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Camera Calibration with Distortion 
Models and Accuracy Evaluation 

Juyang Weng, Member, IEEE, Paul Cohen, and Marc Herniou 

Abstract- The objective of stereo camera calibration is to 
estimate the internal and external parameters of each camera. 
Using these parameters, the 3-D position of a point in the scene, 
which is identified and matched in two stereo images, can be 
determined by the method of triangulation. In this paper, we 
present a camera model that accounts for major sources of 
camera distortion, namely, radial, decentering, and thin prism 
distortions. The proposed calibration procedure consists of two 
steps. In the first step, the calibration parameters are estimated 
using a closed-form solution based on a distortion-free camera 
model. In the second step, the parameters estimated in the first 
step are improved iteratively through a nonlinear optimization, 
taking into account camera distortions. According to minimum 
variance estimation, the objective function to be minimized is 
the mean-square discrepancy between the observed image points 
and their inferred image projections computed with the estimated 
calibration parameters. We introduce a type of measure that can 
be used to directly evaluate the performance of calibration and 
compare calibrations among different systems. The validity and 
performance of our calibration procedure are tested with both 
synthetic data and real images taken by tele- and wide-angle 
lenses. The results consistently show significant improvements 
over less complete camera models. 

Index Terms- Camera calibration, lens distortion, optimiza- 
tion. stereo. 

I. INTRODUCTION 
ALIBRATION OF cameras is considered as an important C issue in computer vision. Accurate calibration of cameras 

is especially crucial for applications that involve quantitative 
measurements such as dimensional measurements, depth from 
stereoscopy, or motion from images. 

One aspect of camera calibration is to estimate the internal 
parameters of the camera. These parameters determine how 
the image coordinates of a point are derived, given the spatial 
position of the point with respect to the camera. The estimation 
of the geometrical relation between the camera and the scene, 
or between different cameras, is also an important aspect of 
calibration. The corresponding parameters that characterize 
such a geometrical relation are called external parameters. 
It is well known that actual cameras are not perfect and 
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sustain a variety of aberrations. For geometrical measurements, 
the main concern is camera distortion, which relates to the 
position of image points in the image plane but not directly 
to the image quality. For example, the position of a point in 
a slightly blurred image can still be measured as the center of 
the blurred point. However, if the image position of a point is 
not accurate, the results that depend on its image coordinates 
will be erroneous. 

Camera calibration has long been an important issue in 
the photogrammetry community. With the increasing need for 
higher accuracy measurement in computer vision, it has also 
attracted research efforts in the computer vision community. 
Compared with the high-quality metric cameras used in pho- 
togrammetry, the cameras commonly used in computer vision 
have the following characteristics: a) Image spatial resolution 
is defined by spatial digitization and is relatively low (e.g., 
a typical CCD sensing array has about 512 x 480 pixels); 
b) lenses used for video cameras are nonmetric off-the-shelf 
lenses and sustain a substantial amount of distortion; c) camera 
assembly sustains considerable internal misalignment (e.g., the 
CCD sensing array may not be orthogonal to the optical axis, 
and the center of the array may not coincide with the optical 
principal point, i.e., the intersection of the optical axis and the 
image plane). 

The existing techniques for camera calibration can be clas- 
sified into the following categories. 

1) Direct Nonlinear Minimization: In this category, equa- 
tions that relate the parameters to be estimated with the 3-D 
coordinates of control points and their image plane projections 
are established. The search for the parameters involves using 
an iterative algorithm with the objective of minimizing residual 
errors of some equations. Most of the classical calibration 
techniques in photogrammetry belong to this category (e.g., 
[3],  [l], [15], [4], [ll]). One advantage of this type of 
technique is that the camera model can be very general to 
cover many types of distortion. Some simple distortion-free 
models for computer vision applications have also employed 
this type of technique (e.g., [7], [9]). Another advantage is 
that the algorithm may achieve high accuracy, provided that 
the estimation model is good, and correct convergence has 
been reached. However, since the algorithm is iterative, the 
procedure may end up with a bad solution unless a good initial 
guess is available. Furthermore, once distortion parameters are 
included in the parameter space, the minimization may be 
unstable if the procedure of iterations is not properly designed. 
The interaction between the distortion parameters and external 
parameters can lead to divergence or false solutions. 
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2) Closed-Form Solution: With this type of scheme, pa- 
rameter values are computed directly through a noniterative 
algorithm based on a closed-form solution (e.g., [l] ,  [15], [8], 
[6]). A set of intermediate parameters is defined in terms of 
the original parameters. The intermediate parameters can be 
computed by solving linear equations, and the final parameters 
are determined from those intermediate parameters. Since 
no iteration is required, the algorithms are fast. However, 
such methods have the following disadvantages. First, camera 
distortion cannot be incorporated, and therefore, distortion 
effects cannot be corrected. It is worth mentioning that the 
direct linear transformation (DLT) introduced by Abdel-Aziz 
and Karara [ l ]  has been extended to incorporate distortion 
parameters. However, the corresponding formulation is not ex- 
act; depth components of control points, in a camera-centered 
coordinate system, are assumed to be constant. Second, due to 
the objective to construct a noniterative algorithm, the actual 
constraints in the intermediate parameters are not considered. 
Consequently, in the presence of noise, the intermediate solu- 
tion does not satisfy the constraints, and the accuracy of the 
final solution is relatively poor. 

3) Two-step Methods: The methods of this type involve 
a direct solution for most of the calibration parameters and 
some iterative solution for the other parameters. The existing 
techniques include those presented by Tsai [13] and Lenz and 
Tsai [lo]. A radial alignment constraint is used to derive 
a closed-form solution for the external parameters and the 
effective focal length of the camera. Then, an iterative scheme 
is used to estimate three parameters: the depth component 
in the translation vector (external parameter), the effective 
focal length, and a radial distortion coefficient. In [lo], two 
additional parameters (the image coordinates of the principal 
point, which were considered to be known in [13]) have been 
included into the set of iteratively determined parameters. The 
advantages of their method are as follows: a) A closed-form 
solution is derived for most of the parameters; b) the closed- 
form solution is immune to lens radial distortion; c) the number 
of parameters to be estimated through iterations is relatively 
small. The disadvantages are as follows: a) Their method 
can only handle radial distortion and cannot be extended 
to other types of distortion; b) the solution is not optimal 
because the information provided by the calibration points has 
not been fully utilized. The radial component of a point is 
discarded completely, and only the tangential component is 
used for the solution. However, although it is generally true 
that the radial component is less reliable than the tangential 
component, the tangential component is not error free either. 
From a statistical point of view, discarding relatively unreliable 
radial components (which account for half of the observations) 
results in a less reliable estimator. 

In this paper, we address the above problems and introduce 
our approach to camera calibration. 

1) For the calibration of off-the-shelf nonmetric cameras, 
we derive a model that takes into account major distortions 
and investigate the amount of penalty caused by less general 
camera models. This will allow us to address important 
questions such as the following: 

Is it at all necessary to consider distortion for popular 

off-the-shelf video cameras with, for instance, a typical 
512 x 512 image resolution? 
How much improvement is brought about by considering 
one or several types of distortion phenomena in the 
model? 

It was reported in [6] that triangulation with an accuracy of 
one in 2000 parts had been achieved by calibration based 
on a distortion-free model. A comparable result was reported 
in [13] with a simple one-parameter radial distortion model 
and no consideration of tangential distortion. In Faig’s very 
elaborate model [4], four types of distortion were considered 
for high-accuracy photogrammetric applications: radial sym- 
metric distortion, decentering distortion, affinity distortion, and 
distortion caused by nonperpendicularity of axis. We will find 
some answers to the above questions in our experiments with 
three different models: the distortion-free model, the radial 
distortion model, and our complete model that includes both 
radial and tangential distortions. 

