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1. Introduction 
Gödel famous incompleteness theorem was first presented on October 7, 

1930, at the first international conference of mathematic philosophy, at 
Königsberg.  

This result of 1930 can be seen as a limitation result of usual computing 
theory: it does not exist a (finite) software that take as input a formula 
of order one on the integers and able to give as output (after a finite 
number of computations and with always a right answer) if this 
formula is true or false.  
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Classical computations 
•  In 1930 no real computer exited yet, but the mathematical analysis of 

the functions that can be effectively computed with (finite) software 
(i.e. “recursive functions”) had began.  

•  Gödel was also studying set of axioms such that there was a (effective, 
finite, recursive) computing way to know if a given formula was a 
member of these axioms or not. 
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The set of all true formulas on the 
integers 

•  What will happen if we consider more powerful computing devices ?  

•  For example if we include in the set of Axioms all formulas of order 
one that are true on ℕ (with the standard interpretation of addition and 
multiplication) we will obtain a complete set of axioms (i.e. with no 
indecidable and contradictory formulas). 

•  However then it is not possible with a classical software to know if a 
given formula is one of the Axioms or not.  
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What we will do 
In this work we will study what happens when use “transfinite softwares”, 

i.e. software that can be run on “transfinite computers”, and this means 
generalized computers that can perform α classical computations and 
use α bits of memory, where α is a fixed infinite cardinal. (For 
example α = ℵ0 ). 

 
 These transfinite computers are able to perform more things than classical 

computers, but, in another way, we can ask about their possibilities 
more “transfinite questions” that can be seen as generalizations of 
computations questions.  

 
In fact, as we will see, it is possible to generalize almost all the classical 

results of limitation of the computation theory with this framework. 
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Previous work (1/2) 
Such generalization is not totally new.  
 
In [5] = [Patrick Grim, The Incomplete Universe, Totality Knowledge and 

Truth, MIT, 1991] and in some references mentioned in [5] , some 
problems linked with “Totality, Knowledge and Truth”, and 
“Incompleteness” are mentioned, and in [5] it is clearly explained that 
the fact that some limitation results can be generalized beyond the 
classical theory of computation is known since many years.  

 
It seems however that an explicit description of the main limitation 

theorems in our framework of “transfinite computers” has not been 
done yet. In [5] for example the main subject is the problem of Totality 
of Knowledge and not α calculability where α is any cardinal. 
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Previous work (2/2) 
As pointed out by an anonymous referee of WTCS2012, our transfinite 

computing model is in fact similar to admissible recursion on cardinals 
(which is equivalent to running ordinal Turing machines). 

 
Admissible recursion has been well_developped since the 60s in work of 

Platek (1966), Kripke (1964) ans Sacks (cf Odifreddi, Classical 
Recursion Theory, 1989, p, 443). 
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2. Our transfinite computing model 
Readers familiar with Ordinal Turing Machines (OTM), with tapes whose cells 

are indexed by ordinals, as described in [Peter Koepke, Turing Computations 
on Ordinals, The Bulletin of Symbolic Logic, 11(3):377- 397, 2005] can just 
not read this section 2. 

 
The general idea is to follow a generalization of the Church’s Thesis: as soon as 

a computation will be clearly feasible with ≤ α bits of memory and ≤ α 
computations, we will include it in the model. 

 
We will speak of «α programs » or «α  softwares ». 
 
We can assume that the memory is separated in 4 zones of bits: the input 

memory, the program memory, the variables of computation memory, and the 
output memory. 
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Without loss of generality we can assume that the input memory is made 
of 1, or 2 (or more but ≤ α) inputs of α bits. 

 
The program memory contains a well ordered set of α elementary 

operations. Thanks to the fact that the program memory is well 
ordered, we can know at each « time » of the computation which is the 
next operation to perform.  

 
The word « time » is of course here a generalized word, it means that 

when any set of operations has been performed, we know precisely 
what is the next operation to be performed. 

 
The GOTO operation is an operation of the form (if X = k) then GOTO β 
where β is an ordinal. Here X and k are variables of α bits. 
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Remark on the memory 
On classical computers bits can have the value 0, or the value 1. In our 

model of computation, it is possible to assume that the values can be 0, 
1, or « not fixed ». The value “not fixed” will be obtained for example 
when the bit has flipped from 0 to 1 and from 1 to 0 an infinity of 
times, without being fixed since then at 0 or 1.  

 
However, it is possible to prove that if this value “not fixed” is changed 

with 0 (or 1), the infinite model of computation will be same (i.e. we 
will be able to compute the same functions), but the model  is then 
maybe slightly less natural. (A variable B can be at 111…1… with an 
infinity of 1 if and only if a bit b has changed an infinity of time its 
value). 
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3. α–Recursive sets, α-Recursively 
enumerable sets 

•  Definition 1 We will say that a α-software “stops” or “gives the output 
after α computations” when this α-software stops after performing at 
most α computations. 

