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Computational Stereo Vision

Very diverse applications: from ophthalmology, biometrics, and
architecture to virtual reality, autonomous navigation, robotics,
cartography, reverse engineering, etc. . .
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Computational Stereo: 3D Reconstruction

Reconstructing 3D points of an optical (visible) surface of a 3D
scene by finding corresponding 2D points in two or more images

• Stereo matching: search for correspondences in a stereo pair or
more images of a 3D scene
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Imaging: 3D-to-2D Projection (the canonical coordinate frame)

Y

X

x

y

Z

00

S = (X,Y, Z)

S̃ = [X,Y, Z, 1]T

s = (x, y)

s̃ = [fX, fY, Z]T

= [x, y, 1]T

f

x = X f
Z ; y = Y f

Z

s̃ =

 f 0 0 0
0 f 0 0
0 0 1 0


︸ ︷︷ ︸
Projection matrix P

S̃ =

 fX
fY
Z
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Imaging: 3D-to-2D Projection (the canonical coordinate frame)

Example of the projection: the focal distance f = 10

• (X,Y, Z)-coordinates of the 3D point: S = (30, 40, 20)

• Homogeneous coordinates of this point: S̃ = [30, 40, 20, 1]T

• (x, y)-coordinates of the projected point: s = (15, 20):

x = X f
Z = 3010

20 = 15; y = Y f
Z = 4010

20 = 20

• In homogeneous coordinates: s̃ = P S̃

s̃ =

 10 0 0 0
0 10 0 0
0 0 1 0




30
40
20
1

 =

 300
400
20

 ≡
 15

20
1
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Imaging: 3D-to-2D Projection (a general-case coordinate frame)

Canonical camera (XY Z)-coordinate frame with ortonormnal
vectors X = [1, 0, 0]T; Y = [0, 1, 0]T, and Z = [0, 0, 1]T:

• 3D point S = [Sx, Sy, Sz]
T: the vector S = SxX+SyY+SzZ

• Rotated point (R = [rij ]
3,3
i,j=1,1 – the rotation matrix):

Srot = RS =

 Srot:x = r11Sx + r12Sy + r13Sz
Srot:y = r21Sx + r22Sy + r23Sz
Srot:z = r31Sx + r32Sy + r13Sz


Y

0
Z

X

S

Srot

Sx
Sz

Sy
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Imaging: 3D-to-2D Projection (a general-case coordinate frame)

Rotated (X ′Y ′Z ′)-frame with the orthonormal vectors:
X′ = RX = [r11, r21, r31]

T

Y′ = RY = [r12, r22, r32]
T

Z′ = RZ = [r13, r23, r33]
T

The same point S′ =
[
S′x, S

′
y, S

′
z

]T →
the vector S′ = S′xX

′ + S′yY
′ + S′zZ

′

Y

0
Z

X

S

Srot

Sx
Sz

Sy
Y′

0

Z′

X′

S′

S′x

S′z
S′y

S′ = RTS =

 S′x = (X′)TS

S′y = (Y′)TS

S′z = (Z′)TS


R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33


︸ ︷︷ ︸

The rotation matrix
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Imaging: 3D-to-2D Projection (a general-case coordinate frame)

W.r.t. the canonical frame, let a new frame be rotated by rotation
matrix R and its origin 0′ be translated by T = [tx, ty, tz]

T:

I3×3=[XYZ]︷ ︸︸ ︷ 1 0 0
0 1 0
0 0 1

 ⇒

R=[X′Y′Z′]︷ ︸︸ ︷ r11 r12 r13
r21 r22 r23
r31 r32 r33


⇒


X′ = RX = [r11, r21, r31]

T in 0XYZ

Y′ = RY = [r12, r22, r32]
T in 0XYZ

Z′ = RZ = [r13, r23, r33]
T in 0XYZ

Orthonormal matrix R =‖ rij ‖3i,j=1:
∑3
i=1 rijrik =

{
1 if j = k
0 otherwise

so that R−1 = RT (inversion = transposition of R).
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Imaging: 3D-to-2D Projection (a general-case coordinate frame)

