
In honor of Cristian Calude’s research lead in this area.

A Program-Size Complexity Measure for
Mathematical Problems and Conjectures

Michael J. Dinneen

University of Auckland, Auckland, New Zealand

WTCS 2012

1 / 24

Contents

1 A Program-size Complexity Measure

2 Register Machines

3 A Simple Completeness Result for Membrane Computing

4 Open Problems and Conclusions

2 / 24

Background

C. S. Calude, E. Calude, M. J. Dinneen. A new measure of the
difficulty of problems, Journal for Multiple-Valued Logic and Soft
Computing 12 (2006), 285–307.

C. S. Calude, E. Calude, M. J. Dinneen. The Complexity of
the Riemann Hypothesis, International Riemann Hypothesis Day,
http://aimath.org/RH150/rhdayschedule.html, Auckland,
November 18, 2009.

3 / 24

http://aimath.org/RH150/rhdayschedule.html

Mathematical problems and conjectures

A problem π of the form ∀σP(σ), where P is a computable
predicate is called a Π1–problem.

• Any Π1–problem is finitely refutable.

• For every Π1–problem π = ∀nP(n) we associate the program

σπ = inf{n : P(n) = false}

which satisfies:

π is true iff σπ does not halt.

• Solving the halting problem (for some universal machine)
solves all Π1–problems.

4 / 24

Some known Π1–problems

Cristian Calude and Elena Calude showed that following problems

• Goldbach’s conjecture,

• Fermat’s last theorem,

• Riemann hypothesis, and

• the four color theorem

are Π1–problems.

Of course, not all problems are Π1–problems.

Is the Collatz’ conjecture a Π1–problem?

5 / 24

Sample Π1–problem descriptions

• Goldbach’s conjecture: every even integer greater than two
can be expressed as the sum of two primes.

• Fermat’s last theorem: no three positive integers a, b, and c
can satisfy the equation an + bn = cn for any integer value of
n > 2.

• Collatz’ conjecture: for any n > 0, the following sequence
converges to 1: If n is even, we halve it (n/2), else we do
“triple plus one” and get 3n + 1.

• Riemann hypothesis: all non-trivial zeros of the Riemann zeta
function have real part 1/2.

• The four color theorem: the vertices of any planar graph can
be properly colored with 4 colors.

6 / 24

Riemann hypothesis

Theorem

Riemann hypothesis is a Π1–problem.

The negation of the Riemann hypothesis is equivalent to the
existence of positive integers k , l ,m, n satisfying the following:

1 n ≥ 600,

2 ∀y < n [(y + 1) | m],

3 m > 0 &∀y < m [y = 0 ∨ ∃x < n [¬ [(x + 1) | y]]],

4 explog(m − 1, l),

5 explog(n − 1, k),

6 (l − n)2 > 4n2k4,

where x | z means “x divides z” and explog(a, b) is the predicate

∃x [x > b + 1 & (1 + 1/x)xb ≤ a + 1 < 4(1 + 1/x)xb].

7 / 24

Complexity

Definition

The complexity (with respect to an universal U) of a Π1–problem
π is defined by

CU(π) = inf{|σp| : π = ∀nP(n),P computable}.

For the universal register machine language U described later we
can (somewhat objectively) rank mathematical problems according
to their CU complexities1:

• Goldbach’s conjecture: 850 (C1).

• Fermat’s great theorem: 1,738 (C1).

• Riemann’s hypothesis: 5,170 (C3).

• The four color theorem: ≈ 7,200 (C4).
1Here Ci implies less than i kilobytes needed in a compressed model.

8 / 24

1 A Program-size Complexity Measure

2 Register Machines

3 A Simple Completeness Result for Membrane Computing

4 Open Problems and Conclusions

9 / 24

Our (first2) universal machine U 1 of 3

The machine U is implemented as a register machine program
using five types of instructions that process register data.

By default, all registers, labeled with a string of lower or upper
case letters, are initialized to 0. Instructions are labeled by default
with 0,1,2,. . . (in binary).

The register machine instructions will be presented in what follows.
Note that in all cases R2 denotes either a label, a register or a
binary constant of the form 1(0 + 1)∗ + 0, while R1 and R3 must
be a register variable.

