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Stereo Matching: MAP, ML, MPM, and MWM

• Maximum a posteriori (MAP) decision:

D∗MAP = arg max
D

Pr(D|G1, G2) ≡ arg max
D

Pr(D) Pr(G1, G2|D)

• Unknown or uniform prior P (D) ⇒ Maximum likelihood (ML)
decision:

D∗ML = arg max
D

Pr(G1, G2|D)

• Maximum posterior marginals (MPM):

d∗(x, y) = arg max
d

Pr
x,y

(d|G1, G2); (x, y) ∈ S

• Marginal weighed means (MWM):

d∗(x, y) =
∑
d

d · Pr
x,y

(d|G1, G2); (x, y) ∈ S

Main problems: maximising multivariate distributions of disparity
maps and images or computing their marginals
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Basic Simplification: Pairwise Interactions

MAP,ML: Minimum energy minD{log Pr(D) + log Pr(G1, G2|D)}:

D∗ = arg min
d0,0,...,dX−1,Y−1

{
X−1∑
x=0

Y−1∑
y=0

ϕx,y(dx,y) +

X−1∑
x=1

Y−1∑
y=0

ψh:x,y(dx−1,y, dx,y) +
X−1∑
x=0

Y−1∑
y=1

ψv:x,y(dx,y−1, dx,y)

}
MPM, MWM: Marginal distributions Prx,y(dx,y|G1, G2)

fi,j(di,j) =
(X−1,Y−1)∑
(ξ,η)=(0,0)

(ξ,η)6=(i,j)

dmax∑
dξ,η=dmin

[
(X−1,Y−1)∏
(x,y)=(0,0)

Φx,y(dx,y) ×

(X−1,Y−1)∏
(x,y)=(1,0)

Ψh:x,y(dx−1,y, dx,y)
(X−1,Y−1)∏
(x,y)=(0,1)

Φv:x,y(dx,y−1, dx,y)

]
1D cases (Y = 1): exact solutions;

2D cases (NP-hard): only approximate solutions
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Graphical Models: Joint Probability Distributions

Joint p.d. over a set of variables D: a product of factors –
functions depending each on a subset of variables Ds ⊂ D:

D = (d0,0, . . . , dX−1,Y−1) ⇒ Pr(D) =
∏
s

fs(Ds)

Factor graph: a node for every variable di and a node for each
factor fs(Ds) in the joint p.d.

• Factor graph for
p(d1, d2, d3) = fα(d1, d2)fβ(d1, d2)fγ(d2, d3)fδ(d3)

x1 x2 x3

fα fβ fγ fδfα fβ fγ fδfα fβ fγ fδfα fβ fγ fδ
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Bipartite Factor Graphs

• Goal: to simplify and generalise the sum-product algorithm for
computing marginal probabilities given a joint p.d. Pr(d1, . . . , dn):

pi(di) =
∑
d1

· · ·
∑
di−1

∑
di+1

· · ·
∑
dn

Pr(d1, . . . , di−1, di, di+1, . . . , dn)

• Explicitly represent a function factored over subsets of variables

• Nodes for factors in addition to the nodes for variables:

Pr(D) = fα(d1, d2)fβ(d1, d2)fγ(d2, d3)fδ(d3)fε(d3, d4)fκ(d3, d4, d5)fλ(d5)

d1 d2 d3 d4 d5

fα fβ fγ fδ fε fκ fλ

6 / 28



Outline Pairwise models Factor graphs Computing marginals Sum-product: Example LBP Stereo

Bipartite Factor Graphs

• Two distinct kinds of nodes

• All links go between the nodes of opposite type

Many different factor graphs for the same undirected or directed graph

Pr(d1, d2, d3) = f(d1, d2, d3) = fα(d1, d2, d3)fβ(d2, d3)

d1

d2

d3

d1 d2 d3

f

d1 d2 d3

fα fβ

Pr(d1, d2, d3) = f(d1, d2, d3) =

fα(d1)︷ ︸︸ ︷
p1(d1)

fβ(d2)︷ ︸︸ ︷
p2(d2)

fγ(d1,d2,d3)︷ ︸︸ ︷
p(d3|d1, d2)

d1

d2

d3

d1 d2 d3

f

d1 d2 d3

fα fβ fγ
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Forming a Factor Graph for a Directed Graph Γ = {N,E}