Y
0

ZX

S,S′

Sx

Sz

Sy

T

Y′

0′
Z′

X′

S′x

S′z

S′y

S =

 Sx
Sy
Sz

 in 0XYZ

S′ =

 S′x
S′y
S′z

 in 0′X′Y′Z′ = RT(S−T)
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Imaging: 3D-to-2D Projection (an example)

S = [5, 4, 3]T; T = [1, 2, 3]; X = [1, 0, 0]T; Y = [0, 1, 0]T; Z = [0, 0, 1]T

R =

 0.80 −0.36 −0.48
0.60 0.48 0.64
0.00 −0.80 0.60

⇒ {
[X′Y′Z′] = R [XYZ]
[XYZ] = RT [X′Y′Z′]

Vector S in the translated and rotated coordinate frame 0′X′Y′Z′:

• W.r.t. 0′ in 0XYZ: U = S−T = [5− 1, 4− 2, 3− 3]T = [4, 2, 0]T

• Components of U = S−T in the frame 0′X′Y′Z′:
U ′x = (X′)TU = 4 · 0.80 + 2 · 0.60 + 0 · 0.00 = 4.40
U ′y = (Y′)TU = −4 · 0.36 + 2 · 0.48− 0 · 0.80 = −0.48
U ′z = (Z′)TU = −4 · 0.48 + 2 · 0.64 + 0 · 0.60 = −0.64

• U′ = RTU ≡ 4.40X− 0.48Y − 0.64Z in the frame 0′X′Y′Z′

• U = RU′ ≡ 4.40(X′)− 0.48(Y′)− 0.64(Z′) in 0XYZ

• Vector S = T+RU′ = [5, 4, 3]T
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Imaging: 2D-to-3D Inverse Projecting Ray

Y

X

x

y

Z
0 ≡ S00

SZ = (X,Y, Z)

S̃Z = [X,Y, Z, 1]T

s = (x, y)

s̃ = [x, y, 1]T

f

X = Z x
f ; Y = Z y

f

S̃Z = [xZ, yZ, fZ, f ]T

=
[
x, y, f, f

Z

]T
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Imaging: 2D-to-3D Inverse Projecting Ray

2D image point: s = (15, 20); s̃ = [15, 20, 1]T

Example of the projecting ray with the focal distance f = 10

(X,Y, Z)-points of the inverse ray: SZ = (1.5Z, 2.0Z,Z):

X = Z x
f = Z 15

10 = 1.5Z;

Y = Z y
f = Z 20

10 = 2.0Z

In homogeneous coordinates:

S̃Z = [15Z, 20Z, 10Z, 10]T ≡
[
15, 20, 10, 10

Z

]T
Z = −f Z = 0 Z →∞

Image plane Optical centre Infinite point
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Imaging: 2D-to-3D Inverse Projecting Ray

In homogeneous coordinates:

S̃Z = [15Z, 20Z, 10Z, 10]T ≡
[
15, 20, 10, 10

Z

]T
Z = −f Z = 0 Z →∞

Image plane Optical centre Infinite point

Z → 0 : S̃0 =
[
15, 20, 10, 100 =∞

]T →

S0 = lim
t→∞

(
15
t ,

20
t ,

10
t

)
= (0, 0, 0)

Z →∞ : S̃∞ =
[
15, 20, 10, 10∞ = 0

]T →

S∞ = lim
t→0

(
15
t ,

20
t ,

10
t

)
= (∞,∞,∞)

Note that homogeneous coordinates can discriminate between
infinitely far 3D points of different rays!
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3D Vision: Visible Surface from Two or More Images

Restoring a 3D visible surface by inverse projections of its images:

• Cameras calibration to find projective parameters.
• Extrinsic: cameras poses w.r.t. a world coordinate frame.

• Optical centre + optical axis + image coordinate axes.

• Intrinsic: focal distance; principal point; optical distortions

• Rectification to simplify searching for corresponding points.
• Epipolar geometry; canonical stereo geometry.

• Stereo matching to establish correspondences.
• Similarity of image signals corresponding to a visible 3D point.
• Prior constraints for partially occluded points.