2 )  We adopt a two-step approach to the calibration of 
our stereo camera system. The first-step consists of using 
a noniterative algorithm to directly compute a closed-form 
solution for all the external parameters and some major internal 
parameters based on a distortion-free camera model. The 
second step is a nonlinear optimization based on a camera 
model that incorporates distortion using the solution of the 
first step as an initial guess. One major difference between 
our two-step computational approach and those of [13] and 
[lo] is that our second step is an optimization that computes 
and improves all the parameters, whereas in the approaches 
of [13] and [lo], the second step iteratively computes only a 
few parameters that cannot be provided by the first step. Our 
approach was motivated by the following considerations: a) 
Since the algorithm that computes a closed-form solution is 
noniterative, it is fast, and a solution is generally guaranteed. 
It gives a complete solution to all external and internal 
parameters of a distortion-free camera model. Since the center 
of an image has little distortion, only the points near the 
center of the image (which are called central points) are used 
for the closed-form solution. Consequently, the closed-form 
solution is not affected very much by distortion and is good 
enough to be used as an initial guess for further optimization. 
b) The nonlinear optimization step can take into account 
different types of distortion. c) Even if the actual camera 
is distortion free, nonlinear optimization can still improve 
the closed-form solution. Indeed, the closed-form solution 
is usually the solution that minimizes mean-square residuals 
of some equations. However, because various uncertainties 
in the different equations have not been properly taken into 
account, the solution is not optimal. The optimization step will 
then compute the “best” solution. d) In general, a nonlinear 
optimization algorithm may converge to a local extremum that 
is not globally optimal. However, if an approximate solution 
is given as an initial guess, the number of iterations can be 
significantly reduced, and the globally optimal solution can 
be reliably reached. Such a two-step algorithm is much more 
reliable than a direct iterative algorithm that starts with an 
arbitrarily chosen initial guess (e.g., “zero” guess). e) Real- 
time calibration is not necessary in most applications. Usually, 
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calibration needs to be done only once, and the estimated 
parameters are used for real-time operation. This is also 
true for time-varying systems in which the calibrated camera 
parameters are given as functions of camera control signals. 
Therefore, the calibration algorithm can use considerable time 
to obtain highly accurate parameters. 

3) We introduce a new measure to assess the accuracy 
of camera calibration with digital images. The existing mea- 
sures depend on the setup of the system, especially on the 
field of view, the baseline length, and the camera-to-object 
distance. This makes it very difficult to compare techniques 
of calibrations with different setups. As we know, image 
resolution inherently limits the accuracy of calibration. The 
calibrated parameters cannot be exact even if the camera 
is ideal. However, a good calibration with a lower image 
resolution may exceed the accuracy of a poor calibration 
with a higher resolution. It is reasonable to measure the 
quality of calibration based on image resolution. The measure 
introduced in this paper is called normalized stereo camera 
error, which is an error measure normalized according to 
the resolution of the images. Such a normalized measure is 
important because a) the performance of different calibration 
approaches can be quantitatively evaluated and compared, and 
b) this measure indicates whether a particular camera model 
is elaborate enough under the image resolution. Since the 
resolution of a digital image is well defined by the number of 
pixels, this measure is especially convenient for calibrations 
that are based on digital images. 

We present our camera models in the next section. The 
estimation of the parameters is discussed in Section 111. In 
Section IV, we introduce the normalized stereo camera error. 
The performance of our method is demonstrated by the results 
of simulations and experiments with real camera systems in 
Section V. Finally, Section VI gives concluding remarks. 

0 Ey 
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0, I/ Yc 

Fig. 1 .  Coordinate systems. 

is given by 

where R = (r i , j )  is a 3 x 3 rotation matrix defining the 
camera orientation, and T = (t l ,  t z ,  t ~ ) ~  is a translation vector 
defining the camera position. 

We now define, in the image plane, the image coordinate 
system (0', U ,  U), where 0' represents the principal point of 
the image plane (i.e., the intersection of the image plane with 
the optical axis) and where the U and ZI axes are chosen 
parallel to the 2, and yc axes. It should be stressed that 
owing to possible misalignment of the CCD array, 0' does 
not necessarily coincide with the geometrical center of the 
image plane. The image plane coordinates of the point P are 
given by the equations 

U = f x c l z ,  

11. CAMERA MODELS = fYc /Zc .  (2 )  

In this section, we consider two types of camera models. 
The first model is a pinhole camera model that neglects 
all optical distortion. The second model takes into account 
several types of distortion. The first model can be viewed as 
a first approximation of the second one and will actually be 
considered as such in the calibration procedure. 

A. Distortion-Free Camera Model 

Let (x, y, z )  represent the coordinates of any visible point 
P in a fixed reference system (world coordinate system), and 
let (xc, yc, z,) represent the coordinates of the same point in a 
camera-centered coordinate system. As illustrated in Fig. 1, the 
origin of the camera-centered coordinate system coincides with 
the optical center of the camera, and the z ,  axis coincides with 
its optical axis. The image plane, which corresponds to the 
image sensing array, is assumed to be parallel to the (x,, y,) 
plane and at a distance f to the origin, where f represents 
the (effective) focal length of the camera. The relationship 
between the world- and camera-centered coordinate systems 

Finally, if we denote by ( T ,  e )  the position of the corresponding 
pixel in the digitized image, this position is related to the 
image-plane coordinates by the expressions 

T - To = suu 
c - CO = s v v  

where ( T O ,  C O )  denotes the pixel position of the principal point 
0'. The coordinates ( T , c )  can be considered to be the row 
and column numbers in a CCD array. In other words, the 
x, and yc axes are chosen to be parallel to row and column 
directions, respectively. As can be noticed in Fig. 1, the 
adopted conventions impose s, to be negative and sv to be 
positive. Combining (l), (2), and (3) leads to the following 
expressions that relate pixel position, the world coordinates, 
and the various parameters to be calibrated 

(3) 

- -  'U - - T - TO - - T l , l ~ + T l , Z y +  T 1 , 3 Z + t l  kf - .iL 
f f u  T 3 , l x  + T3,Zy + T3,3Z + t 3  

(4) 
- c - CO - - T Z J ~  + rz,zy + T2,3Z + t z  g ir - -  - 

f fv T 3 , l x  -k T3,ZY + T3,3z + t3 
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where (iL,ir) defines the coordinates in the normalized image 
plane that is located at z = 1, and f, = s,f and f ,  = s,f are 
called row focal length and column focal length, respectively. 
If we scale the camera, with respect to the focal point, so that 
the row-to-row (column-to-column) pixel spacing is equal to 
1, the corresponding focal length of such a scaled camera is 
equal to the row (column) focal length. Most conventional 
cameras produce rectangular images with a ratio of about 4/3 
between horizontal and vertical dimensions. If the ratio of 
row-to-row pixel distances to column-to-column distance is q, 
the ratio If,/fvl is roughly equal to 4- l .  However, because 
of the timing errors, unstability of the scanning electronics, 
and a possible tilt of the CCD array, the ratio If,/fvl is 
not exactly q - l ,  although q can be directly computed from 

dr: tangential distortion 

the dimensional specifications of the CCD sensing elements 
provided by camera manufacturers. 

With this camera model, the calibration txoblem is ex- 
Fig. 2. Radial and tangential distortions. 
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pressed in the following terms: t-<-- \ 

Given a sufficient number of visible points whose world \I 

coordinates (xi, y;, z i )  are known with a high precision, as 
well as their corresponding observed pixel positions (T : ,  ct), 
estimate, in some optimal sense, the value of the internal 
camera parameters T O ,  co, f u ,  f ,  and the external parameters 
R and T. In general, observed pixel locations ( ( , c : )  are 
not equal to locations ( ~ i ,  c i )  resulting from (4) because of 
acquisition and spatial digitization noise and point extraction 
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B. Geometrical Distortion 

in the image plane. As a result of several types of imperfections 

Fig. 3. Effect of radial distortion. Solid lines: no distortion; dashed lines: 
Geometrical distortion concerns the position of image points with radial distortion (a: negative, b: positive). 

in the design and 
Optical system, the expressions in (2) do not 

Of lenses the and the scale to decrease. A positive radial displacement is 
referred to as pincushion distortion. It causes outer points to and must 

be replaced by expressions that explicitly take into account the 
positional error thus introduced: 

spread and the scale to increase. This type of distortion is 
strictly symmetric about the optical axis. Fig. 3 illustrates the 

U’ = U + & ( U ,  U) 

U’ = U + & ( U ,  U) 

effect of radial distortion. 

by an expression of the following form [ l l ] ,  [4]: 
The radial distortion of a perfectly centered lens is governed 

( 5 )  

where U and U are the nonobservable, distortion-free image 
coordinates, and U’ and U‘ are the corresponding coordinates 
with distortion. As indicated by (9, the amount of positional 
error along each coordinate usually depends on the point 
position. In order to correct distortion, we need to analyze 
various sources of distortion and model their effects in the 
image plane. 