The alphabet for programs for U consists of these 14 characters
{a, . . . , h, ‘,′ ,=,&,+, !,%}, thus each character can be encoded in
four bits (nibble).

2Note newer versions are described in the paper and its references.
10 / 24

Our (first) universal machine U 2 of 3

=R1,R2,R3 (EQ R1 R2 R3)

If the contents of R1 and R2 are equal, then the execution continues
at the R3-th instruction, where R3 = 0 denotes the first instruction
of the program. If they are not equal, then execution continues with
the next instruction in sequence. If the content of R3 is outside the
scope of the program, then we have an illegal branch error.

&R1,R2 (SET R1 R2)

The contents of register R1 is replaced by the contents of register
R2 (or constant R2).

11 / 24

Our (first) universal machine U 3 of 3

+R1,R2 (ADD R1 R2)

The contents of register R1 is replaced by the sum of the contents
of registers R1 and R2 (or constant R2).

!R1 (READ R1)

One bit is read into the register R1, so the numerical value of R1
becomes either 0 or 1. Any attempt to read past the last data-bit
results in a run-time error.

% (HALT)

This is the last instruction for each register machine program before
the input data. It halts the execution in two possible states: either
successfully halts or it halts with an under-read error.

12 / 24

Register machine program

Definition

A register machine program consists of a finite list of labeled
instructions from the above list, with the restriction that the HALT
instruction appears only once, as the last instruction of the list.3

The input data (a binary string) follows immediately after the
HALT instruction.

A program not reading the whole data or attempting to read past
the last data-bit results in a run-time error.

3BTW, this prefix-free property is a required part of a Chaitin ΩU constant.
13 / 24

Example: GCD algorithm as register machine

Procedure GCD(int a, int b)
begin
while a 6= 0 do
if a < b then swap(a,b)
a← a− b

return b
end
GCD(12,8)

&a,1100&b,1000&c,1001&d,1100&e,10010&f,10100&g,10110

&h,11010&aa,11100=a,0,aa&ab,a&ac,b=ab,b,f+ab,1+ac,1

=a,ac,f=b,ab,e=d,d,d&b,a&a,ab&ab,b&ac,0=a,ab,h+ab,1

+ac,1=g,g,g&a,ac=c,c,c%

14 / 24

Contributions given in my WTCS 2012 paper

Compact subroutines to manipulate arrays with register machines:

Cmp(a,b) Mul(a,b) Sub(a,b)

Div(a,b) Mod(a,b)

Div2(a) Mod2(a)

Size(a)

Value(a,b)

ArrayBits(a)

Append(a,b)

SetValue(a,b,c)

ArrayInit(a,b)

arithmetic core library

array library

GCD, isPrime, ...

15 / 24

Thanks to Y.-B. Kim for assistance in preparing some of these slides.

1 A Program-size Complexity Measure

2 Register Machines

3 A Simple Completeness Result for Membrane Computing

4 Open Problems and Conclusions

16 / 24

Definition (Simple P system)

A simple P system of order n is a system Π = (O,K ,∆), where:

1 O is a finite non-empty alphabet of symbols.

2 K = {σ1, σ2, . . . , σn} is a finite set of cells, where each cell
σi ∈ K is of the form σi = (Qi , si0,wi0,Ri) where
• Qi is a finite set of states,
• si0 ∈ Qi is initial state (si ∈ Qi is current state),
• wi0 ∈ O∗ is initial content and (wi ∈ O∗ is current content),
• Ri is a finite linearly ordered set of evolution rules

(i.e. transition multiset rewriting rules with priority).
An evolution rule r ∈ Ri has the form j s u →α s ′ v where:
• α ∈ {min, max} is a rewriting operator of r ,
• j ∈ N is the priority of r ,
• s, s ′ ∈ Qi , where s and s ′ are source and target states of r
• u ∈ O+ is the multiset pattern to match,
• v ∈ (O × τ)∗, where target indicator τ ∈ {�, ↑, ↓, l},

3 ∆ is an irreflexive and asymmetric relation, representing a set
of links between cells with bidirectional communication.

Register machines without input data

A subclass C′ of the set C of register machine programs have no
input data (or READ instructions), but have only “hard-coded”
initial sequence of SET instructions as data.

Theorem

The set C′ is Turing complete.

Proof sketch.

