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Notation: Strings and Languages

Finite Alphabet X = {0, . . . , r −1}, cardinality |X |= r

Finite strings (words) w = x1 · · ·xn ∈ X ∗, xi ∈ X

Length |w |= n

Languages W ⊆ X ∗

Infinite strings (ω-words) x = x1 · · ·xn · · · ∈ X ω

Prefixes of infinite strings x[0..n] ∈ X ∗,
∣∣x[0..n]

∣∣ = n

ω-Languages F ⊆ X ω
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X ω as CANTOR space

Metric: ρ(y,x) := inf{r−|w | : w ∈ pref(y)∩pref(x)}
Balls: w ·X ω = {y : w ∈ pref(y)}

Diameter: diamw ·X ω = r−|w |

diamF = inf{r−|w | : F ⊆ w ·X ω}
Open sets: W ·X ω =

⋃
w∈W w ·X ω

Closure: C (F) = {x : pref(x)⊆ pref(F)}
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Description complexity: plain or simple complexity

Definition (Description complexity Kϕ)

Let ϕ :⊆ X ∗→ X ∗ be a partial computable function.

Kϕ(w) := inf{|π| : ϕ(π) = w}

Definition (Plain or Simple universal machine)

A machine (mapping) US :⊆ X ∗→ X ∗ is called universal if and only
if for every partial computable mapping ϕ :⊆ X ∗→ X ∗ there is a
constant cϕ such that

∀w(Kϕ(w)≤ KUS (w) + cϕ) .

Definition (Plain or Simple description complexity)

KS(w) := min{|π| : US(π) = w}
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Description complexity: prefix complexity

Definition (Prefix-free universal machine)

A prefix-free machine (mapping) UP :⊆ X ∗→ X ∗ is called universal
if and only if

1 dom(UP) is prefix-free, and

2 for every partial computable mapping ϕ :⊆ X ∗→ X ∗ with
prefix-free domain dom(ϕ) there is a constant cϕ such that

∀w(Kϕ(w)≤ KUP (w) + cϕ) .

Definition (Prefix-free description complexity)

KP(w) := min{|π| : UP(π) = w}
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a priori-complexity

Definition (Semi-measure)

ν : X ∗→ IR is a (cylindrical ) semi-measure provided
∀w(w ∈ X ∗∧ x ∈ X → ν(w)≥ ∑x∈X ν(wx)).

Theorem (Levin’70)

There is a universal left computable semi-measure M, that is, for
every left computable semi-measure ν there is a constant cν such
that

∀w(w ∈ X ∗→ ν(w)≤ cν ·M(w)).

Definition (a priori-complexity)

KA(w) :=− log|X |M(w)
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Uspensky–Shen–Pentagon
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Simple Relations Between Complexities

Properties

1 |KS(w)−KS(wx)| ≤ O(1) and

|KP(w)−KP(wx)| ≤ O(1)

2 KA(w)≤ KA(wx)

3 0≤ KS(w),KA(w)≤ |w |+ O(1)

4 KS(w),KA(w)≤ KP(w) + O(1)

5 KP(w)≤ KS(w) + O(log|X | |w |)

6 KP(w)≤ KA(w) + O(log|X | |w |)
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Complexity of infinite words
Plot of the function K(x[0..n])
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upper slope
K(x[0..n])≤ κ(x) ·n+o(n)

Asymptotic complexity

κ(x) := lim inf
n→∞

K(x[0..n])
n κ(x) := limsup

n→∞

K(x[0..n])
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Random sequences

Theorem

Let x ∈ X ω. Then x is random if and only if one of the following
conditions is satisfied.

for prefix complexity KP(x[0..n])≥ n−O(1)

or more precise limn→∞ KP(x[0..n])−n = ∞.

for a priori complexity KA(x[0..n])≥ n−O(1)

or more precise
∣∣KA(x[0..n])−n

∣∣≤ O(1)
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Partial randomness

Definition (Tadaki 2002, Calude et al. 2006)

Let x ∈ X ω and 1≥ ε > 0. Then x is

weakly CHAITIN ε-random or weakly MARTIN-LÖF ε-random if
KP(x[0..n])≥ ε ·n−O(1),

strongly CHAITIN ε-random if lim
n→∞

KP(x[0..n])− ε ·n = ∞,

strongly MARTIN-LÖF ε-random if KA(x[0..n])≥ ε ·n−O(1).

Theorem (Reimann & Stephan)

Strongly MARTIN-LÖF ε-random⇒ strongly CHAITIN ε-random⇒
weakly CHAITIN ε-random, and none of the implications can be
reversed if 0 < ε < 1 is computable.
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Oscillation-free ε-random sequences

Definition (Oscillation-freeness)

An ω-word x ∈ X ω is called oscillation-free CHAITIN ε-random
provided

|KP(x[0..n])− ε ·n| ≤ O(1) , and

it is called oscillation-free MARTIN-LÖF ε-random provided

|KA(x[0..n])− ε ·n| ≤ O(1) .