In this paper, we consider three types of distortion. The first 
one is caused by imperfect lens shape and manifests itself by 
radial positional error only, whereas the second and the third 
types of distortion are generally caused by improper lens and 
camera assembly and generate both radial and tangential errors 
in point positions (see Fig. 2). 

1) Radial Distortion: Radial distortion causes an inward or 
outward displacement of a given image point from its ideal 
location. This type of distortion is mainly caused by flawed 
radial curvature curve of the lens elements. A negative radial 
displacement of the image points is referred to as barrel 
distortion. It causes outer points to crowd increasingly together 

where p is the radial distance from the principal point of 
the image plane, and k l ,  Icz, k3,.  . . are the coefficients of 
radial distortion. At each image point represented by polar 
coordinates (p ,  cp), radial distortion corresponds to the distor- 
tion along radial (p) direction. The image point can also be 
expressed in terms of the Cartesian coordinates ( U ,  U )  with 

U = pcoscp 

U = psincp (7) 

and the amount of distortion along each of the Cartesian image 
coordinates can be represented by 
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U resulting distortions along the U and v axes: 

sup = s1(U2 + .2) + 0 [ ( U ,  

Sup = S2(U2  + v2)  + 0 [ ( U ,  (13) 

4)  Total Distortion: We have discussed three types of dis- 
tortion. Although the decentering distortion and the thin prism 
distortion lead to similar forms of coefficients in (9) and (12), 
they model different types of distortion, and in particular, each 
may have a different axis of maximum tangential distortion. 
When all the above distortions are present, the effective 
distortion can be modeled by addition of the corresponding 
expressions [4], [l].  Combining (8), ( l l ) ,  and (13) gives the 
total amount of distortion along the U and v axes. Assuming 
that terms of order higher than 3 are negligible, we obtain 

distomon 

Fig. 4. Effect of tangential distortion. Solid lines: no distortion; dashed lines: 
with tangential distortion. 

S u ( U ,  ‘U) = S i ( U 2  + v2) + 3piU2 + p lV2  + 2pzUW 

sv(U, .) = s 2 ( U 2  + ,$) + 2p1UV + p z U 2  + 3p2v2 

2) Decentering Distortion: Actual optical systems are sub- + k 1 U ( U 2  + v2)  

+ k l V ( U 2  + 2). 
ject to various degrees of decentering, that is, the optical 
centers of lens elements are not strictly collinear. This defect 
introduces what is called decentering distortion. This distortion 

described analytically by the following expressions [3], [ 111: 
has both radial and tangential components, which can be (14) 

Letting g1 = SI + P I ,  9 2  = sz + p ~ , g 3  = 2 p l , g 4  = 2 ~ 2 ,  the 

where the quantity cpo is the angle between the positive U 

axis and a line of reference known as the axis of maximum 
tangential distortion as shown in Fig. 4. 

The resulting amount of distortion along the U and v axes 
are given in terms of 6pd and Std by 

expressions in (14) become 

& ( U ,  U) = (91 + 93)u2 + g4uv + g1v2 + k I U ( U 2  + v2)  
& ( U ,  v)  = g2u2 + g3uv + (92 + g4)v2 + k l W ( U 2  + U”. 

(15) 

C. Our Complete Camera Model 

Taking into account the distortion along the U and v axes 
according to (9, the relationship between the distortion-free 
image point ( U ,  v)  and its corresponding pixel location is given 
by 

Noting that cosy, = u / p  and sincp = v / p  and letting U + &(U,  U) = ( r  - ro)/su 
v + & ( U ,  v) = (e - co)/s,. 

c = (. - r o ) / f u  
6 = (e - .o)/fu 

(16) p l  = -jl sin yo and p2 = jl cospo, from (9) and (lo), we 
have 

&d=Pi(3u2 + v 2 ) + 2 p 2 ~ ~ + o [ ( ~ , ~ ) 4 ] ,  Introducing the new variables 

bud = 2p1UV + p2(’U2 + 3 V 2 )  + 0 [ ( U ,  U)4] .  (11) 
(17) 3) Thin Prism Distortion: Thin prism distortion arises from 

imperfection in lens design and manufacturing as well as 
camera assembly (for example, slight tilt of some lens elements 
or the image sensing array). This type of distortion can 
be adequately modeled by the adjunction of a thin prism 

(16) gives 

U .. Su(u,v) 
f f 
_ -  ‘U .. &(u,v)  
f f .  

- = U - -  

(18) to the optical system, causing additional amounts of radial 
and tangential distortions [3], [4]. Such distortions can be 

-U-- 

expressed as Because the exact U ,  w cannot be obtained from actual noise- 
contaminated observations, the arguments of the modeled 
distortion are replaced by C , 6  [3], [4], [l],  [ l l ] ,  which leads to S,, = ( i l p 2  + i2p4 + . . .) sin(cp - cp l )  

U 
- = c + SL(C, 5) 
f 
!! = 5 + S;(C,G). (19) f 

where cp1 is the angle between the positive U axis and the axis 
of maximum tangential distortion shown in Fig. 4. Letting 
SI = -21 sin cp1 and s2 = il cos ( P I ,  a derivation similar to 
the preceding one leads to the following expressions for the 

This replacement is reasonable because a) the distortion at the 
exact image plane projection is approximately equal to that in 
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the actual projection, and b) the actual distortion coefficients 
in 6; and 6; will be estimated based on ii and 6; therefore, 
the actual model fitting will be better than what is stated in a). 

Redefining the coefficients IC1 and g1 to g4, the expressions 
in (4), (15), and (19) lead to our complete camera model (20), 
which is shown at the bottom of this page. One can notice 
that these expressions are linear with respect to the distortion 
coefficients k l ,  gl ,  g2, g3, g4. This property will simplify their 
estimation, as will be explained in Section 111. 

The calibration problem can now be stated in the following 
terms: 

Given a sufficient number of visible points (xz, yz, 2%) and 
their corresponding pixel locations ( T : ,  c: ) ,  estimate in some 
optimal sense the set of external and internal nondistortion 
parameters 

m = (TO? CO, fu .  f v .  T ,  a ,  P,  
(where a. p, and y are three independent parameters of rotation 
matrix R) and the set of distortion parameters 

T d = ( ~ 1 , 9 1 , 9 2 , 9 3 , 9 4 )  . 
After calibration is done for the camera, the estimated cali- 

bration parameters m and d can be used to correct distortion 
and determine the 3-D back-projection line of each sensed 
point as follows: The measured T and c values of the sensed 
point give f i  and 6 according to (17). Then, the values of 
(ii,ij) are used to evaluate the right-hand sides of the two 
equations in (20), whose values correspond to the distortion- 
corrected projection of the point in the normalized image plane 
(ti, w). Finally, the two equations in (20) determine the back- 
projection line of the sensed point in the world coordinate 
system. 

It should be mentioned that the above camera model has 
considered only some types of distortions, and it is far from 
exhausting all possible distortions. In fact, however, it is 
impossible and unnecessary to consider all types of distortion. 
Only the major types need to be considered in practice. As 
can be seen from (20), the three types of distortion lead to two 
polynomials in ii and 6, whose coefficients are related. These 
polynomials can also be interpreted from a different point of 
view: The calibration problem is to fit polynomial functions 
in (20) to the measured image data. Such a polynomial fitting 
can be applied not only to the three types of distortion 
from which the model is derived but also to other types 
of distortion. Although this model is most effective to the 
types of distortion it models, it is less effective to other 
types. To an extreme, a camera model can be so general 
that it corresponds to general high-order polynomials without 
considering all optical characteristics of lens elements and 
camera assembly at all. However, such an extremely general 

model would involve excessively many free parameters and 
would be computationally inefficient and unreliable for usual 
cameras, whose distortion results from typical optical and 
mechanical flaws. 

111. RESOLUTION STRATEGIES 

As established in the previous section, the complete camera 
model consists of two sets of parameters to be estimated: 1) the 
vector m, which comprises the external parameters (rotation 
and translation) and the internal nondistortion parameters and 
2) the vector d of internal distortion parameters. The overall 
estimation problem is nonlinear. We need to investigate the 
structure of the problem in order to design a stable and efficient 
estimation procedure. 