•  Definition 2 We will denote by Iα = {0,1}α  the set of all sequences of 
α bits. 

•  Therefore Iℵ0 can be identified with the set ℝ of all the real numbers, 
or with [0, 1] for example. 

•  Definition 3 Let A be a subset of Iα. We will say by definition that A 
is α recursive if and only if it exist at least one α-software P such that 
when we give n ∈ Iα as input of P, P will be able to answer after at 
most α operations if n ∈ A or n ∉ A. 
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  •  Definition 4 By definition we will say that A is α recursively 
enumerable if and only if it exist at least one α-software P such that 
when we give n ∈ Iα as input of P: 

•  If n ∈ A then P will be able to answer n ∈ A after at most α 
operations. 

•  If n ∉ A then P does not answer after α operations, or P will answer n 
∉ A. 

•  Definition 5 Let f be an application Iα  → Iα. By definition, we will 
say that: 

•  F is α recursive ⇔ it exist at least one α-software P such that: for all n 
∈ Iα when n is given as input to P, P will give the output f(n) after 
performing at most α computations. 

•  Remark 
•  There are αα applications from Iα to Iα, and the number of α–softwares 

is ≤ α.  
•  Since αα ≥ 2α > α (Cantor Theorem), we see that it exist some 

applications that are neither α recursive nor α recursively enumerable. 
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  •  Definition 6 
  
•  We will denote by Iα limit = ∪  Iβ for all β < α 

And similarly we will define limit α softwares. 
 
Note that limitℵ0 sottware are just the classical softwares. 
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4. Generalization of « recursively 
enumerable and not recursive sets » 

α -Code of a α-software 
We can associate very easily and injectively to each α–software T an 

element of Iα, named his α–code, and denoted ⌈T⌉. 
Here by « easily » we mean that there exist α–softwares that take ⌈T⌉ as 

input, and then can find (and execute if needed) the sequence of α 
instructions of T. 

 
Software result 
If B is an α -software and x an element of , we denote by B(x) the result 

of software B when x is the input: i.e.the value of the output memory 
(it is also an element of Iα) when the software stops after ≤ α 
operations. 
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Software P 
We can notice that there exist an α–software P which, when it is given x 

∈ Iα as input: 
1.  « Find » the α–software X such that ⌈ X ⌉ = x if such α–software 

exist. 
2.  Execute the same instructions that X would execute with x as input. 

Thus we have: 
 
∀ x ∈ Iα, if there exists a α–software X such that ⌈ X ⌉ = x , then P(x) = 

X(x). 
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The basic theorem 
Theorem 1 
There exists A ⊂ Iα, such that A is α recursively enumerable, but A is 

not α recursive. 
 
Proof 
Let P be the α–software previously defined such that P(x) = X(x) (when 

there exists X a α–software with code x). 
 
Let A = {x ∈ Iα, such that P(x) is computed in ≤ α computations} 
 
1. Since A is defined by the α–software P, A is α recursively 

enumerable. 
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2. If we assume that A is α recursive, let q be the code of a α–software Q 

such that: 
 
x ∉A ⇔ Q(x) is computed in ≤ α computations 
 
Then: 
q ∈ A ⇔ P(q) is computed in ≤ α computations (by definition of A) 
q ∈ A ⇔ Q(q) is computed in ≤ α computations (by definition of P) 
q ∈ A ⇔ q ∉ A (by definition of Q) 
This is not possible. 
 
Thus A is not α recursive. 
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5. The decision problem 

Theorem 2 
There is no general algorithm, programmable with α–software, which 

could, using always ≤ α computations, asserts if a mathematical 
proposition on elements of Iα is true or not. 

 
Proof 
It is enough to consider all the propositions of the form n ∈ A,  
where n ∈ Iα, and where A is the set defined in theorem 1 above.  
Since A is not α recursive, there exist no α software which, when applied 

to one of these propositions n ∈ A can assert using ≤ α computations if 
this proposition is true or false. 
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Remarks 
1.  We can also say that some properties that are true on chains of α bits 

are lost if we are limited to α computations and α bits of memory, 
for any infinite cardinal α. 

2.  These mathematical properties can be written with quantifiers ∀, ∃, 
the usual logic symbols and the usual operators +, x, and with ≤ α 
elementary finite formulas. We then get a generalization of Gödel’s 
incompleteness theorem (we just have to write the computations of 
α-software with such α-formulas, which are generalizations of order 
1 classical formulas with α characters). 
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6. The halting problem 

Theorem 3 
There exists no α–software which can say with ≤ α computations if a α–

software will stop or not in ≤ α operations. 
 
