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COMPLEXITY FRAMEWORKS

Descriptional Complexity:

e Conceptual Framework:

a) Set O of objects,

(
(b) set & of specification methods,
(

(c
d

)

)

) set ®© of potential object descriptions,

) a size measure p of object descriptions,
)

(e) a combined size measure v of specification methods and
object descriptions.



COMPLEXITY FRAMEWORKS

e (Goals:

(1) For 0 € © and s € &, determine a ? € ® such that s(0) = o
and p(9) is minimal (if it exists). Let 0* be a 0 with these
properties. Then u(o*) is the complezity of o with respect
to s.

(2) For 0 € O, determine an s € & and a 0 € ® such that
5(0) = 0 and v(s,0) is minimal. For these values of s and 0,
the value of v(s,0) is the complexity of o in the framework.



COMPLEXITY FRAMEWORKS

e Desirable Properties:

— Invariance: For every object 0 and every specification method
s, the complexity of o with respect to s is “essentially” not
less than the complexity of o with respect to the whole
framework.

— Universality: There is a specification method u € & such
that, for every object o, the complexity of o with respect
to u is “essentially” the same as the complexity of o with
respect to the whole framework.



COMPLEXITY FRAMEWORKS

e Invariance and Universality hold true in the realm of Turing
computable functions. Complexity is not computable.

e Invariance holds true for finite state computability (Calude et al.
2011); universality cannot be expected. Complexity is computable.



COMPLEXITY FRAMEWORKS

Take snow flakes as objects:
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, x041219b055 . jpg
e Snow in Canada or elsewhere.

o Froken Smillas fornemmelse for sne by Peter Hgeg.

e T'wo snowflakes are alike with a probability very close to 0.

What is the complexity of “snow”?



PLAN

Plan for this Presentation:

Formal definition of the framework as encoded function spaces
and complexity in such spaces. No computability conditions are
imposed.

Invariance theorem.
When is complexity computable?

Universal functions and the role of pairing functions. When can
we expect a universality theorem? Some special cases.

Summary, conclusions, questions.

Personal historical remarks.



NOTATIONAL CONVENTIONS

Notation:
e Standard notation for sets, automata, languages, functions.
e Alphabets have at least two symbols. Empty word is €.
e N={1,2,...} and Ny = NU {0}.

e For real-valued partial functions f and ¢: f < g if and only if
dom(g) C dom(f) and there is ¢ > 0 such that f(x) < g(z) + ¢
for all x € dom(g).

o f~gifandonlyif f <g < f.
e Convention: min () = inf () = cc.
e Pairing function: Injective mapping
m:Ax B —C:(a,b) —»=m(a,b) = (a,b)

with projections p4 and ppg.



COMPLEXITY AND REPRESENTATIONS




ENCODED FUNCTION SPACES

Definition 1 An encoded function space is a construct
S=(FS5T,® 3% ¢, 0)
with the following properties.
e S is a non-empty countable set, the source;
e I'is a non-empty set, the target,
e [’ is a non-empty countable set of partial mappings of .S into T

e ® and X are alphabets;
o v:dT % Fisa surjective partial mapping, the encoding of F'.
e 0: Yt > Sisa surjective partial mapping, the encoding of S;

The encoded function space § is said to be effective if all items in
the construct are effectively given and the mappings o and ¢ are
computable.
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ENCODED FUNCTION SPACES
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COMPLEXITY 12

Definition 2 Let § = (F,S,T,®,X, p,0) be an encoded function space
and let t € T'.

e For f € F, the f-complexity of t in § is defined as

(1) =inf{|s| | s € %F, f(o(s) =t}

e The complexity of t in § is defined as

St) =mf{|v]|+|s||ved, s Xt p)(o(s) =t}

In the definition of complexity, one can replace “inf” by “min” as only
subsets of Ny are concerned, using the convention of min () = cc.



INVARIANCE

Theorem 3 (General Invariance Theorem)

Let § = (F,S,T,®,%,p,0) be an encoded function space. Then, for all
feF andve o H(f),

S(t) < () + v

for allt € T.

Examples:
e Turing computable functions;

e finite state transducers (Calude et al.)
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COMPUTABILITY OF COMPLEXITY

In general, complexity need not be computable!

Theorem 4 (Computability of Complexity Theorem)

Let § = (F,S,T,®,%,¢,0) be an encoded function space and let t € T.

1. For f € F the complexity c?(t) is computable, if the following
conditions are satisfied:

(a) f is effectively defined and computable.
(b) dom(f) is decidable.

(c) S is effectively defined, dom(o) is decidable and o is
computable.