• 3D surface reconstruction.
• Triangulation (optical rays’ intersections) for visible 3D points.
• Prior constraints for only monocularly visible points.
• Prior constraints for surface continuity and smoothness
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3D Vision: Basic Notions

Z

X

Baseline b =
2β

Y

O1

O2

S

 x1 =
f(X+β)

Z
; y1 = fY

Z

x2 =
f(X−β)

Z
; y2 = fY

Z

o1

s2

o2

s1

y2
x2

y1
x1

3D point coordinates S = (X,Y, Z) are linked to disparities (parallaxes), or
differences between coordinates of corresponding 2D image points s1 and s2

• Horizontal, or x-disparity: d = x1 − x2 ≡ bf
Z

• Vertical, or y-disparity, δ = y1 − y2, if images are not co-registered

Typical setup: horizontal (x-) baseline of size b; small or zero y-disparities

• Canonical stereo geometry (an epipolar pair): zero y-disparities
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x- and y-Disparities on a Stereo Pair

y1

x1

y2

x2

s◦1

x◦1

y◦1

s◦2

x◦2

y◦2

• Corresponding points: s◦1 = (x◦1, y
◦
1) and s◦2 = (x◦2, y

◦
2)

• x-disparity: d◦ = x◦1 − x◦2
• y-disparity: δ◦ = y◦1 − y◦2 (for the canonical geometry: δ◦ = 0)
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Disparity Maps Formed by Stereo Matching

Generally, a vector-valued map d(x, y) = [dx,y, δx,y]

• Mapping coordinates of binocularly visible points in one image to
corresponding coordinates in the other image:

(x1 = x, y1 = y)↔ (x2 = x− dx,y, y2 = y − δx,y)

• Corresponding signals (intensities, colours) in the images:
g1(x, y)↔ g2 (x− dx,y, y − δx,y)

• Partial occlusion: if a 3D point is
depicted only in one image

• For partially occluded points the mapping
is undefined: no stereo correspondence!

• Canonical epipolar geometry: a scalar
map of x-disparities dx,y

Gray-coded x-disparity map
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Stereo Matching: Searching for Correspondences

y1

x1

y2

x2

s◦1 s◦2

• Search region for a position (x, y) in the left image: a set of
candidate correspondences in the right image

{(x2, y2) : x− dmax ≤ x2 ≤ x− dmin; y − δmax ≤ y2 ≤ y − δmin}

19 / 85



Outline Introduction Epipolar geometry E/F-matrix 8-point algorithm Rectification 3D reconstruction

Corresponding (Conjugate) Epipolar Lines

o1 o2

e1 e2

O1 O2

S

s1

s2

Epipolar lines e1s1; e2s2

Epipolar plane O1SO2

Baseline O1O2

• Image point si – the projection of a 3D point S onto image i

• Epipolar line through si – the trace of intersection of the image
plane by the epipolar plane containing S and the baseline O1O2

• All epipolar planes contain both the optical centres O1 and O2

• All epipolar planes contains both the epipoles e1 and e2
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Corresponding (Conjugate) Epipolar Lines

o1 o2

e1 e2

O1 O2

S

s1

s2

Epipolar lines e1s1; e2s2 Baseline O1O2

Epipolar plane O1SO2

Baseline O1O2

Epipolar line through the projection of S on another image is the trace of
intersection with the same epipolar plane containing S and the baseline

• Epipolar line ejsj conjugate on image j to the point si in image i is
the projection onto the plane j of the optical ray producing si

• Any 3D point on the epipolar plane O1SO2 is projected onto the
conjugate epipolar lines e1s1 and e2s2
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Epipolar Geometry

o1 o2

e1 e2

O1 O2

S

s1

s2

Epipolar lines e1s1; e2s2 Principal points o1, o2

Epipolar plane O1SO2

Conjugate epipolar lines e1s1 and e2s2 depict a visible 2D profile of a
3D scene in the intersecting epipolar plane O1SO2

• s1, s2 – the projections of a 3D point S

• e1, e2 – the epipoles, or projections of each optical centre (called a
“pole”), O2 and O1, onto the other, i.e. opposite image plane
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Epipolar Geometry

S

O1
O2

s1

s2

Epipolar plane O1SO2
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Epipolar Geometry (image 1 – left; image 2 – right)

S

O1 O2
e1 e2

s1

S1 S2

s2

Epipolar line Epipolar line

Epipolar plane

Epipoles

f2

Z2

f1

Z1

π
1 π2

π1, π2 – image planes

f1, f2 – focal lengths of cameras

• O1,O2 – projection centres: the origins of the reference frames

• Z-axis of the 3D reference frame for each camera coincides with the
optical axis of the camera
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Epipolar Geometry