A.  Procedure to Compute the Optimal Solution 

Let R denote the set of all 3-D control points and w the set 
of corresponding image points. Since image-point positions are 
affected by acquisition and digitization noise, the calibration 
problem is equivalent to an optimization problem in which 
the calibration parameters (m*, d * )  are determined in order to 
minimize an objective function F (to be defined later): 

F (R ,w,m* ,d*)  = minF(R ,w ,m,d ) .  (21) 
m , d  

In order to solve the optimization problem with the non- 
linear objective function in (21), we adopt the following 
procedure: 

1. First, let d = 0. 
2. Compute m, which minimizes F ( R , w , m , d )  with d 

fixed: 

minF(R ,w ,m,d ) .  m (22) 

minF(R,w,m,d ) .  d (23) 

3. Then, with m fixed as current estimate, compute vector d 
of distortion parameters, which minimizes F ( 0 ,  w, m, d ) :  

4. Go to step 2 unless a certain number of iterations have 

The above procedure was motivated by the following consid- 
erations. a) The distortion parameter vector d can be coupled 
with m to give false minima in F ( R , w , m , d )  because dis- 
tortion parameters can drastically modify the image position 
of the points. b) Without a good estimate of the external 
parameters and the major internal parameters represented by 
m, the distortion parameters, which are represented by d ,  
cannot be reliably determined. c) Since m corresponds to all 
parameters in a distortion-free camera model, it cannot be 
well estimated under significant distortion. Careful measures 

been performed, and the procedure terminates. 
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should be taken to deal with the above three problems. The 
first measure we take is the partition of m and d so that 
each is computed when the other is fixed. This significantly 
reduces the harmful interactions between them. The second 
measure is to compute a good initial m in step 2. If we select 
points whose projections fall around the center of the image 
only, we can confidently assume that distortion is small for 
points in this region and that the assumption d = 0 in step 
1 will not affect the quality of the estimation of m in step 2 
for the first iteration. One should be careful, however, not to 
impose excessive concentration of the image-points around the 
image center since such a restriction will affect the accuracy 
in the estimation of the external parameters. A tradeoff should 
be adopted between the amount of scattering of the control 
points and the validity of the assumption d = 0. Such a 
tradeoff depends on the amount of distortion in the lens under 
calibration, but an optimal tradeoff is not necessary since what 
we need is just an initial m that is good enough for the start 
of step 2. (In our implementation, all the image points lying 
within a radius that equals a quarter of the image side length 
are considered to be central points.) Once a good estimate of 
m is obtained, d can be estimated in step 3, using all points in 
image plane, in order to utilize all available information about 
distortion. A few repeated iterations lead to improved m and 
d. Therefore, we select the set R of points in such a way that 
it includes a sufficient subset R1 of central points. Equation 
(22) of step 2 will be restricted to the subset R1 if step 2 is 
performed for the first time following step 1. 

B. Estimation of m with d Fixed 

TO give a good preliminary solution to m as a good initial 
guess for further nonlinear optimization, we first present a 
closed-form solution to m assuming d = 0. 

1)  Linear Estimation Procedure: Each visible point and its 
corresponding pixel position give two linear equations derived 
from (4): 

(Ti - T 0 ) 2 i r 3 , 1  + (T i  - TO)yir3,2 

+ (T i  - TO)ZiTg,3 f (T i  - TO)t3 

- f u ~ Z T 1 , l  - f u y i T l , 2  - fuz iT1,3  - f u t l  = 0 
(c: - cO)Xir3,1 + (c: - cO)yir3,2 

+ (c: - CO)ziT3,3 + (c: - CO)t3 

- f w 2 i T 2 , l  - fu!hr2,2 - fuziT2,3 - fwt2 = 0. 

(24) 

The parameters to be determined in (24) include six external 
parameters represented by the rotation matrix R (three degrees 
of freedom) and the translation vector T ,  as well as four 

internal parameters TO, CO, fu, and fu. Each point gives two 
equations in (24). With these ten unknown parameters, at least 
five control points are required to give ten nonlinear equations 
as in (24). However, the solution is not guaranteed even if 
more points are available because one generally needs to 
perform an iterative search for solutions, which is not always 
successful. 

In order to derive a closed-form solution to the calibra- 
tion parameters so that a noniterative algorithm can be used 
to directly compute the solution, we define the following 
intermediate parameters [8], [6]: 

where column vectors R1, R 2  and R3 correspond to three 
rows of rotation matrix R. Then, the set of equations in (24) 
provided by n control points can be expressed in a matrix form 

(26) AW=O 

where A is a matrix with 2n rows and 12 columns, as is 
shown at the bottom of this page, and W is the vector of all 
unknown parameters: 

Among the multiple solutions to the linear homogeneous equa- 
tion (26), the one corresponding to the calibration parameters 
must satisfy two conditions: 

The norm of vector W3 must be equal to unity since W3 
is equal to the last row of rotation matrix R. 
The sign of W6 must be compatible with the position of 
the camera in the world coordinate system. Namely, 2u6 
must be positive (negative) if the camera is in front of 
(behind) the (2 ,  y) plane. 
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Once W is determined (as discussed later), the actual param- 
eters will be given by 

where the sign is chosen to satisfy the second condition 
mentioned above. 

Under the assumption of a distortion-free camera (consider- 
ing central points only), the calibration problem is expressed 
by the homogeneous system (26). Since the world coordinate 
system can be defined such that t 3  # 0, one way to solve for 
the solution W is to impose the temporary constraint 

and transform (26) into nonhomogeneous linear system 

A’W’ + B’ = 0 

where A’ denotes the matrix consisting of the first 11 columns 
of A,  B’ denotes the last column of A, and W’ represents 
the corresponding reduced unknown vector. In the presence 
of noise, we can now solve for the vector W’ in the linear 
least-squares system 

(30) 

As indicated previously, the actual solution S must satisfy 
two constraints and is established according to (29). It then 
leads to the initial estimate iiL of the external and internal 
nondistortion parameters 

ro = s T s 3  

CO = s ; s 3  

f u  = - I I &  - ros311 

E2 = (35 - COs6)/.f~ 

f~ = 11s~ - Cos311 

El = (34 - rOS6)/fu 

(32) 
- 
t 3  = 36 

Rl = (s1 - f O S 3 ) / . f u  

R 2  = (SZ - C O s 3 ) / . f ~  

R 3  = s3. 

These first estimates are established without imposing the 
constraint in W’ ( R  should be orthonormal). A possible 
improvement of the solution then consists of solving for the 
orthonormal matrix R, which verifies 

(33) 

using the closed-form solution presented in the Appendix. This 
leads to the improved initial estimate 7ii of the other calibration 

Despite the improvement brought about by the orthonor- 
mality constraint, several critiques can be made with respect 
to overall quality of the estimate m. First of all, least-squares 
estimation is optimal, in the sense of minimum variance, 
provided that the equation residual consists of uncorrelated 
zero-mean random noise with equal variance. If the residual 
components have different variances or if they are correlated, 
the straightforward least-squares solutions will overtrust the 
less reliable components and undertrust the more reliable 
components. Since the elements of A are functions of the pixel 
coordinates, the above condition for residual distribution is 
obviously not satisfied. Second, even though the addition of the 
orthonormality constraint of R brings about an improvement 
in the accuracy of the estimation procedure, as confirmed by 
our extensive simulation results, it cannot be proved that the 
obtained m minimizes (31). Therefore, the solution so obtained 
has room for improvement. The next section describes an 
optimal nonlinear procedure for improving m. 