Pr(d1,...,d7)=p1(d1)p2(d2)p3(d3)p4(d4|d1,d2,d3)p5(d1,d3)p6(d6|d4)p7(d7|d4,d5)

d1

d2

d3

d4

d5

d6

d7

Markov chains, or trees, or Bayesian networks:
Pr(d1, . . . , dn) =

∏
i pi(di|dj : j ∈ Si) for all

i = 1, . . . , n; Si ⊂ {1, . . . , n}\i

1 Create variable nodes for all the nodes i ∈ N
2 Create factor nodes corresponding to conditional distributions
pi(di|dj : j ∈ Si)

3 Add the links between the variable and factor nodes

Factor graphs have a tree structure for any original tree – undirected,

directed, or polytree
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Forming a Factor Graph for an Undirected Graph (optional)

Markov random field (MRF) model:

Pr(d1, . . . , dn) =
1

Z

∏
c∈C

fc(dj : j ∈ Sc)

1 Create variable nodes di for all the nodes i ∈ N
2 Create factor nodes corresponding to the maximal complete

subgraphs, or cliques c containing each the nodes Sc ⊂ N
3 Set the factors fc(dj : j ∈ Sc) equal to the same potential

functions for the MRF

4 Add the links between the variable and factor nodes

• Many possible factor graphs for the same model
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Computing Marginals: The Sum–Product Algorithm

Marginal probabilities pi(di) =
∑

N\i Pr(dj : j ∈ N) for a node (or
several nodes):

• Substitute for Pr(d1, . . . , dN ) using the factor graph
expression:

Pr(D) =
1

Z

∏
c

fc(dj : j ∈ Sc)

where Sc ⊂ {1, . . . , N} is a subset of the nodes

• Then interchange the summations and products for obtaining
a computationally efficient algorithm: pi(di) =∑
dj : j∈N\i

∏
c

fc(dj : j ∈ Sc)⇒
∏

neighbours of
i∈Sc

∑
dj
j∈Sc

fc(di, dj : j ∈ Sc\i)

Special case: Belief propagation for exact inference on digraphs
without loops
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Computing Marginals

• Joint distribution of n discrete variables Pr(d1, d2, . . . , dn)

• K-valued variables: all di in K = {0, . . . ,K − 1}
• Marginal p.d. of di (Kn operations in the general case!):

pi(xi) =

K−1∑
d1=0

. . .

K−1∑
di−1=0

K−1∑
di+1=0

. . .

K−1∑
dn=0

Pr(d1, . . . , dn)

• A simple case: an undirected Markov chain

Pr(d1, . . . , dn) = f1(d1, d2)f2(d2, d3) · · · fn−1(dn−1, dn)

d1 d2 d3 di−1 di di+1 dn−2 dn−1 dn

f1 f2 . . . fi−1 fi . . . fn−2 fn−1
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Computing Marginals pi(di): a Simple Case

For Pr(d1, . . . , dn) = f1(d1, d2)f2(d2, d3) · · · fn−1(dn−1, dn) – only
(n− 1)K2 operations by interchanging the sums and the products:

pi(di) =

ϕi−1(di)︷ ︸︸ ︷

K−1∑
di−1=0

fi−1(di−1, di) · · ·

ϕ2(d3)︷ ︸︸ ︷
K−1∑
d2=0

f2(d2, d3)

ϕ1(d2)︷ ︸︸ ︷
K−1∑
d1=0

f1(d1, d2)

×
K−1∑
di+1=0

fi(di, di+1) · · ·
K−1∑

dn−1=0

fn−2(dn−2, dn−1)

K−1∑
dn=0

fn−1(dn−1, dn)

︸ ︷︷ ︸
ψn−1(dn−1)︸ ︷︷ ︸

ψn−2(dn−2)︸ ︷︷ ︸
ψi(di)
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Computing Marginals: a Simple Case

Sequential computations (dj ∈ K = {0, 1, . . . ,K − 1}; j = 1, . . . , n):

ϕ1(d2) =
K−1∑
d1=0

f1(d1, d2) for each d2 ∈ K

ϕ2(d3) =
K−1∑
d2=0

f2(d2, d3)ϕ1(d2) for each d3 ∈ K

. . . . . . . . .