S

O1 O2
e1 e2

s1

S1 S2

s2

Epipolar line Epipolar line

Epipolar plane

Epipoles

f2

Z2

f1

Z1

π
1 π2

π1, π2 – image planes

Basic relationships:

S1 =

 X1

Y1
Z1

; S2 =

 X2

Y2
Z2

 – the same 3D point S in the reference frames

s1 =

 x1
y1

z1 = f1

; s2 =

 x2
y2

z2 = f2

 – projections of S onto the image planes
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Reference Frames of the Left and Right Cameras

S

O1 O2
e1 e2

s1

S1 S2

s2

Epipolar line Epipolar line

Epipolar plane

Epipoles

f2

Z2

f1

Z1

π
1 π2

π1, π2 – image planes

Related via extrinsic parameters of the stereo setup:
Given a 3-D point S, a rigid transformation in 3D space between the coordinate vectors
S1 and S2 in the reference frames is defined as S2 = R(S1 −T)

• T = O2 −O1 – a translation vector

• R – 3× 3 rotation matrix of the relative right-frame rotation
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Reference Frames of the Left and Right Cameras

S

O1 O2
e1 e2

s1

S1 S2

s2

Epipolar line Epipolar line

Epipolar plane

f2

Z2

f1

Z1

π
1 π2

π1, π2 – image planes

Epipoles
e1 and e2 –

points at which the line through the projection centres intersects the images

• The left (right) epipole – the image of the right (left) projection centre

• Canonical epipolar geometry: the epipoles at infinity of the baseline

• Projections s1 = f1
Z1

S1 and s2 = f2
Z2

S2 of a 3D point S = [X,Y, Z]T
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Epipolar Plane

S

O1 O2
e1 e2

s1

S1 S2

s2

Epipolar line Epipolar line

Epipolar plane

Epipoles

f2

Z2

f1

Z1

π
1 π2

π1, π2 – image planes

The plane through three 3D points: S, O1, and O2

• Epipolar line: its intersection with each image plane

• Conjugate lines: both the epipolar lines for an epipolar plane
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Epipolar Constraint

Given a point s1 (resp., s2) of the stereo image 1 (resp., 2), all the
possible matches in the another image 2 (resp., 1) are sitting on
the epipolar line through the epipole e2 (resp., e1)

Parallel epipolar lines – in a special case of horizontal stereo pair:
Image 1

e1 at infinity

O1

e2

O2

Image 2 Image 1

e1 at infinity

O1 O2

Image 2

e2 at infinity

O1O2 is parallel to Image 1 O1O2 is parallel to both images
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Epipolar Relations for Rectifying a Stereo Pair

e1

e2

⇒

Original stereo pair (g1, g2)

Rectified epipolar pair (ĝ1, ĝ2)

ei sc:i:k

Image section
di,k

di:k – the distance to the closest intersection
point sc:i:k of an epipolar ray k with the frame
of the image gi
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Epipolar Relations for Rectifying a Stereo Pair

e1

1 2
3

4

5

6

7

8

9

10

11
1213

Original stereo pair (g1, g2)

12345

6

7

8

9

10

11

12

13

di:k – the distance to the closest intersection
point sc:i:k of an epipolar ray k with the frame
of the image gi

e2

1
2
3
4
5
6
7
8
9
10
11
12
13

Rectified epipolar pair (ĝ1, ĝ2)
1
2
3
4
5
6
7
8
9
10
11
12
13
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

Given the 3× 4 projection matrices Pi = [Qi qi]; i = 1, 2, for 2 sensors,

a 3D point S is projected to the corresponding image points s̃i = PiS̃

1 Find optical centres: Pi

[
Oi

1

]
≡ [Qi qi]

[
Oi

1

]
= 0̃

(i.e. the projected point with indefinite Cartesian coordinates x, y, z = 0
0

):
QiOi + qi · 1 = 0 ⇒ Oi = −Q−1i qi

2 Compute the epipoles (intersections of all epipolar lines) by
projecting the optical centres j ∈ {1, 2} (i ∈ {1, 2}; j 6= i):

