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Foreword

Dedieated {o Professor S. Marcus
on the occasion of his 60th birthday

P. MARTIN-LOF TESTS : REPRESENTABILITY
| AND EMBEDDABILITY

CRISTIAN CALUDE, ION CHITESCU and LUDWIG STAIGER

There are several ways to compute the complexity of & program
[6]. One of them is due to Kolmogorov (see [7] and [5], [8], [12]). Ano-
ther one is due to P. Martin-Lf (see [9] and [14], [15], [1]). These pat-
terns of computing complexity are in fact closely related. For a compa-
rigon of these approaches for infinite sequences, see [11]. The main pur-
pose of this: paper is to present in a systematic way some results concern-
ing the connection between Kolmogorov’s and P. Martin-Lof’s theories
for strings. We work within. the general framework of a not necessarily
binary alphabet [1]. )

The first two authors acknowledge valuable discussions with pro-
fessor 8. Marcus.
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Notation: Strings and Languages

Finite Alphabet X = {0,...,r—1}, cardinality | X| =r
Finite strings (words) w=x1---x, € X*, x; € X
Length lwl=n

Languages W C X*



Notation: Strings and Languages

Finite Alphabet X = {0,...,r—1}, cardinality | X| =r
Finite strings (words) w=x1---x, € X*, x; € X
Length lw|=n

Languages W C X*

Infinite strings (-words) x = xq---Xx,--+- € X®
Prefixes of infinite strings x[0..n] € X*, |x[0..n]| =n

w-Languages F C X®



X® as CANTOR space

Metric: p(y,x) := inf{r~1" . w € pref(y) Npref(x)}
Balls: w-X® ={y: w € pref(y)}
Diameter: diamw - X® = r~ %!
diam F = inf{r "l : F C w.X®}
Opensets: W-X®=U,cww-X®
Closure: C(F) = {x: pref(x) C pref(F)}



Description complexity

Description complexity: plain or simple complexity

Definition (Description complexity Ky)

Let @ :C X* — X* be a partial computable function.

Ko(w) == ini{|] : g(x) = w}

Definition (Plain or Simple universal machine)

A machine (mapping) s :C X* — X* is called universal if and only
if for every partial computable mapping @ :C X* — X* there is a
constant ¢, such that

W(Ko(W) < Kitg (W) + ).
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Description complexity: plain or simple complexity

Definition (Description complexity Ky)

Let @ :C X* — X* be a partial computable function.

Ko(w) == ini{|] : g(x) = w}

Definition (Plain or Simple universal machine)

A machine (mapping) s :C X* — X* is called universal if and only
if for every partial computable mapping @ :C X* — X* there is a
constant ¢, such that

W(Ko(W) < Kitg (W) + ).

Definition (Plain or Simple description complexity)

KS(w) := min{|xn| : Ug(m) = w}




Description complexity

Description complexity: prefix complexity

Definition (Prefix-free universal machine)

A prefix-free machine (mapping) ip :C X* — X* is called universal
if and only if

@ dom(p) is prefix-free, and

@ for every partial computable mapping ¢ :C X* — X* with
prefix-free domain dom(9) there is a constant ¢, such that

YW(Ko(W) < Kip (W) + o).




Description complexity

Description complexity: prefix complexity

Definition (Prefix-free universal machine)

A prefix-free machine (mapping) ip :C X* — X* is called universal
if and only if

@ dom(p) is prefix-free, and

@ for every partial computable mapping ¢ :C X* — X* with
prefix-free domain dom(9) there is a constant ¢, such that

YW(Ko(W) < Kip (W) + o).

Definition (Prefix-free description complexity)

KP(w) := min{|r| : Up(n) = w}




Description complexity

a priori-complexity

Definition (Semi-measure)

v: X* — R is a (cylindrical ) semi-measure provided
Vw(w e X*Ax e X = v(w) > Y, exV(wx)).

Theorem (Levin'70)

There is a universal left computable semi-measure M, that is, for

every left computable semi-measure v there is a constant ¢y such
that

Vw(w e X* = v(w) < cy-M(w)).




Description complexity

a priori-complexity

Definition (Semi-measure)

v: X* — R is a (cylindrical ) semi-measure provided
Vw(w e X*Ax e X = v(w) > Y, exV(wx)).

Theorem (Levin'70)

There is a universal left computable semi-measure M, that is, for

every left computable semi-measure v there is a constant ¢y such
that

Vw(w e X* = v(w) < cy-M(w)).

