So I have calibrated...

What now?

The next step

- Calibration allows on to relate the position of one camera to the position of another camera in 3D space!!!
- We can use this information of warp images as if they were taken in a canonical epipolar configuration.
- Canonical epipolar geometry greatly simplifies dense stereo matching. Why?
- This warping process is called rectification.

Reading

- Fusiello, A., Trucco, E., \& Verri, A. (2000). A compact algorithm for rectication of stereo pairs. Machine Vision and Applications, 12(1), 16-22.

Rectification Strategy

- Problem: There are infinitely many canonical epipolar configurations that we can chose for our cameras.
- Solution: Chose one that results in a small amount of warping.
- Strategy:
- Find a "good" epipolar configuration
- Derive a warp that will convert our images into this form.

A "good" configuration: Old Projective matrices

- $P_{\text {old }}=K[R \mid T]$
- K is the camera matrix
- $\left[\begin{array}{ccc}\alpha_{x} & \gamma & c_{x} \\ 0 & \alpha y & c_{y} \\ 0 & 0 & 1\end{array}\right]$ where image centre is at $\left(c_{x}, c_{y}\right), \gamma$ is the skewness factor
- $\alpha_{x}=$ focal length divided by pixel size.
- $[R \mid T]$ is the rotation matrix R combined with the translation vector T to produce a rigid transform.

A "good" configuration: Camera locations

- $P_{\text {old }}=[Q \mid q]$ where Q is a 3×3 matrix and q is a 3×1 column vector.
- Optic centre $c=-Q^{-1} q$ (this formula is in your notes)
- Note that one can calculate the optic centre for each camera, this is the actual locations of the camera in 3D space from the coordinates of the calibration object.

A "good" configuration: A good alignment

- Strategy: leave translations intact, find a new rotation matrix
- Rotation vector for $\mathrm{X}: v_{1}=\left(c_{1}-c_{2}\right)$ where c_{1} and c_{2} are centres.
- Rotation vector for $\mathrm{Y}: v_{2}=R_{3}^{T} \times v_{1}$
- Rotation vector for Z: $v_{3}=v_{1} \times v_{2}$
- Normalize the 3 rotation vectors and construct the rotation vector by stacking them.

Camera Matrix, new projection matrices, Homographies.

- $K_{\text {new }}=\frac{k_{o l d 1}+k_{o l d} 2}{2}$
- Ideal Projection Camera 1: $P_{\text {new } 1}=K_{\text {new }}\left[\begin{array}{ll}R_{\text {new }} & -R_{\text {new }} C_{1}\end{array}\right]$
- Ideal Projection Camera 2: $P_{\text {new } 2}=K_{\text {new }}\left[\begin{array}{ll}R_{n e w} & -R_{n e w} C_{2}\end{array}\right]$
- Homography $1: H_{1}=P_{\text {new } 1} P_{\text {old } 1}^{-1}$
- Homography 2 : $H_{2}=P_{\text {new } 2} P_{\text {old } 2}^{-1}$
- Note: A homography (in computer vision) maps images to different planar surfaces in space.

How do homographies work?

- Given coordinate $p=(x, y)$ in the current image, find the coordinate q in the rectified image.
- $\mathrm{q}=\mathrm{Hp}$
- Note that in order to avoid holes, we often perform this operation by looping through new coordinates and extracting intensity values from the old position in the image.
- Thus we calculate $p=H^{-1} q$
- Problem: Images are discrete, but homography calculations almost always lead to floating point values. Solution: Bilinear interpolation

Bilinear interpolation

- Problem: Find the intensity values for pixels with floating point coordinates.
- Solution 1: Rounding! Problem, leads to artifacts.
- Solution 2: Bilinear interpolation.
- Based on 1D blending function: $\alpha A+(1-\alpha) B$
- However considers the 4 neighbourhood of a pixel

Bilinear Interpolation continued...

```
* Interplation functionality
*@param image The image that we are interpolating
*@param position The position that we want a color value for
@return The color that is returned from the interpolation method
Vec3b Interpolate::GetColor(Mat& image, Point2f& position)
double x1 = floor(position.x), x2 = x1 + 1;
double y1 = floor(position.y), y2 = y1 + 1;
Vec3f color1 = ExtractColor(image, x1, y1) * (x2 - position.x) * (y2 - position.y);
Vec3f color2 = ExtractColor(image, x2, y1) * (position.x-x1) * (y2 - position.y);
Vec3f color3 = ExtractColor(image, x1, y2)*(x2 - position.x)*(position.y-y1);
lec3f color4 = ExtractColor(image, x2, y2) * (position.x - x1) * (position.y - y1);
ec3f total = color1 + color2 + color3 + color4;
return Vec3b(total)
HeLper Methods
    Extract a color from a given image
    @param image The image that we are extracting a point from
    * @param x The x value of the coordinate that we are extracting
    *@param y The y value of the coordinate that we are extracting
    *@return The color that we are extracting
Vec3f Interpolate::ExtractColor(Mat& image, double x, double y)
    if (x<0| x \rangle= image.cols) return 0;
    if (y<0| | >= image.rows) return 0
    Vec3b extractedColor = image.ptr<Vec3b>((int)y)[(int)x],
    return Vec3f(extractedColor)
```

