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Global optimisation

Stereo Reconstruction: Practical Goal

Due to ill-posedness, precisely an original 3D scene simply cannot
be reconstructed from its stereo pair

e Multiple-image 3D reconstruction is also ill-posed. . .

Goal is more limited and practical: to bring reconstructed surfaces
close enough to visual (photogrammetic) perception
e Human visual perception combines binocular stereo with
multiple monocular depth cues!
e Human vision fails on uniform/ repetitive texture, large depth
gradients, contrast differences, large y-disparities, etc.
e Computational stereo relies on regularising constraints to cope
with ill-posedness (multiple equivalent solutions)

e Due to a large variety of observed scenes, only very general
prior knowledge is used to constrain optical surfaces
e E.g. smoothness, depth gradient (curvature), continuity, ...



Global optimisation

Stereo by Global Optimisation

Pros: low sensitivity to local errors
e Due to constraints on conjugate scanlines or entire images

Cons: generally, an NP-hard problem for 2D constraints on
disparities in neighbouring points
e 2D constraints on corresponding signals make it harder!
e Feasible only in rare cases when direct exhaustion of surface
variants (with exponential complexity) is avoided

e Fast profile-wise 1D dynamic programming MAP / ML
reconstruction takes no account of across-the-profiles
constraints

e Similar MAP/ML and MPM/MWM reconstruction by 1D
belief propagation — the same drawback

e Most of approximate global optimisation algorithms are still
too complex for large-size images of practical interest



Global optimisation

Global Optimisation: Popular Tools

Exact 1D MAP/ML:

e Dynamic Programming; Belief Propagation (BP): max- or min-sum
algorithm

Approximate 2D MAP/ML: Iterative Graph Cut; Loopy BP

e Exact minimum cut / maximum flow solution on networks with
non-negative edge capacities and two special source and sink nodes

e Selecting a minimum subset of edges that separate the source from
the sink and carry the maximum flow through the network

e Binary optimization on the lattice: reduces to the min-cut/max-flow
for the cuts associated with 0-1 transitions

Exact 1D MPM/MWM: BP (sum-product algorithm)
Approximate 2D MPM/MWM: Loopy BP

No guaranteed convergence for loopy BP (but mostly exists in practice)



Profile model

Markov Chain Profile Model

e Accounts for symmetry of stereo channels, visibility of 3D
points and discontinuities due to occlusions

e A simplifying assumption: a single continuous surface only
Graph of profile variants (GPV)
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Profile model

Markov Profile: Symmetric (z,d) Coordinates

e Nodes along a continuous profile are
subject to two constraints:

@ Ordering constraint
@® Visibility constraint

e {(x—1,d);(x—0.5,d+1)} + (x,d)
e Each node (x,d) has 3 states s
e B — BVP (binocularly visible point):
Point-wise matching score

e M; — MVP (monocularly visible point):
Regularizing weight for partially occluded

points with no correspondence
o 8 allowable transitions
ﬂ e Popular constant MVP weight
e More adequate MVP weights

Four transitions Four transitions
forming a BVP forming a MVP depend on related BVP scores




GPV

Graph of Profile Variants (GPV)
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GPV

Allowable Transitions Along a Profile

Current BVP
® BVP (z,d,B): d ~
pixel-wise signal dissimilarity =
depending generally on the 1! o
Y

signals in the current and
immediate preceding BVPs
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GPV

Simple Markov Chain z-Profile Model

Probability of a profile d = [(x;,d;,s;): i=1,...,n]:
n

Pr(d|g:, g2) = p (v1,d1, s1l81,82) [ [ p (wi,di, silwi v, di1, 561581, 82)

=2

e Each term depends on a transition from the GVP-node (x;_1,d;_1)
in state s;_1 to the node (z;,d;) in state s; along the profile

e Transitions are limited by the visibility states along a GVP

e The probability p (z;,d;, B|lx;—1,d;_1,5i—1;81,&2) of a transition to
state B depends on dissimilarity between the corresponding image
signals for the current BVP on a profiles variant

e Generally, it can also depend on the signals for the immediate
preceding BVP along this variant

e Transition probabilities to the MVP can relate to those to the BVP
e Typical simplification: a constant MVP probability
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Signal models

Simple Probability Models of Corresponding Signals

Symmetric model:

e Signal deviations in g; and g2 w.r.t. an unobserved noiseless
Cyclopean image (or ortho-image) g of a 3D scene