2) Nonlinear Optimal Estimation Procedure: Let U = 
(u1, V I , .  . . , U,, w , ) ~  denote the noise-free image coordinates 
of n control points, and let U‘ = U + N denote the 
corresponding noisy image coordinates. In addition, let U = 
f ( m ,  d )  represent the nonlinear image projection process. 
We first assume that d is given. Based on the estimate f i  
established through the preceding linear procedure, we can 
predict the corresponding image projection U of the control 
points: 

U = f ( m ,  d) .  (35) 

Linearizing function f with respect to m at m leads to 

U = f ( m ,  d )  = f ( & ,  d )  + v ( m  - til) + h.0.t.. (36) 

Neglecting higher order terms, (36) can be rewritten as 

U = U +  J(m - f i )  (37) 

where J represents the Jacobian matrix of function f in (36). 
Expressing U in terms of its noisy version U’ results in the 

linear equation 

J (m - m) = U‘ - U - N .  (38) 

The linear minimum variance estimator of m that minimizes 
Ell& - m1I2 is the estimator rh, that minimizes 

( ~ ( m  - m) - U’ + U)Tr-l(J(m - m) - U’ + U )  (39) 

(40) 

or, alternatively, using (37), m minimizes: 

(U’ - f ( m ,  d))Tr-l(u’ - f ( m ,  d ) )  
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where r is the covariance matrix of N .  Since the image 
noise N can be reasonably assumed to have a zero mean and 
be uncorrelated between different components, its covariance 
matrix r is reduced to a diagonal matrix. If we assume 
that the noise in U and v is proportional to the spacing 
between consecutive rows and columns, from (16) and (40), 
the objective function to be minimized is 

m 

1 { [T: - Ti(m, d)I2 + [ci - ci(m, d ) I 2 }  (41) 
i = l  

where we have added subscript i to denote the variables 
that correspond to the ith control point, and ri(m,d) and 
ci(m,d) represent the pixel coordinates as functions of the 
camera parameters (m, d )  in accordance with (4). Therefore, 
the objective function is the sum of the squared discrepancy 
between the computed and actually observed row and column 
numbers (which may be real values with a subpixel accuracy). 
Equation (41) defines the objective function F in Section 111-A. 

If d is not given, the analogous discussion leads to the same 
objective function (41) for which both m and d need to be 
searched for. In Section 111-A, we presented a procedure that 
alternatively searched for m and d, where in each step, either 
m or d is fixed in order to reduce the interaction between 
m and d .  In fact, for step 3, a closed-form solution can be 
computed directly as shown in the following section. 

C. Estimation of d with m Fixed 

Minimizing the objective function in (41) with a given m is 
a linear least-squares problem. This can be seen directly from 
the definition of ii and 6 in (17) and the definition of d in 
(20). For example 

r(m,d) - d=rg  + j u G  - T’ 

r 1 , l X  + T1,Zy f T1,3z + tl  
T3,12 f T3,2Y -k T3,3z + t 3  

=To + f u  

- r‘ (42) 

which is a linear equation in the components of d.  Therefore, 
with n control points, we can construct a matrix Q and a vector 
C such that the objective function in (41) becomes 

llQd + C(I2 (43) 

where Q is a 2n x 5 matrix, C is a an-dimensional vector, and 
both are constructed from the given m, the 3-D coordinates of 
the control points, and the measured row and column numbers 
of the image points. Then, the vector d that minimizes (43) is 
computed directly without resorting to iterations. 

The outline of the estimation procedure has been given in 
Section 111-A. When step 2 is first entered from step 1, a 
solution to m is computed by a closed-form solution followed 
by nonlinear optimization for m. When step 2 is entered from 
step 3, the previous estimate of m is available to be used as 
an initial estimate for nonlinear optimization for m. A detailed 
flowchart of the algorithm is presented in Fig. 5. 

min I( A W + B  11 

, /  liii 
Central points I fXi, yi, q) -frip c,) 

I 

Non-linear optimization 
II U’ - f f m  0)  II 

Linear optimization 
II M +  C II 

All points 

Non-linear optimization 
, m.d 

m, d 

Fig. 5. Flowchart of the estimation procedure. The form of the objective 
functions for the nonlinear optimizations is used here just for notation 
simplification. The exact form is given in (41). 

IV. EVALUATION OF CALIBRATION ACCURACY 

Classical criteria are currently used in computer vision to 
assess the accuracy of calibration. In [13], three types of 
measures are mentioned: type I-accuracy of 3-D coordinate 
measurement obtained through stereo triangulation using the 
calibrated parameters; type 11-radius of ambiguity zone in 
ray tracing; type 111-accuracy of 3-D measurement. All these 
measurements depend very much on the actual stereo setup, 
especially on the length of the baseline between the stereo 
cameras, the field of view of the cameras, and the depth range 
of the object. For example, with a fixed image resolution, good 
measures in terms of the above types can be obtained simply 
by changing the setup in one or more of the following aspects: 
a) using telelenses so that the array of pixels focus on a smaller 
area in the scene, b) increasing the baseline between the two 
cameras in order to reduce the triangulation uncertainty, and 
c) reducing the distance between the scene and the cameras to 
take a “close look.” Another criterion used in [6] and [13] is 
the point depth error from triangulation divided by the actual 
depth. Again, a telelens with a long stereo baseline results in a 
good measure. However, the improvement resulting from such 
system modifications is not the merit of calibration. The task of 
calibration, in the first place, is to obtain the best results based 
on the system at hand. Only when the calibration cannot meet 
the system specifications may some modification be made to 
the system design. Such a system modification might increase 
the cost or induce difficulties for other modules of the system. 
For example, a long baseline makes stereo matching more 
difficult. Often, the system parameters such as working range 
and field of view are determined by the application and cannot 
be arbitrarily altered. Therefore, different systems work under 
different conditions, and it means very little to compare the 
accuracy of calibration in terms of the above criteria. 

Even when the comparison between different calibrations 
is not of major concern, one still needs a type of measure 
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Pixel rectanrmle 

Fig. 6.  Backward projection of a pixel to the object surface. The lateral size 
of the projected pixel at this depth is represented by a pixel rectangle. The 
lateral error of stereo triangulation is compared with the size of this rectangle 
to assess the accuracy of calibration. 

with which a good calibration has a known range of values. 
Given a certain value in terms of, e.g., type I error mentioned 
above, it is not immediately known whether the corresponding 
calibration is well done. To know it, one needs to investigate 
how much potential the system (e.g., image resolution) has 
offered and how much the calibration has obtained. The 
type of measure to be introduced in the following compares 
the obtained accuracy with the potential provided by image 
resolution. 

The accuracy of digital image-based camera calibration 
is mainly limited by the particular resolution of the digital 
images. There is a major difference between classical film- 
based camera calibration and digital image-based calibration. 
While the effective resolution of a film varies with film 
brand, film grade, film speed, and developing procedure, the 
resolution of a digital image is determined by the number of 
pixels. This pixel resolution provides a basis for the evaluation 
of the calibration accuracy. 

Imagine that the array of pixels in an image is projected 
back to the scene and that each back-projected pixel covers 
a certain area of the object surface. This area indicates the 
uncertainty of the basic resolution at this distance (see Fig. 6). 
Since the orientation of the surface is also related to this area, 
we consider a plane that is orthogonal to the optical axis and 
go through the back projection of the pixel center on the object 
surface. Let the depth of this plane be equal to 2,  and let the 
row and column focal lengths be f u  and f v  as defined as in 
Section 11. The back projection of the pixel on this plane is a 
rectangle (known as a pixel rectangle at this depth in Fig. 6) 
of size a x b with a in the U direction and b in the U direction. 
We have 

(44) 

Uniform digitization noise in a rectangle of a x b has a 
variance 

(a2 + b2)/12 = 2 ( ( f , - 2  + f,-2)/12. (45) 
This value characterizes the variance of the lateral error of 
the back projection of a point at this depth caused by spatial 
digitization. Let the true coordinates of the ith control point 
be (xi, y;, zi) represented in the camera-centered coordinate 

system, and let its coordinates reconstructed through triangu- 
lation be (&, yi, ii). We define normalized stereo calibration 
error (NSCE) to be 

This measure represents the mean of the ratio of the lateral 
triangulation error to the lateral standard deviation of the pixel 
digitization noise at the depth. Another alternative form of the 
normalized stereo calibration error uses the root mean squared 
ratio 

Since these measures are related only to lateral errors instead 
of 3-D errors, they are insensitive to baseline length of the 
stereo setup. These measures are also insensitive to factors 
such as digital image resolution, field of the view of the 
cameras, and object-to-camera distance because those factors 
have similar effects on both the numerators and denominators. 

It can be seen from the above definition that the error of 
each of the two cameras will contribute to the NSCE measure. 
In other words, the NSCE represents the combined effects of 
the two calibrations. NSCF < 1 corresponds to a triangulation 
whose error is lower, on average, than the digitization noise of 
a pixel at this depth. NSCE N 1 indicates a good calibration 
in which residual distortion is negligible compared with image 
digitization noise at this depth. NSCE >> 1 reveals a poor 
calibration. 

