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☛ Blum, M.: A machine-independent theory of the
complexity of recursive functions. Journal of the ACM
14(2) (1967) 322 – 336

☞ It is the foundation for the Theory of Computational
Complexity

☛ Blum, M.: On the size of machines, Information and
Control 11 (1967) 257–265

☞ The starting point of my approach
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☛ “| · | : N −→ N is called a measure of the size of
machines, |i| being called the size of Mi, if and only if:

✦ there exist at most a finite number of machines of
any given size and

✦ there exists an affective procedure for deciding, for
any y, which machines are of size y.”[2]

☛ “These are all so fantastically weak that any reasonable
model of a computer and any reasonable definition of
size and step satisfies them” [2]
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☛ Many results for these complexities are exactly the same

☞ Many proofs are almost identical

☞ Some proofs must take into consideration the fact
that the input must have a particular form.

☞ There are instances where we have to produce new
proofs for each of the two complexities.

☛ Some results hold for the prefix-free complexity, and do
not for plain complexity.

☞ Example: the case of infinite sequences.

☛ WHY?
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☛ Generalized Kolmogorov complexity and other dual
complexity measures, Translated from Kibernetica 4
(1990) 21–29. Original article submitted June 19 (1986)

☛ Algorithmic complexity of recursive and inductive
algorithms, Theoretical Computer Science 317 (2004)
31–60

☛ Algorithmic complexity as a criterion of unsolvability,
Theoretical Computer Science 383 (2007) 244–259
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☛ “. . . an attempt to define in this setting an appropriate
concept of randomness was unsuccessful. It turned out
that the original definition of Kolmogorov complexity was
not relevant for that goal. To get a correct definition of a
random infinite sequence, it was necessary to restrict
the class of utilized algorithms.”
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G ⊆ F , G = (φ
(n)
i )i∈I is a class of algorithms.

A (direct) complexity measure is a function m : I −→ N such
that:

1. (Computational axiom) m is computable;

2. (Re-computational Axiom) the set {j | m(j) = n} is
computable;

3. (Cofinitness Axiom) #{j | m(j) = n} <∞.

4. (Re-constructibility Axiom) For any number n, it is
possible to build all algorithms A from G for which
m(A) = n.

5. (Compositional Axiom) If A ⊆ B, then m(A) ≤ m(B).
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☛ I only consider axioms 1–4.

☛ A space (G,m) satisfying axioms 1–4 is called
Blum Static Complexity space.

☛ U is d-universal for G = (ψi(n))i,n if U can emulate any
algorithm in ψi(n) = U(d(i), n).
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☛ Given a complexity measure m : I −→ N and ψ ∈ G, the
dual to m with respect to φ is

m0
ψ(x) = min{m(y) | y ∈ I, ψ(y) = x}.

☛ If indexes y are over an alphabet with p letters Ap, we
may consider as string−1(y) ∈ N instead of y ∈ A∗

p ,
because string(n) is a one to one function.

☛ The length function on A∗
p, m(y) = |y| induces the dual

to length complexity measure.

☛ Plain and prefix-free complexity measures are dual to
length complexity measures. [3]
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☛

CG(x) = inf
i∈I,y∈I

{m(i) +m(y) | ψi(y) = x}. (1)

☛

CG
ψ(x) = inf

y∈I
{m(y) | ψ(y) = x}. (2)

☛ In case ψ is an universal algorithm for G (ψ ∈ G), then

C(x) = Cψ(x) +O(1).
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☛ T = ((τi)i∈I) is a set of total functions over A∗
p, and

< ·, · > is a pairing function

☛ Theorem 1. If

1. for every τ ∈ T , there exists a function Bτ such that

|τ(xy)| ≤ |τ(x)| +Bτ (|y|),

2. for every M > 0, there is i ∈ I and x such that
|τi(x)| > |x| ·M ,

then there is no universal function for T in T .
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● Functions that are realized by functional transducers
satisfy the above theorem.

Theorem 9 in [7] is a corollary of Theorem 1.

● The proof of Theorem 1 do not require that all functions
of family T to be total functions, however, we assume
that if τ(xy) is defined, then τ(x) is also defined.
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☛ For any τi ∈ T , we have that:

C(x) ≤ Cτi(x) +m(i).

☛ If identity function can be encoded by T , then the
complexity C is computable.
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☛ E is a computable function such that

1. E is injective and is a length increasing function in
the second argument, i.e., there exists ce, such that
if |x| ≤ |y|, then |E(i, x)| ≤ |E(i, y)| + ce.

2. |E(i, x)| ≤ |E(i′, x)| + η(i, i′), for some function
η : N

2 −→ N.
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☛ E and e are computable functions, E as above.

☛ Definition 4. We say that the family G = (ψj)j∈J is an
(e, E)-encoding of the family H = (µi)i∈I , if for every
i ∈ I and all x ∈ N, we have that:

1. µi(x) = ψe(i)(E(i, x)), for all i ∈ I and x ∈ N,

2. if ψj(z) = x, then e(i) = j and E(i, y) = z, for some
i ∈ I and y ∈ N.

☛ A Blum Universal Static Complexity space is a BSC
space with an universal algorithm.
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☛ If H has an universal algorithm in H, and G is an
encoding of H, then G has an universal algorithm in G.

☛ The set Ct = {x ∈ A∗
p | C

G(x) ≥ m(x) − t} is immune.

☛ The function CG is not computable.

☛ The set of canonical programs CP is immune.

☛ The function f(x) = x∗ is not computable.

☛ The set RANDG
t is immune.
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☛ All strings with complexity less than 25 (using S0

encoding defined in [7]) are now known.

☛ Computing complexity for a string of length l is almost
as expensive as computing complexity for all strings with
complexity less than l − 8.

☛ As expected, strings like 1n and 0n have the lowest
complexity.
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☛ We could find strings of maximum complexity (l + 8) for
all values of the length l, 3 ≤ l ≤ 17.

☛ There is no string of maximum complexity 8 or 10. Let us
define the set of magic number to be

Magic = {m | ΣT (n) < n+ 8 = m,n ∈ N}. (3)

or
Magic = {m | m 6= ΣT (n), n ∈ N}. (4)

Is there any magic number m > 17?
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☛ Minimum complexity increases much slower than linear.
For example:

1. the complexity of letters is 7
2. the minimum complexity of strings of length 10 is 13

3. the minimum complexity of strings of length 13 is 17

4. the minimum complexity of strings of length 16 is 16

5. the minimum complexity of strings of length 17 is 19

☛ We could find 16 words of length 32 with complexity 16

☛ We could find 1388 words of length 34 with complexity
24

☛ We could find 16 words of length 36 with complexity 21
and 32 strings of length 55 with complexity 25.
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☛ If two encodings of a BUSC differ by a constant, then the
complexities “are equivalent”.

☛ For two encodings of a BUSC where the size of one of
them increases “much faster” than the other one, we
have a strict inclusion for the set of random strings.

☛ Define randomness of infinite strings for an arbitrary
BUSC space.

☛ Does it make sense to define randomness for an
arbitrary BSC space?

☛ Give other conditions for encodings, such that the
“known” results can still be proved.

☛ Is there a necessary condition for the (un)computability
of a complexity measure?
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