Definition (a priori-complexity)
KA(w) := —logx M(w)




Description complexity

Uspensky—Shen—Pentagon

KP (prefix complexity)

Km (monotone complexity)
(plain complexity) KS ‘

KA (a priori complexity)

/

KR (decision complexity)



Description complexity

Simple Relations Between Complexities

©  [KS(w)—KS(w)|

[KP(w) — KP(wx))|
(2] KA(w) < KA(wx)
(3] 0 <KS(w),KA(w) < |w|+0O(1)

O(1) and
o(1)

<
<

(4] KS(w),KA(w) < KP(w)+ O(1)
KP(w) < KS(w) + O(log x| w])
®  KP(w)<KA(w)+ O(logyy |w])

®




Description complexity

Complexity of infinite words
Plot of the function K(x[0..n])

K(x[0..n]) 1




Description complexity

Complexity of infinite words
Plot of the function K(x[0..n])

K(x[0..n]) 1 upper slope
K(x[0..n]) < &(x)-n+ o(n)

o lower slope
o TRE..1) > x(x)-n—o(n)

—
Asymptotic complexity
x(x) ;= Iimigfw K(x) :=lim supw

n—oo



Partial Randomness

Random sequences

Letx € X®. Then x is random if and only if one of the following
conditions is satisfied.
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Partial Randomness

Random sequences

Theorem

Letx € X®. Then x is random if and only if one of the following
conditions is satisfied.

for prefix complexity KP(x[0..n]) > n— O(1)
or more precise lim;_,. KP(x[0..n]) —n = oco.

for a priori complexity KA(x[0..n]) > n— O(1)

or more precise |KA(x[0..n]) —n| < O(1)




Partial Randomness

Partial randomness

Definition (Tadaki 2002, Calude et al. 2006)
Letxe X®and1>¢>0. Thenxis

weakly CHAITIN e-random or weakly MARTIN-LOF e-random if
KP(x[0..n]) >€-n—0O(1),
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Partial Randomness

Partial randomness

Definition (Tadaki 2002, Calude et al. 2006)
Letxe X®and1>¢>0. Thenxis

weakly CHAITIN e-random or weakly MARTIN-LOF e-random if
KP(x[0..n]) >€-n—0O(1),

strongly CHAITIN e-random if lim KP(x[0..n]) —€-n = eo,
n—yoo

strongly MARTIN-LOF e-random if KA(x[0..n]) > €-n— O(1).

Theorem (Reimann & Stephan)

Strongly MARTIN-LOF e&-random = strongly CHAITIN €-random =
weakly CHAITIN g-random, and none of the implications can be
reversed if 0 < € < 1 is computable.




Partial Randomness

Oscillation-free e-random sequences

Definition (Oscillation-freeness)

An ®-word x € X® is called oscillation-free CHAITIN g-random
provided
|KP(x[0..n]) —€-n| < O(1) , and

it is called oscillation-free MARTIN-LOF €-random provided

IKA(X[0..n]) — & n| < O(1).




Partial Randomness

Oscillation-free e-random sequences

Definition (Oscillation-freeness)

An ®-word x € X® is called oscillation-free CHAITIN g-random
provided
|KP(x[0..n]) —€-n| < O(1) , and

it is called oscillation-free MARTIN-LOF €-random provided

IKA(x[0..n]) — - n| < O(1).

Theorem (St'08, Tadaki 2010, Calude et al. 2011)

If0 < € < 1 is computable then there are oscillation-free MARTIN-LOF
e-random and oscillation-free CHAITIN €-random m-words.




Partial Randomness

Dilution

Modulus function: g:IN — IN strictly monotone, that is,
g(n+1)>g(n)

Definition (Dilution function @ : X* — X*)

o(e) := 09 and
(p(WX) = (p(W)-X-Og("+1)*g(”)*1




Partial Randomness

Dilution

Modulus function: g:IN — IN strictly monotone, that is,
g(n+1)>g(n)

Definition (Dilution function @ : X* — X*)

o(e) := 09 and
(P(WX) = (p(W).X.Og(n+1)*Q(”)*1

Theorem (St'09)

Let @ : X* — X* be a computable dilution function with modulus
function g : IN — IN and letK € {KP,KS,KA}. Then

K (9(x)[0..9(n)]) —K(x[0..n])| < O(1)

for allx € X® and all n € IN.




Hausdorff’s approach

Hausdorff dimension and partial randomness

Relations between “usual” Hausdorff dimension and the lower
asymptotic complexity k

e RYBAKO 1984, 1986

o CAl & HARTMANIS 1994

e St 1993, 1998

e LuTz 2000, 2003

e HITCHCOCK 2005




Hausdorff’s approach

Hausdorff dimension and partial randomness

Relations between “usual” Hausdorff dimension and the lower
asymptotic complexity k

e RYBAKO 1984, 1986

o CAl & HARTMANIS 1994

e St 1993, 1998

e LuTz 2000, 2003

e HITCHCOCK 2005

Relations between “usual” Hausdorff dimension and complexity

functions for automaton-definable w-languages F C X® [St93, 08]

The complexity functions K(x[0..n]),x € F, reflect the scaled down
by € = dimy F behaviour of K(y[0..n]),y € X°.




