectional if the fol-

lowing holds: For every order functions f and g, if B is reducible to A

in query size f and A is reducible to B in query size g then the function

g(f(n))− n of n ∈ N is not bounded to the above.

(ii) We say that the computations between A and B are bidirectional if the

computation from A to B is not unidirectional and the computation

from B to A is not unidirectional.

Theorem The computation from Pf(Ω) to DomU is unidirectional and

also the computation from DomU to Pf(Ω) is unidirectional.
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Meaning of Unidirectionality

Let f be an order function. The notion of the reduction of A to B in query
size f is equivalent to that, for every n ∈ N, if n and B�f(n) are given, then
A�n can be calculated, where A�n denotes {x ∈ A | |x| ≤ n}.

Definition [Unidirectionality and Bidirectionality, posted again]

Let A,B ⊂ {0,1}∗.
(i) We say that the computation from A to B is unidirectional if the fol-

lowing holds: For every order functions f and g, if B is reducible to A

in query size f and A is reducible to B in query size g then the function
g(f(n))− n of n ∈ N is not bounded to the above.

(ii) We say that the computations between A and B are bidirectional if the
computation from A to B is not unidirectional and the computation
from B to A is not unidirectional.

The notion of unidirectionality of the computation from A to B in the
above definition is, in essence, interpreted as follows: No matter how a
order function f is chosen, if f satisfies that B�n can be calculated from n

and A�f(n), then A�f(n) cannot be calculated from n and B�n+O(1).
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One‐Wayness

0110001011110011101101000001111111101000
n )(nf

011000101111001110110100000111111110100.0

001001
0011
1U Dom

011100110001100110
000110010
001001

nlength
)(l h f

01110111100110001110001000001100110
11110011101110001000001100110


n )(nf

)(length nf




nnf )( 


 )(2 nfn

)(f

with
 0n



Bidirectionality between Z(T ) and DomU
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Review: Partition Function Z(T )

Definition [Partition Function Z(T ) at Temperature T , Tadaki 1999]

Z(T ) :=
∑

p∈DomU

2−
|p|
T

for any real T > 0.

In the case of T = 1, Z(1) = Ω.

Suppose that T is a computable real with 0 < T ≤ 1.

Then the first n bits of the base-two expansion of Z(T ) solve the halting

problem of U for inputs of length at most Tn.

In other words,

Theorem DomU is reducible to Pf(Z(T )) in query size dn/T e.

26



Review: Partition Function Z(T )

Theorem

(i) If 0 < T < 1 and T is computable, then

H(Z(T )�n) = Tn+O(1),

and therefore

lim
n→∞

H(Z(T )�n)
n

= T,

i.e., the compression rate of Z(T ) equals to temperature T .

(ii) If 1 < T , then Z(T ) diverges to ∞.

Recall that the partition function Z(T ) is one of the thermodynamic quan-
tities of AIT. The above theorem shows that the partition function Z(T )
diverges when temperature T exceeds 1. Thus, from the point of view
of the statistical mechanical interpretation of AIT, this means that phase
transition occurs at temperature 1.

The purpose of this talk is to reveal a new aspect of the phase transition,
based on the notion of reducibility in query size f
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Implication of the Computability of Z(T )

Theorem [fixed point theorem on partial randomness, Tadaki 2008]

For every T ∈ (0,1), if Z(T ) is a computable real, then

lim
n→∞

H(T�n)
n

= T,

i.e., the compression rate of T equals to T itself.

Intuitive Meaning; Metaphor

Consider a file of infinite size whose content is

“The compression rate of this file is 0.100111001 · · · · · ·”

When this file is compressed, the compression rate of this file actually equals

to 0.100111001 · · · · · · , as the content of this file says.

This situation forms a fixed point and is self-referential !
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Main Results: Bidirectionality between Z(T ) and DomU

Theorem [Main Result III ]

Suppose that T is a computable real with 0 < T < 1. For every order
function f , the following two are equivalent:

(i) Pf(Z(T )) is reducible to DomU in query size f(n) +O(1).

(ii) Tn ≤ f(n) +O(1).

Theorem [Main Result IV ]

Suppose that T is a computable real with 0 < T ≤ 1. For every order
function f , the following two are equivalent:

(i) DomU is reducible to Pf(Z(T )) in query size f(n) +O(1).

(ii) n/T ≤ f(n) +O(1).

Note that the function Tn is the inverse of the function n/T . This implies
the bidirectionality between Z(T ) and DomU .

Theorem Suppose that T is a computable real with 0 < T < 1. Then the

computations between Pf(Z(T )) and DomU are bidirectional.
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Two‐Wayness

Tn n
1000101100111010110000010011111110100.0)( TZ

1UDom

000110010
001001
0011
1UDom

Tnlength

01110111100110001110001000001100110
11110011101110001000001100110

011100110001100110
000110010Tnlength

nlength

01110111100110001110001000001100110
Tn n






Key Theorem for the Proof of
the Bidirectionality (Main Result III)
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Proof of Bidirectionality: Randomness of R.E. Real

Definition [R.E. Real]

A real α is called recursively enumerable (r.e., for short) if there exists a

computable, increasing sequence of rationals converging to α.
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Proof of Bidirectionality: Randomness of R.E. Real

Theorem A [characterizations of randomness for an r.e. real]

Let α be an r.e. real with 0 < α < 1. Then the following conditions are
equivalent:
(i) The real α is Chaitin random, i.e., n ≤ H(α�n) +O(1).
(ii) The real α is Martin-Löf random.
(iii) The real α is Ω-like.
(iv) H(β�n) ≤ H(α�n) +O(1) for every r.e. real β.
(v) For every r.e. real γ > 0, there exist an r.e. real β ≥ 0 and a rational
q > 0 such that α = β + qγ.
(vi) There exists an optimal computer V such that α = ΩV .
(vii) There exists a universal probability m such that α =

∑
s∈{0,1}∗ m(s).