91:z1,y1 = Y,y + Vixy; Y2:xo,y2 = Gzy + Vo.xy

e Independent central-symmetric random noise v : monotone
decrease of the probability densities p(v1.4,y) o< exp(—fyulz:x’y)

and p(V2:9:,y) X exp(_f}/yg:x,y)
Asymmetric models:

Jlizy = 922y T Vay or 92:2,y = Glizy T Vay
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Signal models

More Realistic Models of Corresponding Signals

Contrast deviation model — positive transfer factors, a, varying over the
each camera field of view and pixel-wise independent random noise, n, of
image sensors:

9limy,yn = Lz yGey T Viay,  92is,ys = 2z yJzy + Vouzy

e Transfer factors: strong interdependence for adjacent BVPs to
account for visual resemblance of corresponding areas

e Symmetric difference model of the interdependence:
e Limited direct proportion of the noiseless signal increments
between the neighbouring BVPs (z,y) and (2/,y) along the
same epipolar profile: for k = 1,2
gclleri- {ex (Goy = 9w a)} < Qkwy9ay — ks yGary
< max{ex (goy ~ go'y)}
® & = [emin, Cmax] — @ fixed range 0 < emin < emax of the

difference factors e
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Signal models

Markov Chain Model of Contrast Deviations

Difference signal model — a Markov chain of signals for BVPs,
which is mixed with independent signals for MVPs along a profile
e Assumption 1: Statistically independent ortho-image signals g
e Assumption 2: Centre-symmetric independent random noise v

e Assumption 3: Fixed range of allowable spatial contrast deviations

e Analytic statistical estimates for an orthoimage g and transfer
factors ay, a5 under a known 3-D profile

Theoretically justified part of a (dis)similarity measure: from
relationships between the corresponding signals for the BVPs
e Heuristic regularising part of the measure: for the MVPs

o Fixed regularising values
e Variable values derived from the assumed links between the
MVPs and relevant BVPs
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DP Stereo

Dynamic Programming (DP) Stereo

Simplified notation with the omitted y-coordinate:

e For brevity:

9i = Gaiyir  Yla = gmﬁ%’y’ 92:i = QQ:IF%’y

d = ((zy,d;, ) :i=1,2,...,N) — a digital profile ( with

allowable transitions between the adjacent GVP nodes)

e g=(g;:i=1,2,...,N) — the sequence of Cyclopean image
signals along the profile d

e g1 =(g15:7=1,2,...,N1) — the sequence of the

corresponding left image signals for the profile d

e go=(g2s:1=1,2,..., Nag) - the sequence of the
corresponding right image signals for the profile d
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DP Stereo

Dynamic Programming (DP) Stereo

Symmetric signal models with the omitted y-coordinate:

e Signal model with only random noise:
91:i = Gi + V145 92: = Gi + V2i
e Signal model with the varying contrast:
91 = 1,39 + V1 92 = 02:G; + V2ii

e Signal model with the varying contrast and offset (here,
Apiio1 =i — pi-1):

Agl:i,ifl = 61:1'A9m'71 + AVM,FU

Agaii—1 = €2::0g; -1 + Avay i



DP Stereo

Pixel-wise Signal Dissimilarity

The simplest symmetric signal model for BVPs:
e Noisy grayscale signals: gi.; = g; + N1 92: = Gi + N2s

H_;iin {max {(glzi - gi)27 (92«; - gi)Q}}

= Gi= % (91:0 + 92:0) = Di = (911 — g2:1)°

e Noisy colour (RGB) signals: D; = > (ge:14 — Ge2:i)?
ce{R,G,B}
The simplest dissimilarity for MVPs: D,.. = const
e The constant weight: an expected signal mismatch for
partially occluded points observed only in one image

e A varying MVP weight depending on mismatches for the
relevant BVPs might be more adequate
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DP Stereo

Dissimilarity for Varying Contrast Factors (optional)

Absolute signal dissimilarities for the BVPs (s; = B):
((lg1:i — ar:gils 192:0 — aagil) i =1,2,...,N)
e ((a14,a2:1):i=1,...,N) — sequences of the transfer
factors

e Given the factors a, an estimate for the unknown Cyclopean

signal minimises the maximum of the two signal dissimilarities:

Di:ay.i,00: = H;m {max {|g1:; — a1.igil; |92: — a2.igil}}
2

0307 :4,02:4

lg1:6 — a1::9) |92:i — a2:19:|
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DP Stereo