(d) t is effectively defined and equality is decidable in T.
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COMPUTABILITY OF COMPLEXITY

Theorem 4 continued:

2. The complexity cg(t) is computable, if, in addition to Conditions
a—d, also the following conditions are satisfied:

(e) Emptiness of the set {f | f € F,t € codom(f)} is decidable.

(f) F is effectively given and enumerable, dom(p) is decidable
and ¢ s computable.

(g) For every c € N, emptiness of the set
Fer={flfeF3seX:|s|<c fla(s) =t}

18 decidable.
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COMPUTABILITY OF COMPLEXITY

Corollary 5 (Calude et al.)

If § is the space of finite-state computable functions with transducers
as the computer model then S s computable.
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UNIVERSALITY 17

Definition 6 Let S and 1" be non-empty sets and let F' be a non-empty
set of partial mappings of S into 1. Let # : F' x S — S be a pairing
function.

A partial function g : S > T is said to universal for F' by m, if

(f,s) € dom(g) and g({f,s)) = f(s) for all f € F and all s € dom(f).

Let § = (F,S,T,®,3%,p,0) be an encoded function space. A partial

function g : S = T is said to universal for § by m, if it is universal for
F by .



UNIVERSALITY

Remark 7 There are universal Turing-computable functions.

Remark 8 There is no finite-state computable function which is
universal for all finite-state computable functions.

Remark 9 Let S and T be non-empty sets, let F' be a non-empty set
of mappings of S into T', and let w be a pairing function of F' x S into
S. If g is universal for F' by m, then g is uniquely defined by

9(s) = pp(s)(ps(s))

for all s € codom(m) with pg(s) € dom(pg)(s). For all other values of
s, g can be left undefined or defined in an arbitrary way. In particular,
a universal function for F exists, if and only if there is a pairing
function .

18



UNIVERSALITY OF COMPLEXITY

Definition 10 Let § = (F,S,T,®,X, p,0) be an encoded function

space, let m : ' x § — S be a pairing function, let g : S = T be
universal for § by m, and let ¢ € T'. The complexity of t in § according
to g (or m) is defined as

og(t):mm{\s\

sexXt 3feF 3 e S }
o(s) = ([, 3/>7S, = dOIIl(f),f(S/) =t)
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UNIVERSALITY OF COMPLEXITY

Using the framework of Definition 10, there could be s € ¥ such
that g(o(s)) =t and |s| < C’g(t). In this case o(s) ¢ codom(m) or
o(s) = (f,s') for some f € F and s’ € S such that s’ ¢ dom(f). Hence,
one has Cg(t) < |s|for all s € ¥1 with g(o(s)) = ¢ satisfying the
following condition:

o(s) € codom(m) Apg(a(s)) € dom(pp(a(s))).

To compare C’g and ¢® we need a connection between the lengths of
encodings of pairs (f,s’) and the sum of the lengths of encodings of f
and s’
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UNIVERSALITY OF COMPLEXITY 21

Remark 11 Let § = (F,S,T,®,%, p,0) be an encoded function space

and let # : ®T x T = 2T be a pairing function. There 1s a unique

pairing function ™ : F' X S — S such that the following diagram
commutes:

A

T

dt X ¥t aa
2 o o
F x 8 T S

One has n(f,s) = o(7(v,s")) with f € F, s € S, p(v) = f and o(s') = s.
We say that m is derived from T.



UNIVERSALITY OF COMPLEXITY 22

Theorem 12 Let § = (F,S,T,®,%, p,0) be an encoded function space,
let #:®T x X7 — X1 be a pairing function, and let m: F x S — S be
the pairing function derived from . Let gp be a universal function for
S by w. Then

C’gﬂ(t) = min{} (v, s) | ‘ vE DT, seXT ) (a(s)) = t}

forallt eT.



UNIVERSALITY OF COMPLEXITY

Definition 13 An injective partial function 7 : T x X7 = vt s
length-bounded it
[T (u,0) | S ul+[v]

for all (u,v) € dom(7). It is said to be length-preserving if
| 7(u,v) [~ ul+]v]

for all (u,v) € dom(7).
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UNIVERSAL COMPLEXITY THEOREM

Theorem 14 (Universal Complexity Theorem)

Let § = (F,S,T,®,%,p,0) be an encoded function space. Let
7:®T x X — I be a length-bounded pairing function and let
m: F xS — S be derived from 7. Let gr be a universal function
for § defined by w. Then ngﬂ < ¢S. Moreover, C’gg7T ~ S, of Tois
length-preserving.
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UNIVERSAL COMPLEXITY THEOREM 25

Theorem 15 Let § = (F,S,T,®,%, p,0) be an encoded function space.
Fori=1,2, let 1; : ®T x T — X1 be length-preserving pairing
functions and let m; : F' x S — S be deriwed from 7;. Let gr. be a

§

universal function for § defined by m;. Then 09771 ~Cg.,-

None of the results so far require that the universal function be in
the space §. The results follow solely from properties of the pairing
functions involved.