The NSCE measure is not applicable to a system in which 
only one camera is involved because the depth of the test 
points cannot be determined by the single calibrated camera. 
However, for the purpose of evaluating the accuracy of single 
camera calibration, the depth of test points can use the ground 
truth values. This leads to the definition of what we called the 
normalized calibration error (NCE), which is the same as the 
NSCE except that (&, y i ,  &) is evaluated as the intersection 
of the back-projection line of the sensed test point and the 
plane z = z;. The NCE measure has advantages similar to 
those of the NSCE measure and can be used to judge a single 
camera calibration. 

Before we conclude this section, it is worth noting that in our 
formulation of the optimal solution presented in Section 111, we 
do not take into account the error in the 3-D coordinates of the 
control points because it should be negligible. In practice, the 
positions of control points should be determined with a high 
accuracy (much higher than that represented by the size of the 
back-projected pixel at the corresponding depth). For example, 
with a 512 x 512-pixel image taken from an f =  8 mm video 
camera looking at a scene 1.5 m away, the size of a back- 
projected pixel is round 2.5“ x 2.5”. It is not technically 
difficult to make a calibration pattern with an accuracy that is 
several orders higher than this. It is not a reasonable practice 
using a poorly made or poorly positioned calibration pattern 
in an attempt to correct lens distortion. 
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v. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The camera model and the parameter estimation strategy 

described in the previous sections have been tested in two 
different situations. First, the camera model was simulated 
with specific parameters values, and the estimation strategy 
was extensively tested on the synthetic data. This experiment 
allows a thorough investigation of the performance of estima- 
tion procedure through a large number of trials, where each has 
a comparison between the estimated parameters and the ground 
truth. Second, the overall procedure has been tested with real 
data provided by off-the-shelf cameras with real stereo setups. 
This second series of experiments demonstrates the validity of 
the overall calibration method. 

A. Simulations with Synthetic Data 

This series of experiments consists first of choosing specific 
external and internal camera parameters, which are referred 
to later as ground truth. We specify a rotation by a rotation 
axis, which is represented by a unit vector ( N z ,  N y ,  N , )  and 
a rotation angle 6' about this axis [2], [14]. Control points are 
randomly generated and checked for visibility. Since noise is 
random, the accuracy of the solutions is also random. To show 
the average performance of our method, the results shown 
in this section are averaged over 50 random trials, where 
each has a new set of randomly generated control points. In 
accordance with previous remarks, the set of control points 
must contain a sufficient number of points whose projections 
fall near the center of the image plane. Only these central 
points will be considered in the linear estimation procedure for 
the external and nondistortion parameters. Let the simulated 
camera have a unit focal length f = 1 and its image plane be 
a rectangle with sides 3/4 unit long in U the direction and 1 
unit long in the 'U direction. This image plane is identical to 
the normalized image plane defined in (4) since f = 1 here. 
The pixel array has k rows and k columns of pixels ( k  = 512 
in the simulations), and therefore, each pixel is a rectangle 
with side length a = I f;'I = 3/(4k) in the U direction and 
b = f;' = l / k  in the v direction. The corresponding noisy 
image projections of control points are established by adding 
zero mean uncorrelated Gaussian noise to the exact projections 
according to (16). The amount of noise added is determined by 
the corresponding digitization noise. Since the uniform round- 
off noise with a pixel-to-pixel spacing c has a variance c2/12, 
the variance of the Gaussian noise to be added is equal to 
a2/12 in the U component and b2/12 in the v component. 
Therefore, the standard deviation of the 2-D positional error is 

po represents the amount of uncertainty in the knowledge 
of an image point location caused by the spatial digitization 
process involved in the digital image acquisition. 

However, as will be explained in the next section, one 
should design calibration patterns in such a way that control 
points can be localized in images with a subpixel accuracy. 
For example, the choice of a calibration pattern containing 
square shapes allows the definition of square vertices as control 

TABLE I 
ESTIMATION WITH SYNTHETIC DISTORTION-FREE DATA 

Estimation results 
Linear Nonlinear 

U I 0.000139 I 0.000139 

0.004605 0.004595 

points. The image locations of those vertices can be established 
as the intersections of straight lines interpolated through edge 
points along the square sides, which results in a subpixel 
accuracy. Consequently, despite the limit imposed by the 
digitization process, the projections of control points can be 
known with a smaller positional error. The simulation here 
should take into account this subpixel accuracy. Supposing 
that a reduction by a factor of about 5 in the root-mean-square 
positional error can be obtained through this interpolation 
procedure, we simulate this by reducing the aforementioned 
Gaussian noise by a factor of 5, which leads to the standard 
deviation of 2-D positional error 

(49) 

Uncertainty parameter p will be instrumental in the evalu- 
ation of the performance of the estimation procedure. Indeed, 
once estimates m* and d* are obtained, the residual image 
positional error in the normalized image plane (see (4)) will 
be evaluated as 

pf = 
1 

T i  - +* ,d * ) )2  + (c: - ci(m*,d*))2]}T 
a=1 f u  

(50) 

{q f u  

Since the standard deviation of the noise added to the normal- 
ized image plane is p, the residual p f  corresponding to the 
optimal solution should be close to p .  

We first show the results of simulations with distortion-free 
data. The actual ground truth values and estimation results 
from the linear and nonlinear procedures are shown in Table I. 

The linear estimation procedure (no distortion assumed) 
used only those control points that are near the image center, 
i.e., within a rectangle with a side length (3/4)/2 in the U 

direction and 112 in the v direction and centered at the image 
plane whose size is 3/4 by 1. The nonlinear procedure used all 
the control points and started with the results from the linear 
estimation procedure as initial guesses. From Table I, it can 
be seen that the improvement due to the latter procedure is 
marginal. This phenomenon can be explained by the fact that 
the linear estimation has already obtained accurate results. This 
explanation can be confirmed by the closeness of the p and ,U' 
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Rotation angle 

Translation 
Center coordinates 

IEEE TRANSACTIONS ON PA'ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 10, OCTOBER 1992 