Proof 
If such α–software existed, then we could use it to write a α–software 

which, when it receive x ∈ Iα as input could say in ≤ α operations if P
(x) is computed after ≤ α operations or not. But A is not α recursive, 
thus such a α–software do not exist. 
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7. The fixed point theorem on α-softwares 

Notation 
Let z, x, y ∈ Iα such that there exists a α–software Z whose code z has 

two entries: x and y.  
We denote z[x, y] the output of the software Z on the entries x and y when 

this software stops in ≤ α computations. 
 
Remark 
If Z does not stop after ≤ α computations, we can consider that z[x, y] is 

the information « z does not stop after ≤ α computations ». 
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Theorem 5 (Iteration theorem) 
There is an application α-recursive with two variables s(x, y) such that: 
∀z, x, y ∈ Iα, z[x, y] = s(z, y) [x]. 
 
Proof : cf paper 
 
Theorem 6 (Fixed point theorem on α–softwares) 
For all α–recursive application h there is an element e ∈ Iα such that: 
∀ x ∈ Iα, e[x] = h(e)[x] 
 
Proof: cf paper 
 
This means that if h is any α -recursive application, there exist always a 

α–software with code e and a α–software with code h(e ) which on any 
input  x ∈ Iα give the same output. 
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8. Rice theorem on α-softwares 
Definition 
We define « α-recursive semi-functions », any function f from Df 
 to Iα, where Df ⊂ Iα, such that there exists α–software which computes f

(x) when it is given the input x ∈ Df in ≤ α computations, and does not 
answer in ≤ α computations when it is given x ∉ Df. 

 
Theorem 7 (Rice theorem on α–softwares) 
Let F be a non empty set of α-recursive semi-functions, different from the 

set of all these functions. Then: 
A = {n ∈ Iα, such that n is the code of a α-recursive semi-function of F} is 

not recursive. 
 
Proof: cf paper 
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Applications of Rice theorem 
This generalized Rice theorem shows that there exists no α–software to 

know: 
1. If two α-softwares compute the same function. (Choose asingleton for 

F). 
2. If a α-software will always answer 0 on any input. (Choose F that 

contains only the null function). 
3. If a α-software will always give an answer (Choose F to be the set of 

the semi-function defined on Iα). 
4. If a α–software will always give values that belong to a given subset B. 

(Choose for F the set of semi-functions whose output is in B). 
Etc. 
Therefore we see that this generalized Rice Theorem shows that the 

problem of a α–software « debugging », or the understanding of what 
a α–software is doing, generally uses more than α computations. 
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9. Some « philosophical » comments 
 
•  At present almost nobody takes these mathematical results of 

limitation, or paradox of totality, as serious arguments against the 
possible existence of an all mighty god. However this may change 
in the future. 

 
•  The “ontological” definition of God (13th century) is : “God is the 

most powerful existing being that can be imagined without any 
contraction”. Is this definition in contradiction with our results ? 

 
•  In fact, I also do not take our mathematical arguments very seriously 

against a religious definition of God, but… it is however not so easy 
to avoid them. I will present below some possible ideas that may be 
used if we want to claim that monotheist religions are not in 
contradiction with these mathematical limitation results. 
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Some possibilities to avoid the logical 
limitations ?  

•  Maybe the real God, if he exists, do not satisfy the ontological definition. For example, 
maybe he has created this universe but is limited by a finite number of computations, or 
by a given infinite cardinal number of computations. 

 
•  Maybe God never ask himself some questions about its own limitations. He has created 

some species that are less powerful than him and he is able to solve the halting problems 
of all the computing devices that these species can build. 

•  Maybe God can access truth without computing. 

•  Maybe nothing really new and “interesting” appears beyond a certain number of 
transfinite computations. We know that new mathematical results appear each time we 
increase the transfinite cardinal of possible computations, but maybe these mathematical 
results are not considered interesting, unlike feelings like love, good or bad actions, 
responsibility, etc. 

•  You have to choose between universality and the possibility to create new sets from 
previous ones. If you choose universality many axioms of the usual set theory do not 
applies anymore. 
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10. Transfinite one way functions 

 
 

It is not always easy to generalise results from classical computing theory 
to transfinite computing theory. 

 
For example for public key cryptography the properties may be very 

different. One of the raison is the fact that we have billions of simple 
candidates to be one way functions on classical computing theory. 

 
But so far I have found no candidate for transfinite computing theory. All 

the known simple candidate fail to have simple transfinite 
generalisations. 
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11. Conclusion 

We have seen that most of the logic limitation results of the classical 
theory of computation can be generalized if we have devices able to 
perform α computations and use α bits of memory, where α is a given 
fixed cardinal.  

 
It is expected that some other limitations results can also be generalized 

this way. This can be the subject of further work. 
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