Theorem (St’08, Tadaki 2010, Calude et al. 2011)

If 0 < ε < 1 is computable then there are oscillation-free MARTIN-LÖF

ε-random and oscillation-free CHAITIN ε-random ω-words.
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Dilution

Modulus function: g : IN→ IN strictly monotone, that is,
g(n + 1) > g(n)

Definition (Dilution function ϕ : X ∗→ X ∗)

ϕ(e) := 0g(0) and
ϕ(wx) := ϕ(w) · x ·0g(n+1)−g(n)−1

Theorem (St ’09)

Let ϕ : X ∗→ X ∗ be a computable dilution function with modulus
function g : IN→ IN and let K ∈ {KP,KS,KA}. Then∣∣K(ϕ(x)[0..g(n)]

)
−K

(
x[0..n]

)∣∣≤ O(1)

for all x ∈ X ω and all n ∈ IN.



Description complexity Partial Randomness Hausdorff’s approach Results

Dilution

Modulus function: g : IN→ IN strictly monotone, that is,
g(n + 1) > g(n)

Definition (Dilution function ϕ : X ∗→ X ∗)

ϕ(e) := 0g(0) and
ϕ(wx) := ϕ(w) · x ·0g(n+1)−g(n)−1

Theorem (St ’09)

Let ϕ : X ∗→ X ∗ be a computable dilution function with modulus
function g : IN→ IN and let K ∈ {KP,KS,KA}. Then∣∣K(ϕ(x)[0..g(n)]

)
−K

(
x[0..n]

)∣∣≤ O(1)

for all x ∈ X ω and all n ∈ IN.



Description complexity Partial Randomness Hausdorff’s approach Results

Hausdorff dimension and partial randomness

Relations between “usual” Hausdorff dimension and the lower
asymptotic complexity κ

• RYBAKO 1984, 1986

• CAI & HARTMANIS 1994

• St. 1993, 1998

• LUTZ 2000, 2003

• HITCHCOCK 2005

Relations between “usual” Hausdorff dimension and complexity
functions for automaton-definable ω-languages F ⊆ X ω [St 93, 08]

The complexity functions K(x[0..n]),x ∈ F , reflect the scaled down
by ε = dimH F behaviour of K(y[0..n]),y ∈ X ω.
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Refining the scale – original Hausdorff dimension

Definition (Gauge functions [HAUSDORFF 1918])

A function h : (0,∞)→ (0,∞) is a gauge function if h is right
continuous and non-decreasing.

Example

hε(t) := t ε is a gauge function.

− logr hε(r−n) = ε ·n

Functions of the logarithmic scale [HAUSDORFF 1918]

h(p0,...,pk )(t) = tp0 ·
k

∏
i=1

(
logi 1

t

)pi

First nonzero pi is positive.
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Gauge functions and modulus functions

Lemma (St’11)

Let r ∈ IN, r ≥ 2, and h : (0,∞)∩Q→ IR be a (computable) gauge
function satisfying the conditions

1 1 < h(1) < r and

2 for every j ∈ IN there is an m ∈ IN such that
r−j < h(r−m)≤ r−j+1.

Then there is a (computable) modulus function g : IN→ IN such that
r−n−1 < h(r−g(n)) < r−n+1, for all n ∈ IN.

Sufficient condition

h : (0,∞)∩Q→ IR is ∩-convex and h(t) > t
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Oscillation-free h-random ω-words

Definition (Oscillation-freeness)

Let h : (0,∞)∩ IR→ IR be a gauge function and r = |X |. An ω-word
x ∈ X ω is called oscillation-free CHAITIN h-random provided

|KP(x[0..n]) − (− logr h(r−n))| ≤ O(1) , and

x ∈ X ω is called oscillation-free MARTIN-LÖF h-random provided

|KA(x[0..n]) − (− logr h(r−n))| ≤ O(1) .

Theorem (St’11)

If g : IN→ IN is a computable modulus function and
h : (0,∞)∩Q→ IR is a corresponding computable gauge function
then there are oscillation-free MARTIN-LÖF h-random ω-words.
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KP-moderate gauge functions

Definition (KP-moderate gauge functions)

We refer a gauge function h : Q∩ (0,∞)→ IN as KP-moderate if for
every d ∈ IN there is an `d such that the inequality

KP(n) + d−1≤− logr
h(r−(n+`))

h(r−`) ≤ n−
(
KP(n) + d−1) (1)

holds for all `≥ `d and, depending on the value of d , for all
sufficiently large n ∈ IN.

Property [Sufficient condition]

If there are γ,γ, 0 < γ≤ γ < 1, such that

γ
n ·h(r−`)≤ h(r−n · r−`)≤ γ

n ·h(r−`) for all n ∈ IN

then h is KP-moderate.
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Results: existence theorems

Theorem

Let h : Q∩ (0,∞)→ IR be a KP-moderate gauge function and r = |X |.
Then there is an ω-word x ∈ X ω and a constant ch such that

|KP(x[0..n]) − (−logr h(r−n))| ≤ ch .

Theorem

Let h : Q∩ (0,∞)→ IR be a computable KP-moderate gauge
function.
Then there exists an oscillation-free Chaitin h-random ω-word
x ∈ X ω such that 0 .x is a left computable real.
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Results: a separation theorem

Theorem

Let h : Q∩ (0,∞)→ IR be a computable KP-moderate gauge
function.
Then there exists a Π0

1-definable ω-language which contains an
oscillation-free Martin-Löf h-random ω-word ξ but no oscillation-free
Chaitin h-random ω-word.
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