Minimax Parameter Estimates (optional)

Minimax estimate of the cyclopean signal

Di.ay a0 = I%in {max {|g1:i — a1.4gi|; |92: — a2:i9:|}}
k3

Minimum by g; condition

= 914 — 01:4Gi = —G2:4 1+ 02:4G;

. 91:itg2:
- 9= a1.i+az:;

J— ai.; 1
= o = m € [0,1] Relative transfer factor

Di.o; = |91: — i (91: + 92:0) | = |92:6 — (1 — @) (91:6 + 92:4) |
An allowable deviation range: «; € [amin, Omax);
0<amin§0-5§amax:1_amin< 1
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DP Stereo

Point-wise Signal Dissimilarity (optional)

e Actual relative contrast deviation: af = ﬁ
3 i

e Cyclopean signal adapted to the left signal:

Omin(91:4 + 92:)  if  af < Omin
/g\l:i = 914 if O[? S [amin-amax]

Qmax(g1: + g2:)  if  af > amax

The same estimates for the Cyclopean signal and relative deviation
factor are valid for the squared signal dissimilarity:

Diay.i 00 = rr;i_n {maX {(gu —a1491)"; (92 — a2:19¢)2}}

_ . ~ \2
= D;= min Diial:i,azzz' = (glii - gl:i)
ai1:7,a2:4
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DP Stereo

Point-wise Signal Dissimilarity (optional)

For a BVP (x;,d;, s; = B) in a profile d:

o __ 9gi:i
o = —9dli
? g1:i+92:i

Dg; = Dy(z,di,Bizi_1,di—1,5-1|g1,82)

amin(glsi + 92:1') — 914 if Oé;? < Qmin
= 0 if af € [Wmin, ¥max]

914 — amax(glzi + 92:2') if Q' > Omax

For an MVP (z;,d;, s; = M or My) in a profile d:
a regularising constant “dissimilarity”
Dy = Dy(x;, di, My 251, di—1, 51|81, 82) = Doce; k=1,2

to account for partially occluded points without stereo

correspondence
20/34



DP Stereo

Interdependent Contrast Factors (optional)

Floating ranges to account for spatial contrast dependencies

o “Difference” factor € € [emin, Emax);
0<émin 1< €max =2 — €min < 2

e Signal adaptation along a potentially optimal path:

g if g <"
Gui =9 9 i gt < g1 S g
g it g > g
e Signal adaptation range along a potentially optimal path:
gEr = min (91:ipen +€ (95 — Gipen))
{ g = max (Gui,.s +¢ (9 — Ginn))

o g = % (g91:i + g2.;) — the estimated Cyclopean signal
¢ i,..B — the index of the BVP preceding the BVP i
e Absolute dissimilarity Dg.; = [g1.;i — g1.i]
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DP Stereo

Constraints on Total Signal Dissimilarity

N N
Dy(dlg1,82) = >_ Dsisi = 32 Dy(@i, di, si3 i1, di—1, 5i-1/81, 82)
- H:'L—l =1
T 111 J X2 Visibility and ordering constraints on
4 transitions between successive
GPV-nodes along a continuous profile

= Subsets ;. 4, s, of GPV-nodes, which
can precede any node v; = (z;,d;, $;)
along a profile:

X — —
w05 1 QVz’ = Qﬂﬁi,dhsi -

(.’L‘i—%,di—Fl,B);(!L’i—%,di—f—l,MQ) if Si:Mz
(l’lf%,difl,Ml),(l'ifl,d“B),(xl*l,dZ,Mg If SZ:B
(xi—%,di—l,Ml);(.’Ei—l,di,B);(J}i—Ldi,Mg If SiZMl



DP Stereo

DP to Minimise Signal Dissimilarity

Finds the profile for the globally minimal dissimilarity D, (d|g1, g2)
e DP exhausts all the profiles d, which are possible in a GPV
under the constrained transitions {2
e Forward pass along the x-axis of a GPV to find the minimum
dissimilarity D* = m&nDy(d|g1,g2)
e Backward pass to get the profile d* = arg mdin D,(d|g1,82)

e At any current location, x;, all GPV-nodes v; = (x;,d;, s;) are
examined in order to calculate and store current potentially
optimal total dissimilarities Dy,:i(v;)

e Potential optimality: the stored dissimilarity is optimal if the
node belongs to the globally optimal solution

e D,:i(v;) — the minimal total signal dissimilarity for the
potentially optimal backward path from v; = (z;,d;, s;)

e For each node, a potentially optimal backward transition
Bi(v;) to one of the preceding nodes v;_ in € is stored

