So | have calibrated...

What now?

The next step

e Calibration allows on to relate the position of one camera to the
position of another camera in 3D space!!!

* We can use this information of warp images as if they were taken in a
canonical epipolar configuration.

e Canonical epipolar geometry greatly simplifies dense stereo
matching. Why?

* This warping process is called rectification.

Reading

* Fusiello, A., Trucco, E., & Verri, A. (2000). A compact algorithm for
rectication of stereo pairs. Machine Vision and Applications, 12(1),
16-22.

Rectification Strategy

* Problem: There are infinitely many canonical epipolar configurations
that we can chose for our cameras.

* Solution: Chose one that results in a small amount of warping.

* Strategy:
* Find a “good” epipolar configuration
* Derive a warp that will convert our images into this form.

A “good” configuration: Old Projective
matrices

* Poig = K[R|T]
e K is the camera matrix
ax y C.X
« |0 ay cy,|whereimage centreis at (c,, Cy), v is the skewness factor
O 0 1

* a, =focal length divided by pixel size.

* [R|T] is the rotation matrix R combined with the translation vector T
to produce a rigid transform.

A “good” configuration: Camera locations

* P, = [Q|g] where Qis a 3x3 matrix and q is a 3x1 column vector.
e Optic centre ¢ = —Q g (this formula is in your notes)

* Note that one can calculate the optic centre for each camera, this is
the actual locations of the camera in 3D space from the coordinates
of the calibration object.

A “good” configuration: A good alighment

 Strategy: leave translations intact, find a new rotation matrix

* Rotation vector for X: v; = (¢; — ¢,) where ¢; and ¢, are centres.
e Rotation vector for Y: v, = R: X v,

* Rotation vector for Z: v3 = v{ X v,

* Normalize the 3 rotation vectors and construct the rotation vector by
stacking them.

Camera Matrix, new projection matrices,
Homographies.

e K _ kotd1tkotdz
new — 2

* |deal Projection Camera 1: Pop;y = Know [Rnew —RnewCi]
* |deal Projection Camera 2: P2 = Know [Rnew —RnewC2]
« Homography 1: H; = Py Poin
 Homography 2 : Hy, = PP 55

* Note: A homography (in computer vision) maps images to different
planar surfaces in space.

How do homographies work?

e Given coordinate p = (x,y) in the current image, find the coordinate q
in the rectified image.

*q=Hp
* Note that in order to avoid holes, we often perform this operation by

looping through new coordinates and extracting intensity values from
the old position in the image.

* Thus we calculatep = H™ g

* Problem: Images are discrete, but homography calculations almost
always lead to floating point values. Solution: Bilinear interpolation

Bilinear interpolation

* Problem: Find the intensity values for pixels with floating point
coordinates.

* Solution 1: Rounding! Problem, leads to artifacts.

 Solution 2: Bilinear interpolation.
* Based on 1D blending function: ¢4 + (1 — a)B
* However considers the 4 neighbourhood of a pixel

Bilinear Interpolation continued...

13
14
15
16
17
18
19 Vec3b Interpolate::GetColor(Mat& image, Point2f& position)
20 {

21 double x1 = floor(position.x), x2 = x1 + 1;

22 double y1 = floor(position.y), y2 =yl + 1;

23 Vec3f colorl = ExtractColor(image, x1, yl1) * (x2 - position.x) * (y2 - position.y);
24 Vec3f color2 = ExtractColor(image, x2, yl) * (position.x - x1) * (y2 - position.y);
25 Vec3f color3 = ExtractColor(image, x1, y2) * (x2 - position.x) * (position.y - yl);
26 Vec3f colord = ExtractColor(image, x2, y2) * (position.x - x1) * (position.y - yl);
27 Vec3f total = colorl + color2 + color3 + colord;

28 return Vec3b(total);

29 | }

36

3
32 Helper Methods

33 | oo
34
35
36
37
38
39
48
41
42 Vec3f Interpolate::ExtractColor(Mat& image, double x, double y)
43 | {

44 if (x < @ || x »= image.cols) return @;

45 if (y < @ || y »>= image.rows) return @;

46 Vec3b extractedColor = image.ptr<Vec3b>((int)y)[(int)x];
47 return Veec3f(extractedColor);

4 | }