UNIVERSAL FUNCTIONS ENCODED 26

Definition 16 For i = 1,2 let §; = (F;,S,T,®,%, p;,0;) be two
encoded function spaces.

(1) We say that §1 is a subspace of §o, written as §1 C o, if I} C Fb,
p1 € p2 and o1 € 09.

(1) We say that §1 is a conservative subspace of §9, if §1 C §9 and
additionally,

p1H(f) = o3 (f) and o7 (s) = 05 ' (s)

for all f € Fy and all s € 5.



UNIVERSAL FUNCTIONS ENCODED 27

Intuition:

The function space of interest is the space §1. The universal functions
for §1 to be considered are in §o, and §1 is a conservative subspace
of §9. Thus, the universal functions have encodings in §9, and the
functions of §1 and their arguments have exactly the same encodings
in both spaces.

Special situations:
(1) §1 = o, as is the case for Turing-computable functions;

(2) for §; being the finite-state computable functions, §o could be the
space of functions computable by deterministic two-way pushdown
automata (Ring, 1973) or the space of functions computable by
deterministic linearly bounded Turing machines (Boucher, 1971).



UNIVERSAL FUNCTIONS ENCODED

Theorem 17 Let §1 and §o be encoded function spaces such that §1 s
a conservative subspace of Fo. Fori=1,2, let ; : @7 x X7 — X1 be
length-bounded pairing functions, and let w; : Fo x .S — S be derived from

;. Let gn, be universal for §o by m;. If gny, gny € Fo, then 093731 ~ 93732.
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PAIRING FUNCTIONS, TYPES OF UNIVERSALITY

Distinguish universality according to how the arguments are presented
to the universal function g:

e The arguments are:
— representation v of the function ¢(v);
— representation s of the input o(s).

e Value to be computed: ¢(v)(o(s)).

o Weak universality: Use one injective function ¢ to obtain
(¥ (v,5))-

o Universality: Use two injective partial functions y and v into T
to obtain g(x(v)¥(s)).

o Strong Unwversality: As before, but with ¢ a homomorphism.

This distinction is suggested by Ring and Boucher. I am using it to
illustrate the problem.
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PAIRING FUNCTIONS, TYPES OF UNIVERSALITY

Theorem 18 (Ring, 1973)

1.

For every effectively defined set of automata recognizing only
decidable languages there is a weakly universal finite automaton.

There 1s no universal finite automaton for the deterministic finite
automata with a fized non-empty alphabet.

For every effectively defined set of automata recognizing only
decidable languages there is a universal pushdown automaton.

. For every effectively defined set of finite automata there is a

strongly universal deterministic two-way pushdown automaton.

There is no strongly universal one-way push-down automaton for
the deterministic finite automata with a fired non-empty alphabet.
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PAIRING FUNCTIONS, TYPES OF UNIVERSALITY

Corollary 19 Let § be an encoded function space of finite-state
computable functions. There is a length-preserving pairing function

m such that the universal function g for § can be computed by a
deterministic two-way pushdown automaton. Up to an additive constant,
the complexity with respect to g is independent of the choice of ™ and,
hence, of the corresponding deterministic two-way pushdown automaton.
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PAIRING FUNCTIONS, TYPES OF UNIVERSALITY

One can attempt to continue along this line of thought:

Theorem 20 (Boucher, 1971)

There 1s a deterministic linearly bounded Turing machine which is
universal for the space of finite automata.
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PAIRING FUNCTIONS, TYPES OF UNIVERSALITY

Theorem 21 (Boucher, 1971)

1. There is a determainistic linearly bounded Turing machine, which
18 weakly universal for the class of all deterministic linearly
bounded Turing machines.

2. There 1s no deterministic linearly bounded Turing machine, which
18 unwversal for the class of all deterministic linearly bounded

Turing machines.

The second statement is a consequence of the need to simulate
deterministic linearly bounded Turing machines with arbitrarily large
alphabets. When the alphabet is fixed, deterministic linearly bounded
Turing machines satisfy the assumptions of Theorem 17: Any two such
machines which are universal for the space of finite-state functions give
rise to the same complexity up to an additive constant.
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SUMMARY

Summary, Conclusions, Questions:

e A general framework suffices to derive essential properties of
complexity. Computing models are not needed.

e Key parameters have been identified. They including the encodings
and the pairing functions.

e There seems to be a general approach to defining conditional
complexity and connecting it to information theoretic concepts
without computability theory. The crucial idea is to use pairing
functions as parameters.
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HISTORY

Some Personal History:

I knew Cris’s work from being a reviewer who read mathematical
Romanian for Zentralblatt and Mathematical Reviews since the
seventies. We had letter contact to the extent possible (or rather
impossible) since the late seventies.