23 /34



Recurrent computation

Dynamic Programming (DP)

Recurrent DP computation:

Dpo:i(vi)
= min {Dy(v;,v|g1,82) + Dpoi-1(v)}

veﬂvi

= Dy(via viilgi, g2) + Dpo:i—l(vjfl)

Bi(v;) =v; 4

= argénin {D’y(via V|g17 gZ) + Dpo:i—l(v)}
ve v

x—1 x0.5 x

Dpo:i(x,d,M2) = Doce +min{Dpo:i—1(x —0.5,d + 1,M2); Dpo(z — 0.5,d + 1,B)}

Dpo:i(l'y d, B) min {Dpo:i—l (-T - 1,d, M2) + Dy (-Tv d; ZLprB:Mg dprB:Mz )
Dpoii—1(x —1,d+1,B) + Dy(z,d;x — 1,d);

Dypoii—1(x — 0.5,d — 1,M1) 4+ Dy (@, d; TprB:M; » dprB:M, ) |

Dpo:i(xy d7 Ml) Doce + min {Dpozifl(x - 0-57 d— ]-7 Ml); Dpo:ifl(x - ]-7 d7 B)}
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Recurrent computation

Basic Recurrent DP Computation

e B;(z;,d;,s;) — a potentially optimal
backward transition from a GPV-node

N Y
—_ | .
} }J e Optimal profile: a sequence of
/ / potentially optimal backward
..

&) transitions such that
[y

\
N ‘w @ Begins (i.e. the profile ends) at
/ ‘ "

Iy ! point N = Tmax OF Tymax — 0.5
rJ\ v)\ ) and
3 \ / \ ® Minimises the total dissimilarity
% Y Dyo(a, dy, s) for all the GPV
A —/F N
e Dyo(zhy, dy, k) — the minimal total

N » signal dissimilarity
=1 05 x w05 xtl

d+1§

d

nodes xN,dN,sN
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Recurrent computation

Basic Recurrent DP Computation

After the forward pass through a given z-coordinate range
[©min, Tmax), the optimal profile is recovered by the backward pass
through the stored potentially optimal backward transitions:

Dy(d*|g1,g2) = Dpo:N(IE?\/a *N7S*N)

(2, dN, sN) = arg min {Dpo:n (TN, YN, sN)}
TN € {xmax - 057 xmax}
dN € [dminydmax]
SN € {Ml,B,Mg}

(., df 1,87 1) = Bi(af,df,sf); i=N,N-1,...,2

1997
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Recurrent computation

Viterbi DP Algorithm: Probabilistic Model

DP search for the most likely sequence of unobserved (hidden) states
from a sequence of observations (signals)

e Each observation corresponds to and depends on exactly one hidden
state

e Hidden states are produced by a first-order Markov model:
e Set of the hidden states H = {h1,...,hn}
e Transitional probabilities P;(h;|h;) : 4,5 € {1,...,n}
e Given the states, the observations are statistically independent
e Set of the signals Q = {q1,...,qm}
e Observational probabilities P,(g;|h:) : ¢; € Q; h; € H
iy 924 A314 94 Log-likelihood of a sequence of states
h = hpjhp) ... bk, given a sequence of

@ @ @ @ signals q = q[1)q2] - - - [k

L(h|q) = log Pr(h|q) = Pr(h|q) ~ Pr(h,q) = Pr¢(h) Pr,(q/h)

http://en.wikipedia.org/wiki/Viterbi_algorithm
27 /34



Recurrent computation

Maximum (Log-)Likelihood s* = arg maxysx L(s|q)

® h = hpyhpy ... hik) — a hidden (unobserved) Markov chain of states
at steps k = 1,..., K with joint probability
K
Pri(h) = 7 (hiy) [Ti—y P (hpulhge—1)

® 7 (h) — prior probability of state h € H at step k =1
® P, (h|h') — probability of transition from a state h’ to the next one, h

® q = g9 - - - q[x] — an observed sequence of conditionally
independent signals with probability Pr(gqlh) = Hk 1 (q[k]\h[k )
® P, (qlh) - probability of observing g € Q in state h € H at step k

h* = arg max Z (n (P)) + & (P hge-)))

b (1) = logm (h) +log P, (qlh) k=1; heH
T 10g Py (quglh) k>1. heH
, k=1, heH
 (h[h') = ) .
log P, (W) k>1; heH