N. = 0.2 Nv = 1 N, = 5 
8 = 5O 
t i  = 10 t a  = 6 t 3  = 156.5 
rn = 258 cn = 254 

TABLE I1 
ESTIMATION ON SYNTHETIC DATA WITH DISTORTION 

Distortion 
parameters 

Control points 

~~~ I ~~ 

g1 = 0.02 g2 = -0.009 g3 = -0.02 g4 = 0.009 
k1 = 0.01 
n = 64 

P' 
IIR - Rll/llRII 
[IT - Fll/llTll 
Ifu - f:l/lfuI 

If, - f,'l/f, 
lro - r;I/ro 
ICO - C;~/CO 
Iki - k;l/kt 
.I91 gil/gl 
I92 - 91 I/sz 
193 - S;I/S3 

R All points for linear part I Central points for linear part 
Linear I Nonlinear 1 Linear I Nonlinear 

11 I 0.000143 I 0.000143 I 0.000139 I 0.000139 
0.001693 0.000330 0.000174 0.000146 
0.010999 0.004015 0.012966 0.012330 ' 

0.039840 0.039356 0.017141 0.017163 
0.042891 0.025855 0.051549 0.004950 
0.026249 0.025798 0.004993 0.004943 
0.053477 0.049928 0.040025 0.039708 
0.019933 0.018734 0.008985 0.008899 

0.109362 0.047399 
0.033883 0.012728 
0.061110 0.020606 
0.185069 0.605030 
n 21911in 

parameters observable in the linear estimation part of Table I. 
Since both components of each image point are used in linear 
estimation, the performance of the linear estimation procedure 
is already very good with ideal distortion-free cameras. 

We now discuss simulations with distortion. Table I1 gives 
the ground truth values with nonzero distortion parameters 
that result in a maximum distortion of about 3 to 4 pixels. 
To show whether it is important to use central points for 
linear estimation, we include two different results: that of 
using all points and that of using central points only. In each 
case, nonlinear optimization starts with the results from the 
corresponding linear estimation. Several observations can be 
made based on the results shown in Table 11: 

n 41i4815 

. 

. 

T - -  

Concerning the results obtained through the linear esti- 
mation procedure, it appears that the selection of only 
central control points, in the estimation of m, results in a 
reduction of the residual positional error p' by a factor of 
10. This substantial improvement is confirmed by a lower 
relative error, in general, for the nondistortion parameters. 
This improvement has a direct impact on the performance 
of the subsequent nonlinear part of the estimation proce- 
dure, in terms of accuracy as well as convergence time, 
since the results from the linear procedure were used as 
the initial estimates in the nonlinear optimization. 
The comparison with the results of the nonlinear opti- 
mization shows that a decrease by a factor of 2 in the 
residual positional error p' is brought about by the near- 
center constraint on control points. This improvement is 
confirmed by a better accuracy in the estimation of most 
of the nondistortion parameters and in the estimation of 
most of the distortion parameters. It was also observed, in 
a substantial number of simulations, that the absence of 
the near-center constraint caused the nonlinear estimation 
to diverge because of the insufficient accuracy in the 
initial estimate jjL. 
Although the positional error is significantly reduced 
when the near-center constraint is in effect, some of 
the distortion parameters (e.g., g 3  and g 4  ) have been 

Fig. 7. Calibration setup. 

less accurately estimated. This phenomenon could be 
explained by a compensating effect of the polynomial 
fitting in the presence of noise. Different coefficients of 
the polynomial can compensate one another somehow 
to give a similar polynomial shape. On the other hand, 
since the absolute values of distortion parameters are 
small, the relative errors do not have to be very small to 
result in a reasonable distortion correction. There is also 
a type of compensation between nondistortion parameters 
m and distortion parameters d in minimizing the objective 
function shown in (41) and, consequently, p'. 

B. Experiments with Real Images 
With real images, no apriori ground truth is available except 

for the 3-D coordinates of the control points. The accuracy 
of the calibration is measured in terms of the accuracy in 
the reconstructing test points through triangulation. Therefore, 
calibration needs to be done for each of the two cameras. 

1) Description of the Calibration Setup: The setup used in 
our calibration experiments is illustrated in Fig. 7. It consists 
of a calibration pattern mounted on a custom-made calibration 
stand. The images of the pattern were taken by a pair of CCD 
cameras. The effective part of the CCD sensor array in the 
cameras has 512 x 480 pixels and a digitizer gives digital 
images with 8 b/pixel. 

The calibration pattern consists of an array of black dia- 
monds as illustrated in Fig. 8(a). 

This pattern was custom made on a 16 x 16-in ultraflat 
optical glass plate by means of a high-precision photographic 
process. The positional error of the pattern is lower than 50 
pm. The plate is mounted on a custom-made precision stand 
that can move it vertically with high accuracy by means of 
a micrometric screw. Each 360' turn of the screw moves 
the surface 1 mm vertically, and the vertical uncertainty 
can be controlled within 50 pm. The calibration plate was 
positioned at several distances from the cameras; therefore, a 
large number of points could be sensed at various range values. 

Two types of camera lens have been tested. The first is a 
Cosmicar f = 25-mm telelens that gives an effective diagonal 
field of view of about 23'. The second is a Cosmicar f = 8.5 
wide-angle lens that gives an effective diagonal field of view 
of approximately 64". 
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Fig. 8. Calibration pattern and the detected control points: (a) Image of the 
calibration pattern taken by the first camera with an f = 8.5 lens; (b) vertices 
of complete diamonds are detected with a subpixel accuracy (marked with 
crosses). Those vertices are used as control points for the calibration. 

2) Control and Test Points: The control points are those 
points used for calibration, and test points are points used 
for testing the accuracy of calibration. The 3-D control and 
test points are chosen to be the vertices of completely visi- 
ble diamonds. Their spatial positions (E , ,  yz, z,) are reliably 
established owing to the accuracy of the calibration plate and 
the precision stand. The corresponding image-point locations 
are estimated, with a subpixel accuracy, as the intersections 
of adjacent edge lines, where each is determined by a least- 
squares fit to edge points along the side of the diamond. 
The edge-point locations along each side are determined 
by a third-order polynomial least-squares fit to the intensity 
profile across the side. Fig. 8(b) displays an example of those 
detected control points based on the computed data. The 
correspondence between the 3-D points and their images was 
established manually. 

During the calibration, the external and nondistortion in- 
ternal parameters are estimated for each of the two stereo 
cameras. After the calibration is done, the external and internal 
parameters of each camera are used to determine the back- 
projection line of each sensed test point in the world coordinate 
system. The two back-projection lines of the two cameras 
reconstruct the 3-D position of the test point in the world 
coordinate system. This is the process of triangulation. Any 
error in the calibrated parameters will result in error in the 
reconstructed 3-D position of the test point. Since we know 

the positions of the test points in the world coordinate system, 
we can use the difference between the 3-D positions of the 
reconstructed test points and their true positions to indicate 
the accuracy of the calibration. 

In addition to the NSCE, we will also consider three other 
conventional measures: 

The first measure M I  is the average norm of the 3-D 
positional difference between the reconstructed test points 
and the true test points. 
The second measure MZ is the average norm of the E- 

y plane projection (in the world coordinate system) of 
the positional error of the test points. Since the two 
cameras aligned along the y axis, this measure indicates 
the lateral errors. This measure together with M I  provide 
a feeling of the relative distribution of lateral errors and 
longitudinal (in depth direction) errors. 
The third measure M3 is the ratio of the average estimated 
depth ( z  value) to the average absolute depth error. 
It provides an assessment of the relative accuracy in 
the depth measurement of a stereo system, and it can 
be referred to as “one in M3 parts.” However, as we 
discussed before, M3 will be small with both wide-angle 
lenses and short distances to the test points. 

As discussed in Section IV, among the above four types of 
measures, only the value of the NSCE directly indicates the 
accuracy of calibration. 

Results for the f=25 mm Telelens: Triangulation tests have 
been performed for the linear estimation step, which corre- 
sponds to a distortion-free model, and the nonlinear estimation 
step, which uses our complete distortion model. In this way, 
we can see whether the distortion model brings about any 
improvement for this type of lens. Only central points are 
used as control points for the linear estimation procedure and 
its residual measurement. The calibration plate is positioned 
at four positions: z = 0, z = -50, z = -100, and z = -200. 
The points at z = -100 are used as test points, and the 
remaining points are used as control points for calibration. 
Table I11 lists the results obtained. The results of triangulation 
are measured in the coordinate system centered at the first 
camera. 

On the basis of the M I ,  Mz, and M3 measurements, it can 
be observed from Table I11 that the triangulation accuracy 
has been significantly improved by the estimation of the 
distortion parameters. In particular, M3 gives an indication 
of the increased accuracy in depth estimation. Comparison 
between the values of the image positional error parameter 
p’ confirms the improvement of the nonlinear optimization 
over the linear estimation procedure even though the later is 
measured only over central points. 

The performance of calibration is directly indicated by the 
NSCE values. As presented in Table 111, the measured NSCE 
value of the linear estimation is equal to 1.7478, which is 
about 75% larger than 1, which means that the accuracy of 