ϕi−1(di) =
K−1∑
di−1=0

fi−1(di−1, di)ϕi−2(di−1) for each di ∈ K

ψn−1(dn−1) =
K−1∑
dn=0

fn−1(dn−1, dn) for each dn−1 ∈ K

ψn−2(dn−2) =
K−1∑
dn−1=0

fn−2(dn−2, dn−1)ψn−1(dn−1) for each dn−2 ∈ K

. . . . . . . . .

ψi(di) =
K−1∑
di+1=0

fi(di, di+1)ψi+1(di+1) for each di ∈ K

pi(di) = ϕi−1(di)ψi(di)
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The Sum–Product Algorithm

A fragment of a factor graph:
evaluating the marginal p(d)

Pr(D) =
∏

s∈N(d)
Fs(d,Ds)

⇒ p(d) =
∑

ds:s∈N\d
Pr(D)

Fs(d,Ds)

µfs→d(d)

fs d

Message from fs to d:

µfs→d(d) ≡
∑
Ds

Fs(d,Ds)

Partitioning factors in the joint p.d.
Pr(D) into groups according to the
tree structure of the graph

• One group per each of the
factor nodes being a neighbour
of the variable node d

• N(d)) – the set of the factor
nodes that are neighbours of d

• Ds – the set of all variables in a
subtree connected to the node
d via the factor node fs

• Fs(d,Ds) – the product of all
the factors in the group
associated with the node fs
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Computing Marginals: a Simple Case

Pr(D) =
∏

s∈N(di)
={fi−1,fi}

Fs(di, Ds) =

i−1∏
j=1

fj(dj , dj+1)︸ ︷︷ ︸
Ffi−1

(di,Dfi−1
)

n−1∏
j=i

fj(dj , dj+1)︸ ︷︷ ︸
Ffi (di,Dfi )

pi(di) =
∏

s∈N(di)

∑
Ds

Fs(di, Ds) = µfi−1→di(di)µfi→di(di)

µfi−1→di(di) =
∑

Dfi−1
={d1,...,di−1}

Ffi−1(di, Dfi−1 = {d1, . . . , di−1})

µfi→di(di) =
∑

Dfi={di+1,...,dn}
Ffi(di, Dfi = {di+1, . . . , dn})

d1 d2 d3 di−1 di di+1 dn−2 dn−1 dn

f1 f2 . . . fi−1 fi . . . fn−2 fn−1

Dfi−1
= {d1, . . . , di−1}

N(di) = {fi−1, fi}

Dfi = {di+1, . . . , dn}
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The Sum–Product Algorithm

The goal marginal is the product of all the incoming messages:

p(d) =
∑
D\d

Pr(D) =
∑
D\d

∏
s∈N(d)

Fs(d,Ds) =
∏

s∈N(d)

[∑
Ds

Fs(d,Ds)

]
=

∏
s∈N(d)

µfs→d(d)

Each factor Fs(d,Ds) is described by a factor (sub)-graph and so can
itself be factored:

Fs(d,Ds) = fs(d, d1, . . . , dM )Φ1(d1, Ds1) · · ·ΦM (dM , DsM )

d1, . . . , dM – variables associated with factor fs in addition to d

• Messages from factor nodes to variable nodes:
µfs→di(di) ≡

∑
Ds

Fs(di, Ds); s ∈ N(di)

• Messages from variable nodes to factor nodes:
µdm→fs(dm) ≡

∑
Dm

|Φm(dm, Dm); fs ∈ N(dm) Φm(dm, Dsm)

xm

dM

fs x
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Computing Messages from Factor Nodes to Variable Nodes