28 /34



Recurrent computation

Graphical Model for H = {a, b, ¢} and Observed g
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Recurrent computation

Maximum (Log-)Likelihood via Dynamic Programming

Viterbi DP algorithm:
@ Initialisation: k = 1; ®1(hpy)) = ¢1(hyy) for all hpyy € H
@® Forward pass for k=2,..., K and all hy; € H:

i (hg) = Vrlhypy) +, max {@(hyglhp—n) + ot ()}
By (hy) = arg  max {e(hpglhp—1) + Pr—1 (hp—1) }
k—1)€H

© k = K: the maximum log-likelihood ®x (h E‘K]) in the state

hiy = arg Inax @K(h[K])
(K] hi €S

@ Backward pass for k = K,...,2: hf_, = By (h’{k})
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Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

. !
e(hlh) = { 515 Z;Z, ; for h,h € H
_ 6 vls € {A]a, B|b}
vi(h) = { 2 otherwise for heH

A az1=5 gy =~ a5=5
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Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

8 h=~n
/ _ . /
p(hln') = {1 WA h for h,h € H
_ 6 vls € {A]a, B]b}
vr(h) = { 2 otherwise for heH

(> —(o )

k=1 k=2 k=3 k=4 k=5
am=A qz1=4 a1 =B qa=A qai51=B

Step k = 1: Initialisation
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Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

Y
o(hl) = {f Z;Z, : for hW €H
_ 6 vls € {Ala,B|b}
vr(h) = {2 otherwise 3 for hel

am=A qz1=4 a1 =B qa=A qai51=B
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Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

8 h=~h
/ _ . /
p(hlh") = { | hn for h,h' € H
_ 6 vls € {A]a, B]b}
vi(h) = { 2 otherwise or heH

am= qz1=4 a1 =B qa=A qai51=B

31/34



Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

g
o(hl) = {f Z;Z, : for hW €H

v(h) = { 6 v|s € {Ala, B|b}

2 otherwise ; for heH

31/34



Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

Y
o(hl) = {f Z;Z, : for hW €H
_ 6 vls € {Ala,B|b}
vr(h) = {2 otherwise 3 for hel

31/34



Recurrent computation

Example: H = {a,b}; Q ={A, B}, q = AABAB

Y
o(hH) = {? Z;Z, : for b €H
/ _ 6 vls € {A]a, B|b}
vr(h) = {2 otherwise for heH

Backtracking: h* = aaaaa

31/34



Recurrent computation

DP stereo matching by energy minimization

e Markov models of surfaces / signals = Energy function
E(d|g1,g2) as a matching score:

n
E(dlg1,82) = Y (@i, di, si52i-1,di1, 5i-1/81, 82)
i=1

(zi—1,di—1,8i—1) € Qxq,ds,85) =

{(z; — 0.5,d; + 1, B); (z; — 0.5,d; + 1, M2)} it s = M2
{(x; — 0.5,d; — 1, M1);(z; — 1,d;, B), (xy — 1,d;, M2)} if s; =B
{(z; —0.5,d; — 1, M1); (z; — 1,d;, B), (zi — 1,ds, M2)} if s; = M1

s Wiy

e Energy = signal dissimilarity 4 surface continuity + surface
smoothness + occlusions +. ..

e SDPS — energy accounts for different contrast and offset
deviations along scanlines (approximate minimization by DP)

e DP: profile-wise global energy minima
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Recurrent computation

Recurrent DP framework: Summary

Disparity “tube”: dpin < d; < dpmax; S;i €S, fori=1,...,n

@ Forward pass along the z-axis of GPV
e At each x;, compute and store for each node v; = (z;,d;, s;)

e Potentially optimum partial total energy E;(v;)
e Potentially optimum backward transition B;(v;)

Ei(vi) = ¢(vi;vi_1lg1,82) + Ei1(vi_y)
Bi(vi)=viy = argmin{g(vi;vi-1lgi, g2) + Ei-1(vi-1)}
® Backward pass along the x-axis of GPV

e Optimal profile: a sequence of potentially optimum transitions:

argminy, E,(vy)
vi, = By(vi)i=nmn-—1,...,2

Computational complexity O(NA) where A = diax — dmin + 1
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Recurrent computation

Symmetric Dynamic Programming Stereo: An Example

Left stereo image Right stereo image

Grey-coded disparity map
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