Hausdorff’s approach

Refining the scale — original Hausdorff dimension

Definition (Gauge functions [HAUSDORFF 1918])

A function h: (0,e0) — (0,0) is a gauge function if h is right
continuous and non-decreasing.
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Hausdorff’s approach

Refining the scale — original Hausdorff dimension

Definition (Gauge functions [HAUSDORFF 1918])
A function h: (0,e0) — (0,0) is a gauge function if h is right

continuous and non-decreasing.

Example
he(t) = t® is a gauge function.

—log, he(r™") = e€-n

Functions of the logarithmic scale [HAUSDORFF 1918]

LI s
Nioo...p0)(£) = 1% - T] (109’ ?)p,
i=1

v

A\

First nonzero p; is positive.




Hausdorff’s approach

Gauge functions and modulus functions

Lemma (St’11)
Letr e N,r > 2, and h: (0,0) NQ — IR be a (computable) gauge
function satisfying the conditions

® 1<h(1)<rand

® foreveryj € IN there is an m € IN such that

r < h(r—m™) < r ot

Then there is a (computable) modulus function g : IN — IN such that
r" ' < h(r9")) < r—"1 foralln e IN.




Hausdorff’s approach

Gauge functions and modulus functions

Lemma (St’11)
Letr e N,r > 2, and h: (0,0) NQ — IR be a (computable) gauge
function satisfying the conditions

® 1<h(1)<rand

® foreveryj € IN there is an m € IN such that

r < h(r—m™) < r ot

Then there is a (computable) modulus function g : IN — IN such that
r" ' < h(r9")) < r—"1 foralln e IN.

Sufficient condition

h:(0,00)NQ — IR is N-convex and h(t) >t




Hausdorff’s approach

Oscillation-free h-random ®-words

Definition (Oscillation-freeness)

Let h: (0,0) NIR — IR be a gauge function and r = | X|. An ®-word
x € X? is called oscillation-free CHAITIN h-random provided

|[KP(x[0..n]) — (—log, h(r~"))| < O(1) , and

X € X is called oscillation-free MARTIN-LOF h-random provided

KA(X[0..n]) — (~log, h(r~"))| < O(1).




Hausdorff’s approach

Oscillation-free h-random ®-words

Definition (Oscillation-freeness)

Let h: (0,0) NIR — IR be a gauge function and r = | X|. An ®-word
x € X? is called oscillation-free CHAITIN h-random provided

|[KP(x[0..n]) — (—log, h(r~"))| < O(1) , and

X € X is called oscillation-free MARTIN-LOF h-random provided

KA(X[0..n]) — (~log, h(r~"))| < O(1).

Theorem (St’11)

If g : IN — IN is a computable modulus function and
h:(0,0)NQ — IR is a corresponding computable gauge function
then there are oscillation-free MARTIN-LOF h-random w-words.




Hausdorff’s approach

KP-moderate gauge functions

Definition (KP-moderate gauge functions)

We refer a gauge function h: QN (0,) — IN as KP-moderate if for
every d € IN there is an /4 such that the inequality

KP(n) +d—1 < —log, 010 < n— (KP(n) +d—1) (1)

holds for all ¢ > ¢4 and, depending on the value of d, for all
sufficiently large n € IN.




Hausdorff’s approach

KP-moderate gauge functions

Definition (KP-moderate gauge functions)

We refer a gauge function h: QN (0,) — IN as KP-moderate if for
every d € IN there is an /4 such that the inequality

KP(n) +d—1 < —log, 010 < n— (KP(n) +d—1) (1)

holds for all ¢ > ¢4 and, depending on the value of d, for all
sufficiently large n € IN.

Property [Sufficient condition]
If there are 7,7y, 0 <y <7y < 1, such that

Yh(r ) < h(ror ) <Y h(rf) forall ne IN

then h is KP-moderate.




Results

Results: existence theorems

Leth: QN (0,) — IR be a KP-moderate gauge function and r = | X|.
Then there is an w-word x € X® and a constant ¢, such that

|KP(x[0..n]) — (—log,h(r—"))| < ch.




Results

Results: existence theorems

Leth: QN (0,) — IR be a KP-moderate gauge function and r = | X|.
Then there is an w-word x € X® and a constant ¢y, such that

|KP(x[0..n]) — (—log,h(r—"))| < ch.

Leth: QN (0,) — IR be a computable KP-moderate gauge

function.
Then there exists an oscillation-free Chaitin h-random w-word

X € X® such that 0 .x is a left computable real.




Results

Results: a separation theorem

Theorem

Leth: QN (0,) — IR be a computable KP-moderate gauge
function.

Then there exists a I'I?—definab/e w-language which contains an
oscillation-free Martin-L6f h-random ®-word & but no oscillation-free
Chaitin h-random ®-word.
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