µfs→d(d) ≡
∑
Ds

F (d,Ds)

=
∑
d1

· · ·
∑
dM

fs(d, {d1, . . . , dM})
∏

m∈N(fs)\d

µdm→fs (dm)︷ ︸︸ ︷∑
Dm

Φm(dm, Dm)

=
∑
d1

· · ·
∑
dM

fs(d, {d1, . . . , dM})
∏

m∈N(fs)\d
µdm→fs(dm)

• N(fs) – the set of variable nodes being neighbours of the factor node fs
• N(fs)\d – the same set but without the node d

Evaluating the message sent by a factor node to a variable node along
their connecting link:

1 Take the product of the incoming messages along all other links
coming to the factor node

2 Multiply by the factor associated with that node

3 Marginalise over all the variables associated with the incoming
messages
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Message Evaluation

µdM→fs (dM )

µfs→d(d)

Φm(dm, Dsm)

dm

dM

fs d

µfL→dm (dm)

µdm→fs (dm)

Fl(dm, Xml)

fl

fL

dm fs

µdm→fs (dm) =
∑
Dm

Φm(dm, Dsm)

• Sending a factor-to-variable message after
receiving incoming messages from all other
neighbouring variable nodes

• Evaluating the variable-to factor-messages –

again by the (sub)-graph factoring

• The term Φm(dm, Dsm) associated with
a node dm is a product of the terms
Fl(dm, Dml), associated each with one
of the factor nodes fl linked to node dm
(excluding the node fs):

Φm(dm, Dsm) =
∏

l∈N(dm)\fs

Fl(dm, Dml)

• The product over all neighbours of the
node dm excepting the node fs

• Each of the factors Fl(dm, Dml): a
subtree of the original graph of the same
kind as the joint Pr(D)
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Message Evaluation

Sending a variable-to-factor message along the connecting link:

µdm→fs(dm) =
∏

l∈N(dm)\fs

µfl→dm (dm)︷ ︸︸ ︷[∑
Dml

Fl(dm, Dml)

]
=

∏
l∈N(dm)\fs

µfl→dm(dm)

µdm→fs(dm) =
∑
Dsm

Φm(dm, Dsm)

=
∑
Dsm

[ ∏
l∈N(dm)\fs

Fl(dm, Dml)

]
• Product of the incoming messages along all of the other links:

• A variable node with only two 2 neighbours passes messages
through unchanged

• A variable-to-factor message can be sent once incoming
messages from all other neighbouring factor nodes are received
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Message Evaluation

Marginal for a variable node d: the product of incoming messages
along all of the links arriving at that node:

p(d) =
∏

s∈N(d)

µfs→d(d);

p(Ds) = fs(Ds)
∏

i∈N(fs)

µdi→fs(di)

• Each of these messages can be computed recursively from
other messages by viewing d as the root of the tree and
starting at the leaf nodes

• A variable leaf node: µd→f (d) = 1

• A factor leaf node: µf→d(d) = f(d)
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General Sum–Product Algorithm for a Tree

• Pick any arbitrary (variable or factor) node to serve as the root

• Propagate messages from the leaves to the root until the root node
will have received messages from all of its neighbours

• Once this message propagation is complete, then propagate
messages from the root to all of its neighbours and further along all
of the links outwards from the root all the way to the leaves

• Now a message passed in both directions across every link in
the graph, and every node received a message from all its
neighbours

• Marginal distribution is readily calculated for every variable in
the graph because every variable node has received the
messages from all its neighbours

• After one message has passed in each direction across each
link, the marginal distributions are p(d) =

∏
s∈N(d)

µfs→d(d)
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The Sum–Product Algorithm: Normalising the Marginals

For a factor graph derived from a directed graph, the joint
distribution Pr(D) is already correctly normalised

• Therefore, the marginals will be similarly normalised

For an undirected graph, a factor(the partition function) 1
Z

normalising Pr(D) is generally unknown

• The sum-product algorithm is run first with a non-normalised
joint distribution in order to find the non-normalised marginals