ẽj = Pj

[
Oi

1

]
= [Qj qj ]

[
−Q−1i qi

1

]
= −QjQ−1i qi + qj

3 Find the point Di at the infinity of the projecting ray Oisi:

Pi

[
Di

0

]
= QiDi + qi · 0 = s̃i ⇒ Di = Q−1i s̃i

4 Project Di to the other image j: d̃j = Pj

[
Di

0

]
= QjQ

−1
i s̃i
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

As shown in Slide 32, a point si on one image, i, of a stereo pair and the
projection matrices, Pi = [Qi qi]; i = 1, 2, determines on the other
image j; j 6= i, an epipolar line containing the point corresponding to si

• This epipolar line is the projection of the optical ray producing si

• This epipolar line is drawn through the epipole ej and the projection
dj of the point Di at infinity of the inverse optical ray siOi

• The epipole ẽj = Pj

[
Oi

1

]
= [Qj qj ]

[
−Q−1i qi

1

]
• The projection d̃j = QjQ

−1
i s̃i

• The 2D epipolar line: ej + λ (dj − ej); λ ∈ (−∞,∞)

s1

e2

d2

s′1 d′2
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

Example: 2 cameras with the projection matrices Pi = [Qi qi]; i = 1, 2

s̃1 = P1S̃

=

 0.5 0 0 −1.5
0 1 0 0
0 0 1 0




3
0
2
1

 =

 0
0
2


s̃2 = P2S̃

=

 0.5 0 0 1.5
0 1 0 0
0 0 1 0




3
0
2
1

 =

 3
0
2



Image points

 0
2

0
2

 =

 0

0

 and

 3
2

0
2

 =

 1.5

0



Z

X

s1

s2

O2

O1
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

Optical centres: Pi

[
O1

1

]
= QiOi + qi · 1 = 0 ⇒ Oi = −Q−1i qi

O1 = −

 0.5 0 0
0 1 0
0 0 1

−1  −1.50
0


= −

 2 0 0
0 1 0
0 0 1

 −1.50
0

 =

 3
0
0



O2 = −

 0.5 0 0
0 1 0
0 0 1

−1  1.5
0
0


= −

 2 0 0
0 1 0
0 0 1

 1.5
0
0

 =

 −30
0



Z

X

s1

s2

O2

O1
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

• Epipoles ẽj = Pj

[
Oi

1

]
= Pj

[
−Qiqi

1

]
; j 6= i

• For the example in Slides 34 and 35:

ẽ1 = P1


−3
0
0
1

 =

 0.5 0 0 −1.5
0 1 0 0
0 0 1 0



−3
0
0
1

 =

 −30
0



ẽ2 = P2


3
0
0
1

 =

 0.5 0 0 1.5
0 1 0 0
0 0 1 0




3
0
0
1

 =

 3
0
0


Points at −30 = −∞ and 3

0 =∞ along the x-axis
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Epipolar Relations: Calibrated Cameras (.̃ . . – homogeneous coordinates)

• The point D̃i at infinity of the optical ray Oisi projecting to si:

PiD̃i ≡ Pi
[

Di

0

]
= QiDi + qi · 0 = si ⇒ Di = Q−1i s̃i

• For the example in Slides 34 and 35:

D1 =

 2 0 0
0 1 0
0 0 1

 0
0
2

 =

 0
0
2



D2 =

 2 0 0
0 1 0
0 0 1

 3
0
2

 =

 6
0
2


• The projection d̃j of D̃i; j 6= i, on the other image:

d̃j = Pj

[
Di

0

]
= QjQ

−1
i s̃i

• For the example in Slides 34 and 35, Q1 = Q2 implying dj = si
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Epipolar Lines: A Summary

Given a single image point si, the original 3D point S can sit anywhere
on the inverse projecting ray siOi

• On the other image, this ray is projected onto the epipolar line, which
goes through the corresponding image point sj ; j 6= i

• Epipolar constraint: the true match sits on the epipolar line

• All the epipolar lines in an image go through the epipole

• With the exception of the epipole, only one epipolar line goes through
any image point

Only 1D search region due to mapping between the points in one image
and corresponding epipolar lines in the other image