He sent me his book on complexity:

[1] C. S. Calude: Complexitatea Calculului: Aspecte Calitative.
Editura stiintifica si enciclopedica, Bucuresti, 1982.

We first met in April of 1990 (there could have been other occasions
in Eastern Europe, but they did not happen). He was on UNESCO
work in the USA. A colleague from Boston informed me. I managed to
facilitate a visit in London (Canada) for him. We started to work on a
question inspired by the following papers:
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HISTORY 36

2] C.S. Calude, G. Paun: Independent instances for some undecidable
problems. RAIRO Inform. Théor. 17 (1983), 49-54.

3] C. S. Calude, I. Chitescu: Random sequences: Some topological
and measure-theoretical properties. An. Univ. Bucuresti, Mat.-Inf. 2
(1988), 27-32.

The question was: Is independence an aberration based on a syntactical
trick or is it a common phenomenon?

First answer: It is common in a topological sense!

4] C. S. Calude, H. Jiirgensen, M. Zimand: Is independence an
exception? Applied Mathematics and Computation 66 (1994), 63—-76.

Second answer (much later): It is common in a probabilistic sense!

5] C. S. Calude, H. Jiirgensen: Is complexity a source of
incompleteness? Advances in Appl. Math. 35 (2005), 1-15.



HISTORY 37

After 1990 I travelled a few times to Romania and (later) to New
Zealand, and Cris visited me in Canada and Germany. Most importantly,
he and his family spent several months in London (Canada) during
their move from Romania to New Zealand.

I have used his book on complexity for courses both in Canada and
Germany. For a course on recursive functions and abstract complexity,
I should use it still as the primary reference for my students.

(6] C. S. Calude: Theories of Computational Complexities.
North-Holland, Amsterdam, 1988.



HISTORY 38

We wrote a paper on number representations, which added to a hot
and partisan (and not always professional) controversy concerning the
publication of Cris’s book on algorithmic information theory (the traces
of the controversy can be found between the lines of the preface):

[7] C. S. Calude, H. Jiirgensen: Randomness as an invariant for
number representations. In H. Maurer, J. Karhumaki, G. Rozenberg
(editors): Results and Trends in Theoretical Computer Science. Lecture
Notes in Computer Science 812, 44—66. Springer-Verlag, Berlin, 1994.

8] C. S. Calude: Information and Randomness — An Algorithmic
Perspective. Springer-Verlag, Berlin, 1994.



HISTORY

Independence is a common phenomenon in a topologial sense. Moreover,
this is not an artificial result as it holds true under very weak conditions
on the topology.

9] C. S. Calude, H. Jiirgensen, L. Staiger: Topology on words.
Theoret. Comput. Sci. 410(24-25) (2009), 2323-2335. A collection of
papers in honor of Sheng Yu.
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HISTORY

Some further joint work:

[10] C. S. Calude, P. Hertling, H. Jiirgensen, K. Weihrauch: Randomness
on full shift spaces. Chaos, Solitons & Fractals 12(3) (2001), 491-503.

[11] C. S. Calude, H. Jiirgensen, S. Legg: Solving finitely refutable
problems. In C. S. Calude, G. Paun (editors): Finite versus Infinite —
Contributions to an Eternal Dilemma. 39-52, Springer-Verlag, London,

2000.

[12] C. S. Calude, H. Jiirgensen: Randomness and coding. In

M. Marinov, D. Ivanchev (editors): Proceedings, 20th Summer School
on Applications of Mathematics in Engineering, Varna, 1994. 53-57,
Technical University of Sofia, Institute of Applied Mathematics and
Informatics, Sofia, 1995.

[13] H. Jiirgensen, C. Calude (editors): Algorithmic complexity and
applications. Fund. Inform. 83 (2008). Special Issue in Celebration of
Ludwig Staiger’s 60th Birthday.



HISTORY

And some joint work we started, but never finished:

[14] C. S. Calude, H. Jiirgensen: Randomness-preserving transformations.
Manuscript, 32 pp., 1995.

[15] C. S. Calude, H. Jiirgensen, A. Salomaa: Coding without tears.
1994. Manuscript.
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FUTURE

And there are many new ideas!
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FUTURE

My and my family’s best wishes to you, Cris!
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