• The factor 1
Z is then easily obtained by normalising any one of

these marginals
• Computationally efficient procedure: because the normalisation

is done over a single variable rather than over the entire set of
variables D = (d1, d2, . . . , dn)

22 / 28



Outline Pairwise models Factor graphs Computing marginals Sum-product: Example LBP Stereo

The Sum–Product Algorithm: An Example

The non-normalised joint distribution:
Pr(d1, d2, d3, d4) = fa(d1, d2)fb(d2, d3)fc(d2, d4)

d1 d2 d3 d4

fa fb fc

Tree structure:

Leaf d1 fa d2 fb d3 Root

fc

d4Leaf

p(d) =
∏

s∈N(d)
µfs→d(d)

p(Ds) = fs(Ds)
∏

i∈N(fs)
µdi→fs(di)
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Leaves–to–Root and Root-to-Leaves Flows of Messages

d1
A

fa
B

d2
E

fb
F

d3

fc

D

d4

C

d1
D

fa
C

d2
B

fb
A

d3

fc

E

d4

F

A µd1→fa = 1
B µfa→d2(d2) =

∑
d1

fa(d1, d2)

C µd4→fc = 1
D µfc→d2(d2) =

∑
d4

fc(d2, d4)

E µd2→fb(d2) = µfa→d2(d2)µfc→d2(d2)
F µfb→d3(d3) =

∑
d2

fb(d2, d3)µd2→fb(d2)

A µd3→fb = 1
B µfb→d2(d2) =

∑
d3

fb(d2, d3)

C µd2→fa(d2) = µfb→d2(d2)µfc→d2(d2)
D µfa→d1(d1) =

∑
d2

fa(d1, d2)µd2→fa(d2)

E µd2→fc(d2) = µfa→d2(d2)µfb→d2(d2)
F µfc→d4(d4) =

∑
d2

fc(d2, d4)µd2→fc(d2)
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MRF Model for Stereo Matching

g[1] g[2]

d4 d6

d3 d1 d2 d7

d8d5

Posterior model: Pr(D|G) ∝
∏
i

(
ψi(di, g[i])

∏
j∈Ni

ϕj,i(dj , di)

)

Hidden disparities di

Observed intensities g[i] g− d messages

d− d messages

J.Sun e.a.: Stereo Matching Using Belief Propagation, IEEE T.PAMI, vol.25(7), 787–800, 2003
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Loopy Belief Propagation

The sum-product algorithm provides efficient and exact inference
in tree-structured graphs, but graphs in many practical applications
have loops

• The message passing framework can be generalised to
arbitrary graphs topologies to give an exact inference

• But in the case of discrete variables, its computational
complexity grows exponentially with the maximum number of
interdependent variables

Thus it is not feasible to use the exact inference: effective
approximate methods such as loopy belief propagation (LBP)
has to be exploited

• LBP is possible because the message passing rules for the
sum-product algorithm are purely local
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Loopy Belief Propagation

Because of the graph cycles, the information can flow many times
around the graph

• For some models, the LBP algorithm converges, whereas for
others it will not

Message passing schedule in LBP:

• Each node should send a message across the link from the
node after receiving messages from all other links

• Transmit only pending messages: after a node receives a
message on one of its links

• Convergence to the exact marginal if there are no more
pending messages
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Energy Minimisation: The Min–Sum BP Algorithm

• Factor graph expression D∗ = arg min
D
{E(D) = log Pr(D)}:

min
d1,...,dN

∑
c∈C

fc(dj : j ∈ Sc) where Sc ⊂ N = {1, . . . , N} is a

subset of the nodes

• Then interchange the minimisation and sums for obtaining a
computationally efficient minimisation algorithm:

min
dj : j∈N

∑
c∈C

fc(dj : j ∈ Sc)

⇒
∑
i∈N

∑
neighbours of
i∈Sc

min
dj : j∈Sc

fc(di, dj : j ∈ Sc\i)

• Special case: Belief propagation for exact computations of
the minimum energy on digraphs without loops

• An implicit decision D∗ contrary to an explicit one in dynamic
programming: ambiguities for multiple equivalent cases
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