• Corresponding points are on the conjugate epipolar lines

• Helps in rejecting false matches due to occlusions

An obvious goal: Estimate the epipolar geometry, i.e. determine the
point-to-line mapping, for a stereo pair from uncalibrated cameras.
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Vector Cross Product: A Math Prompt

Cross product x× y of 3D vectors x =

 x1
x2
x3

 and y =

 y1
y2
y3

:

x× y =

 x2y3 − x3y2
−x1y3 + x3y1
x1y2 − x2y1

 ≡
matrix Sx of rank 2︷ ︸︸ ︷ 0 −x3 x2
x3 0 −x1
−x2 x1 0

 y1
y2
y3


≡ [x1 x2 x3]

 0 −y3 y2
y3 0 −y1
−y2 y1 0


︸ ︷︷ ︸

matrix Sy of rank 2

Vector z = x× y is orthogonal to both x and y: xTz = yTz = 0

See also: http://en.wikipedia.org/wiki/Cross product
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The Essential Matrix, E

Determines the mapping between the points in one image and
epipolar lines in the other image:

• Equation of the epipolar plane through a 3D point S from the
co-planarity of the vectors S1, T, and S1 −T = RTS2:

O1

S
S1

O2

T

S1 −T = RTS2

(S1 −T)
T
(T× S1) = 0

⇒
(
RTS2

)T
(T× S1) = 0

⇒ ST
2R (T× S1) = 0

⇒ ST
2R

 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

S1︸ ︷︷ ︸
SS1≡T×S1

= 0

⇒ ST
2 (RS)︸ ︷︷ ︸

E

S1 = 0⇒ ST
2ES1 = 0

Rank 2 matrix S · Full-rank R → Essential matrix E = RS of rank 2
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The Essential Matrix, E

• By construction, the matrix S (and thus E) is of rank 2

T× S1 ≡

matrix S︷ ︸︸ ︷ 0 −Tz Ty
Tz 0 −Tx
−Ty Tx 0

S1

• Essential matrix E = RS links naturally the epipolar constraint,
ST
2ES1 = 0, and the extrinsic parameters of the stereo cameras:

S1 =
Z1

f1
s1; S2 =

Z2

f2
s2 ⇒

Z1Z2

f1f2
sT
2Es1 = 0 ⇒ sT

2Es1 = 0

• Mapping between the points and epipolar lines

• Vector a2 = Es1 – parameters of the epipolar line sT
2a2 = 0 in

the right image corresponding to the point s1 in the left image
• Vector aT

1 = sT
2E – parameters of the epipolar line aT

1 s1 = 0 in
the left image corresponding to the point s2 in the right image
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The Fundamental Matrix, F

• No prior information about the stereo system: the unknown
matrices M1 and M2 of the intrinsic camera parameters

• Mapping of points to epipolar lines can be obtained from the
corresponding points only

Points s̃1 and s̃2 in pixel coordinates vs. the same points s1 and s2 in
camera coordinates:

s̃1 ≡

 x̃1
ỹ1
1

 =M1s1; s̃2 ≡

 x̃2
ỹ2
1

 =M2s2

⇔ s1 =M−11 s̃1; s2 =M−12 s̃2

⇔ s̃T
2 M−12 EM−11︸ ︷︷ ︸

Fundamental
matrix F

s̃1 = s̃T
2F s̃1
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The Fundamental Matrix, F

Mapping pixels to the epipolar lines:

• Vector a2 = F s̃1 – parameters of the epipolar line s̃T
2 a2 = 0 in

the right image corresponding to the pixel s̃1 in the left image

• Vector aT
1 = s̃T

2F – parameters of the epipolar line aT
1 s̃1 = 0

in the left image corresponding to the pixel s̃2 in the right
image

• Just as the essential matrix E, the fundamental matrix F has
rank 2

• The fundamental matrix F takes account of both the intrinsic
and extrinsic parameters of the stereo system

The epipolar constraint can be established without prior knowledge
of the stereo cameras parameters!
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The Fundamental Matrix (here, .̃ . . – homogeneous coordinates)

An alternative derivation from optical rays projected onto image planes:

• Any point si of the image i = 1 or i = 2 is produced by an own
optical ray

• Projecting that optical ray onto the other image j; j 6= i, forms the
epipolar line containing the point, which corresponds to sj