We convert any register program P ∈ C with data D, viewed as a
binary string, to an equivalent program P ′ ∈ C′ without data.
Let S be a register machine that simulates as its data P + D.
Encode P + D as two arrays of bits P ′ and D ′, as described in the
WTCS paper. Make P ′ from S but instead of reading program and
data to index bits in P ′ and D ′, which are assign to unused
registers. Note I/O errors can be detected by simulator P ′.

18 / 24

P systems are Turing complete 1 of 3

For an arbitrary register machine M (without data) with k ≥ 0
registers and n ≥ 1 instructions, we show how to build a
computationally equivalent simple P system Π = (O,K ,∆):

1 O = {ri | 0 ≤ i < k} ∪ {d , t}, where symbols r0, r1, . . . , rk−1
represent the registers of M and {d , t} are distinct symbols.

2 K = {σm}. Cell σm = (Q, sm0,wm0,R), represents register
machine M, where:
• Q = {si , s ′i | 0 ≤ i < n} ∪ {s}, where states si and s ′i

correspond to the i-th instruction of M and state s represent a
new “springboard jump” state.

• sm0 = s0, indicates the first instruction, i.e. 0-th instruction.
• wm0 = {ri | 0 ≤ i < k}, indicates the initial content of cell σm,

where the value of each register ri corresponds to the
multiplicity of ri minus one (e.g. one symbol denotes zero).

• R is a set of evolution rules, where states si and s ′i correspond
to instruction i of M. [Described on next two slides.]

3 ∆ = ∅.
19 / 24

P systems are Turing complete 2 of 3

Instruction: (SET r1 r2) or (SET r1 const)

• If (SET r1 r2):

1 si ri1 →max si+1

2 si ri2 →max si+1 ri1 ri2

• If (SET r1 const):

1 si ri1 →min si+1 rconsti+1
i1

2 si ri1 →max si+1

Instruction: (ADD r1 r2) or (ADD r1 const)

• If (ADD r1 r2):

1 si ri2 →min si+1 ri2
2 si ri2 →max si+1 ri1 ri2

• If (ADD r1 const):

1 si ri1 →min si+1 rconsti+1
i1

Instruction: (HALT)

• No rules.

20 / 24

P systems are Turing complete 3 of 3

Instruction: (EQ r1 r1 r3), (EQ r1 r2 r3) or (EQ r1 const r3)

• If (EQ r1 r1 r3):

1 si ri3 →max s ri3 t

• If (EQ r1 r2 r3):

Rules for state si :

1 si ri1 ri2 →max s
′
i ri1 ri2

2 si ri1 →max s
′
i ri1 d

3 si ri2 →max s
′
i ri2 d

Rules for state s ′i :

1 s ′i d →max si+1

2 s ′i ri3 →max s ri3 t

• If (EQ r1 const r3):

1 si r
consti+2
i1

→min si+1 rconsti+2
i1

2 si r
consti+1
i1

→min s rconsti+1
i1

3 si ri1 →min si+1 ri1
4 si ri3 →max s ri3 t

• “Springboard” state s rules:

1 s tn+1 →min s tn+1

2 s tn →min sn−1
3 s tn−1 →min sn−2

...
n+1 s t →min s0

21 / 24

1 A Program-size Complexity Measure

2 Register Machines

3 A Simple Completeness Result for Membrane Computing

4 Open Problems and Conclusions

22 / 24

Open problems

• Is the problem complexity invariant under different register
machine models and encodings?

• Can we compute any bits of Omega for a compressed version
of register machine language?

• Build a new (and compact) register machine subroutines for
other popular simple data structures like dictionaries and
graphs.

• Investigate the trade-off between memory efficiently data
structures and the sizes of methods to access them.

23 / 24

Conclusions

• Use the size of register machine programs to compare the
difficulty of mathematical theorems and statements.

• These “program descriptions” for “problem complexities” are
structured to enumerate for a counter-example (finitely
refutable property needed).

• Using the known universality of register machines we have a
simple proof that P systems are Turing complete.
(We use only one cell and linear number of states and rules.)

• Lots of research still required!

24 / 24

	A Program-size Complexity Measure
	Register Machines
	A Simple Completeness Result for Membrane Computing
	Open Problems and Conclusions