this calibration has not reached the potential accuracy allowed 
by the image resolution. The NSCE value of the nonlinear 
estimation is, however, just about 6% larger than 1, which 
indicates a good calibration. 
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Residual p' 
Control points n 
Rotation axis N. 

N, 
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camera camera camera camera 
0.000287 0.000234 0.000253 0.000207 

73 77 264 284 
0.6202 -0.0171 0.6194 -0.0173 
-0.7801 -0.9834 -0.7807 -0.9831 

TABLE 111 
CALIBRATION RESULTS FOR THE f = 25 mm LENS AND TESTING 

N; 
Rotation angle (") 0 
7hmlation (mm) tl  

12 

h Results of Calibration 
Linear I Nonlinear 

First I Second 1 First I Second 

-0.0825 -0.1806 -0.0829 -0.1822 
11.5572 8.8356 11.5618 8.8382 
-162.74 -158.43 -162.76 -158.46 ' 

-190.99 -189.21 -190.98 -189.18 
1s 

Focal length f, 
f. 

Center ro 
coordinates CO 

Distortion 11 

parameters 91 

gz 
g3 

866.03 901.59 864.89 901.07 
-1923.20 -1914.07 -1921.81 -1913.68 
1587.44 1580.53 1587.21 1580.38 
257.28 273.15 257.33 273.22 
275.13 270.59 275.14 270.63 

0.0 0.0 0.2632 0.2325 
0.0 0.0 -0.000110 -0.002818 
0.0 0.0 0.003521 0.008344 
0.0 0.0 0.004880 0.007216 

I -" 
g4 I 0.0 I 0.0 I 0.0 I 0.0 I 

Results of Triangulation Test 

z 317.67mm 
Nonlinear 
317.53mm Average depth 

Test points n 188 188 
Test Mi 3.7574" 2.19lOmm 

Linear 

The absolute values of the radial and tangential parameters 
do not directly give the relative amount of distortion in the 
cameras. As can be seen in (20), k1 is the coefficient of 
the third power of image coordinates, and the si's are the 
coefficients of the second power. From (4), the maximum 
absolute value of C is around 240/fu N 0.125, and that of 
6 is 256/fv N 0.162. According to the measured distortion 
parameters, the maximum (symmetrical) radial distortion dis- 
cussed in Section 11-B-1 is about five to seven times larger 
than that of the combination of decentering and thin prism 
distortions. The coefficient of radial distortion also indicates 
that the maximum radial distortion is about 3 to 4 pixels, which 
occurs at the border of the images. 

We have also modified this experiment so that all the control 
points, and not just central points, are used for the linear 
estimation. This modification caused the linear estimation to 
give a slightly worse result compared with that listed in 
Table 111. From this worse result, the following nonlinear 
estimation procedure reached a triangulation accuracy similar 
to the corresponding one shown in Table 111, but it took 130% 
more CPU time to converge. 

In the above experiments, the plane of test points is located 
between the planes of control points. To investigate the ability 
of the calibrated cameras to measure points beyond the range 
of control points, we let the points at z = -50 and z = -200 
be control points and the points at z = 0 be test points. 
The measured test parameters from the nonlinear estimation 
are MI = 0.6476, M2 = 0.2335, M3 = 1615.7 mm, and 
NSCE = 1.0735, which are nearly as good as those listed in 
Table 111. For example, the NSCE value increased by about 
1.3%. 

4) Results for the f=S mm Wide-Angle Lens: With a wide- 
angle lens, the distortion is expected to be more significant 
than with a telelens. First, we present in Table IV the results 

Mz 
M3 

NSCE 

parameters 

TABLE IV 
CALIBRATION RESULTS AND TESTING FOR THE f = 8 
mm LENS WITH A DISTORTION-FREE CAMERA MODEL 

I Results of Calibration I 

0.9098mm 0.6773mm 
87.340 170.30 
2.9952 3.9793 

n __.._~ ~ 

I Nonlinear Linear 
First I Second I First I Second 

with a distortion-free camera model. 
Two sets of results are presented. The first set comes from 

the linear estimation procedure using central control points. 
The second set comes from the nonlinear estimation procedure 
assuming d = 0 and using the results from linear estimation 
as initial estimates. The motivation of this arrangement is to 
show what will happen if a distortion-free camera model is 
applied to cameras with considerable distortion. 

As can be seen from Table IV, the accuracy is very poor 
for both linear and nonlinear estimation procedures. Since 
the result from the linear estimation is poor, the nonlinear 
estimation procedure with d = 0 fails to find good estimates 
and leads to an even worse NSCE value. The residual pa- 
rameter p' of the nonlinear estimation is much larger than 
that of the linear estimation because the former was measured 
in the entire image plane where boundary regions sustain 
significant distortion. The poor performance of the nonlinear 
estimation can be explained as follows. The procedure tries 
to fit a distortion-free model to the images with significant 
distortion, but it cannot fit well. To further minimize the 
objective function in (41), the nondistortion parameter m has 
to be changed, which results in a worse m. Such a worse 
m directly leads to a bad NSCE. This is the consequence of 
neglecting all kinds of distortions. 

Table V shows the results from the nonlinear optimization 
procedure with different completeness of distortion parame- 
ters: a) radial distortion only and b) our complete distortion 
model. The results from the linear estimation procedure shown 
in Table IV were used as the initial estimates. 

Compared with the case of f = 25 mm in Table 111, the 
residual values of p' in Table V are larger mainly because 
the focal length of the cameras here is much shorter, and 
consequently, the size of the normalized image plane in the 
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Radial only 
. First Second 

camera camera 
Residual p' 0.001245 0.001573 
Control points n 428 424 
Rotation axis N. 0.9884 -0.9524 

979 

Radial & tangential 
First Second 

camera camera 
0.000992 0.001064 

428 424 
0.9851 -0.9482 

TABLE V 
CALIBRATION RESULTS AND TESTING FOR THE f = 8 

mm LENS WITH DISTORTION CAMERA MODELS 

- -  
Test points n 
Test Mi 
parameters Mz 

MS 
NSCE 

188 188 
0.5811" 0.4653mm 
0.3149mm 0.2599mm 

722.86 897.46 
1.4081 1.1627 

i 

Focal length 
fv I 525.58 I 526.48 1 525.62 1 525.77 

Center m I 240.90 I 244.47 I 241.15 I 244.70 
coordinates 

parameters 

Results of Triangulation Test 
1 Radial only 1 Radial & tangential 

Average deuth z I 314.03" I 313.84" 

space (G,  ~) defined in (4) is much larger. In addition, because 
of the shorter focal length, the value of is smaller as 
has been discussed. Again, the parameter value that directly 
indicates the accuracy of the calibration is the NSCE. From 
Table V, we can see that with only radial distortion under 
consideration, the NSCE value is 41% larger than 1, whereas 
with our complete distortion model, the NSCE value reduces 
to 1.1627. With this value of NSCE, we know that most of 
the distortion has been corrected, compared with the effect of 
digitization noise. 

These results show the importance of accommodating dis- 
tortion and, in particular, the tangential distortion. Although 
correcting symmetrical radial distortion leads to significant 
improvement from the distortion-free model, further correcting 
remaining distortion makes the NSCE decrease from 1.41 to 
1.16. The estimated distortion parameters indicate that the 
maximum symmetrical radial distortion is about 23 pixels, 
whereas the maximum of the combination of decentering 
and thin prism distortions is around 3 pixels. Notice that 
the estimated value of the radial distortion parameter k l  is 
virtually the same from a radial distortion-only model to the 
complete model, which appears to indicate that the parameters 
of the decentering and thin prism distortions do little to 
compensate the radial distortion or vice versa. It is also 
interesting to note from Table V that for both cameras, the 
estimated distortion parameter g 3  is significantly larger than 
other distortion parameters gis ,  which implies that the axis of 
maximum tangential distortion is roughly aligned with the v 
axis. According to our derivation of the distortion parameters, 
the parameters j 1 , c p o  in (9) and i l ,  cp1 in (12) can be computed 
from 9 1 ,  g 2 ,  93, and 9 4 .  For example, for the first camera, the 
axis of maximum tangential decentering distortion is computed 
as cpo = -74.20' from the U direction. 

VI. SUMMARY AND CONCLUSIONS 

With a goal of investigating the effects of radial and 
tangential distortion, the distortion of a camera is modeled 
by a combination of three typical effects: radial, decentering, 
and thin prism distortions. These three effects result in five 
distortion parameters that accommodate up to third-order 
terms. 

In the calibration procedure, nondistortion parameters are 
first computed using a closed-form solution, and they are then 
used as initial estimates for further nonlinear optimization. The 
nondistortion and distortion parameters are decoupled in our 
procedure so that their harmful interactions are suppressed, 
which makes the nonlinear optimization more stable. 

We have introduced a type of normalized accuracy measure 
for stereo or single camera calibration, which can be used to 
evaluate the accuracy of calibration and compare different cali- 
brations without being significantly affected by the differences 
among systems. 

Our experimental results have demonstrated the perfor- 
mance of our approach with both synthetic and real data. 
Generally, a wide-angle lens causes more distortion than a 
telelens. Therefore, distortion correction is more important 
for wide-angle lenses. Symmetrical radial distortion correc- 
tion results in significant improvement. Correcting tangential 
distortion also leads to a considerable improvement over just 
correcting radial distortion. 

APPENDIX 

The solution of R that satisfies 

where C = [ C I C ~ . .  . Cn] and D = [ D l D z . .  . D,], subject to 
R (which is a rotation matrix), is as follows. 

Define a 4 by 4 matrix B by 

n B=CBTB~ 
i=l 

where 

(53) 

where [a] is a mapping from a 3-D vector to a 3 by 3 matrix: 

Let q = (no, 4 1 ,  q2 ,  q3)T be a unit eigenvector of B associated 
with the smallest eigenvalue. The solution of rotation matrix 
R in (51) is shown at the top of the next page. For proofs, 
see [12], [5],  and [14]. 
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