• The epipolar line goes via the relevant epipole and the projection of
the infinitely far 3D point of the ray

• Epipoles: ẽ2 = −Q2Q
−1
1 q1 + q2 and ẽ1 = −Q1Q

−1
2 q2 + q1

• Image points obtained by projecting the infinitely far 3D poinrs of
the optical rays: d̃2 = Q2Q

−1
1 s̃1 and d̃1 = Q1Q

−1
2 s̃2

• A line via an arbitrary point s̃ in an image plane:

[α1 α2 α3]

 xs
ys
1

 ≡ α1xs + α2ys + α3 = 0, or αTs̃ = 0
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The Fundamental Matrix (here, .̃ . . – homogeneous coordinates)

The epipolar line, αT
i s̃ = 0, in the plane of the image i crosses the points

ẽi and d̃i, so that the relations αT
i ẽi = αT

i d̃i = 0 hold

• The line parameters, αi, are specified by the cross product

ẽi × d̃i = ẽi ×QiQ−1j s̃j︸ ︷︷ ︸
Uep:iQiQ

−1
j s̃j

; i ∈ {1, 2}; j 6= i

• The 3× 3 rank-2 matrix Uep:i is built from ei as in Slide 39

It can be shown that the epipolar line parameters for the points s̃1 and s̃2
are given by the vectors{

α1 = ẽ1 × d̃1 ≡ Uep:1Q1Q
−1
2 s̃2 = FTs̃2

α2 = ẽ2 × d̃2 ≡ Uep:2Q2Q
−1
1 s̃1 = F s̃1

where F is a fixed 3× 3 fundamental matrix of rank 2

• Any pixel s̃1 (resp., s̃2) on the epipolar line for s̃2 (resp., s̃1)
satisfies the Longuet-Higgins equation: s̃T

2F s̃1 = 0
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The Fundamental Matrix, F

The fundamental matrix relationship s̃T
k,2F s̃k,1 = 0 holds for any

pair of corresponding points:s̃k,j =

 xk,j
yk,j
1

 ; j = 1, 2

 ; k = 1, . . . , n

Meaning of the relationship

Any point sk,2 of the right image specifies in the left image a
unique epipolar line with parameters s̃T

k,2F , such that it goes
through the corresponding point sk,1

Alternatively, the point sk,1 of the left image specifies in the right
image a unique corresponding epipolar line with parameters F s̃k,1,
such that it goes through the corresponding point sk,2

46 / 85



Outline Introduction Epipolar geometry E/F-matrix 8-point algorithm Rectification 3D reconstruction

Conjugate Epipolar Lines for Corresponding Pixels

F =

 0 1 −1
1 0 −2
−2 −1 5

: Lines

 αT
1:k = [y2:k − 2, x2:k − 1, −x2:k − 2y2:k + 5]

αT
2:k = [y1:k − 1, x1:k − 2, −2x1:k − y1:k + 5]

for the corresponding pixels sj:k, j = 1, 2; k = 1, 2:

x1

y1

s̃1,1 =

 −2
−1
1



s̃1,2 =

 0
−3
1



ẽ1 =

 2
1
1


α1:1 =

 −1
2
0



α1:2 =

 −2
1
3



x2

y2

s̃2,1 =

 3
1
1



s̃2,2 =

 2
0
1



ẽ2 =

 1
2
1



α2:1 =

 −2
−4
10


α2:2 =

 −4
−2
8
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Normalising the Fundamental Matrix

• Components of F are to be normalised to exclude the singular
solution F = 0

• Canonical epipolar geometry for a stereopair (the epipolar lines

y1 = y2 = y are parallel to the x-axis of the images) has the
fundamental matrix:

F ≡

 f11 f12 f13
f21 f22 f23
f31 f32 f33

 =

 0 0 0

0 0 1√
2

0 − 1√
2

0


and the epipoles e1 = [∞, c] and e2 = [−∞, c] with an
arbitrary constant c
• The normalization has to account for all the components fkl

of F ; k, l ∈ {1, 2, 3} (except of f33), which cannot be equal to
zero simultaneously
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Estimating the Matrix F : The Eight-Point Algorithm