(viii) Every computable, increasing sequence of rationals which converges
to α is universal.
(ix) There exists a universal computable, increasing sequence of rationals
which converges to α.

Shown by [Schnorr 1973], [Chaitin 1975], [Solovay 1975], [Calude, Hertling,
Khoussainov and Wang 2001], [Kučera and Slaman 2001], and [Tadaki
2005].
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Proof of Bidirectionality: Partial Randomness of R.E. Real

Theorem B [characterizations of partial randomness for an r.e. real, Tadaki
2008]

Let α be an r.e. real with 0 < α < 1. Suppose that T is computable with
0 < T ≤ 1. Then the following conditions are equivalent:
(i) The real α is Chaitin T -random, i.e., Tn ≤ H(α�n) +O(1).
(ii) The real α is Martin-Löf T -random.
(iii) The real α is Ω(T )-like.
(iv) H(β�n) ≤ H(α�n) +O(1) for every r.e. T -convergent real β.
(v) For every r.e. T -convergent real γ > 0, there exist an r.e. real β ≥ 0 and
a rational q > 0 such that α = β + qγ.
(vi) There exist an optimal computer V and an r.e. real β ≥ 0 such that
α = β +ΩV (T ).

(vii) There exists a universal probability m such that α =
∑

s∈{0,1}∗ m(s)
1
T .

(viii) Every computable, increasing sequence of rationals which converges
to α is T -universal.
(ix) There exists a T -universal computable, increasing sequence of rationals
which converges to α.

In the case of T = 1, Theorem B can result in Theorem A.
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Proof of Bidirectionality: Partial Randomness of R.E. Real

Definition [T -convergence, Tadaki 2008]

• An increasing sequence {an} of rationals is called T -convergent if

∞∑
n=0

(an+1 − an)
T < ∞.

• An r.e. real α is called T -convergent if there exists a T -convergent com-

putable, increasing sequence of rationals converging to α.

Theorem B [characterizations of partial randomness for an r.e. real, posted

again] Let α be an r.e. real with 0 < α < 1. Suppose that T is computable

with 0 < T ≤ 1. Then the following conditions are equivalent:

(i) The real α is Chaitin T -random, i.e., Tn ≤ H(α�n) +O(1).

(iv) H(β�n) ≤ H(α�n) +O(1) for every r.e. T -convergent real β.
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Proof of Bidirectionality: Partial Randomness of R.E. Real

Theorem [Calude, Hay, and Stephan 2011]

Suppose that T is a computable real with 0 < T < 1. Then there exist an

r.e. real α ∈ (0,1) and d ∈ N such that, for all n ∈ N+,

|H(α�n)− Tn| ≤ d.

Theorem [Key Result for Bidirectionality]

Suppose that T is computable with 0 < T < 1. Then there exist an r.e. real

α ∈ (0,1) and d ∈ N such that, for all n ∈ N+,

|H(Z(T )�n)− Tn| ≤ d.
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Main Results: Bidirectionality between Z(T ) and DomU

Theorem [Main Result III ]

Suppose that T is a computable real with 0 < T < 1. For every order
function f , the following two are equivalent:

(i) Pf(Z(T )) is reducible to DomU in query size f(n) +O(1).

(ii) Tn ≤ f(n) +O(1).

Theorem [Main Result IV ]

Suppose that T is a computable real with 0 < T ≤ 1. For every order
function f , the following two are equivalent:

(i) DomU is reducible to Pf(Z(T )) in query size f(n) +O(1).

(ii) n/T ≤ f(n) +O(1).

Note that the function Tn is the inverse of the function n/T . This implies
the bidirectionality between Z(T ) and DomU .

Theorem Suppose that T is a computable real with 0 < T < 1. Then the

computations between Pf(Z(T )) and DomU are bidirectional.
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Two‐Wayness

Tn n
1000101100111010110000010011111110100.0)( TZ

1UDom

000110010
001001
0011
1UDom

Tnlength

01110111100110001110001000001100110
11110011101110001000001100110

011100110001100110
000110010Tnlength

nlength

01110111100110001110001000001100110
Tn n






Origin of Difference between T = 1 and T < 1
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Origin of Difference between T = 1 and T < 1

In the case of T = 1, we use the following to establish the unidirectionality:

Theorem [Ample Excess Lemma, Miller & Yu 2008]

A real α is random if and only if
∑∞

n=1 2
n−H(α�n) < ∞.

However, the “only if” part does not hold for the case of T < 1. Namely,
Tn ≤ H(α�n) +O(1) does not imply that

∑∞
n=1 2

Tn−H(α�n) < ∞ in the case
of 0 < T < 1 (Reimann & Stephan 2005).

In the case of 0 < T < 1, we use the following to establish the bidirection-
ality:

Lemma [Reimann & Stephan 2005]

Suppose that 0 < T < 1. Then there exists c ∈ N+ such that, for every
s ∈ {0,1}∗, there exists r ∈ {0,1}∗ with |r| = c for which

H(sr) ≥ H(s) + T |r| i.e. H(s)− T |s| ≤ H(sr)− T |sr| .

However, this lemma does not hold for the case of T = 1.
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