Given n ≥ 8 known corresponding points’ pairs in stereo images, find F

Each i-th correspondence results in the equation:

s̃T
2:iF s̃1:i = 0 ⇒ [x̃2:i ỹ2:i 1]

 f11 f12 f13
f21 f22 f23
f31 f32 f33


︸ ︷︷ ︸

Fundamental matrix F

 x̃1:i
ỹ1:i
1

 = 0

i.e. the homogeneous linear equation aT
i f = 0 where

ai =
[
x̃2:ix̃1:i x̃2:iỹ1:i x̃2:i ỹ2:ix̃1:i ỹ2:iỹ1:i ỹ2:i x̃1:i ỹ1:i 1

]T
f =

[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
If the n points do not form a degenerate configuration, the 9 entries of F are
given by the non-trivial solution of the over-determined homogeneous linear

system Af ≡

 aT
1

...
aT
n


 f11

...
f33

 = 0 with the n× 9 matrix A
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The Eight-Point Algorithm

Since the system Af = 0 is homogeneous, the solution is unique up
to a signed scaling factor

• Typically, n > 8, i.e. the system is over-determined

• The solution: the column of the matrix V = [v1 . . . v9]
corresponding to the only null singular value in the SVD
(singular value decomposition) A = UDV T

• The columns v1, . . . ,v9 are the eigenvectors of the 9× 9
matrix ATA

• Due to noise, the solution is the column of V associated with
the least singular value

Estimated fundamental matrix Fest is almost always non-singular
(i.e. it is of the full rank 3 rather than the expected rank 2)
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The SVD: Math Prompt (for those who forgot the SVD)

Any rectangular n× k matrix A (n ≥ k) can be decomposed into
the product of three matrices: A = UDV T

U – the column-orthonormal n× k matrix with the columns
being mutually orthogonal unit vectors
• The columns of U are the top k eigenvectors uj ; j = 1, . . . , k,

of the n× n matrix AAT

V – the column-orthonormal k × k matrix with the columns
being mutually orthogonal unit vectors
• The columns of V are the eigenvectors vi; i = 1, . . . , k, of the
k × k matrix ATA

D – the diagonal k × k matrix with non-negative diagonal
elements σi called singular values: σ1 ≥ σ2 ≥ . . . ≥ σk ≥ 0
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SVD: Math Prompt

• The matrices U and V are not unique, but the singular values
are fully determined by the matrix A

• The number of non-zero singular values equals the rank of A
(if n ≥ k, the rank of A is equal to or less than k)

• Basic properties of the SVD:
• Avi = σiui and ATui = σivi
• ATAvi = σiA

Tui = σ2
i vi

• AATui = σiAvi = σ2
i ui

• The squared singular values are the eigen-values of both the
n× n matrix AAT and k × k matrix ATA

• An alternative definition of the SVD: the n× n matrix U , n× k matrix

D, and k × k matrix V

• A larger memory space for the matrices: n2 + k + k2 rather
than nk + k + k2 for the original definition as typically n� k
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The 9× 9 Matrix ATA

Simplifying notation: Xα
2 Y

γ
2 X

β
1 Y

δ
1 =

n∑
i=1

xα2:iy
γ
2:ix

β
1:iy

δ
1:i

ATA =



X2
2X

2
1 X2

2X1Y1 X2
2X1 X2Y2X

2
1 X2Y2X1Y1 X2Y2X1 X2X

2
1 X2X1Y1 X2X1

X2
2X1Y1 X2

2Y
2
1 X2

2Y1 X2Y2X1Y1 X2Y2Y
2
1 X2Y2Y1 X2X1Y1 X2Y

2
1 X2Y1

X2
2X1 X2

2Y1 X2
2 X2Y2X1 X2Y2Y1 X2Y2 X2X1 X2Y1 X2

X2Y2X
2
1 X2Y2X1Y1 X2Y2X1 Y 2

2 X
2
1 Y 2

2 X1Y1 Y 2
2 X1 Y2X

2
1 Y2X1Y1 Y2X1

X2Y2X1Y1 X2Y2Y
2
1 X2Y2Y1 Y 2

2 X1Y1 Y 2
2 Y

2
1 Y 2

2 Y1 Y2X1Y1 Y2Y
2
1 Y2Y1

X2Y2X1 X2Y2Y1 X2Y2 Y 2
2 X1 Y 2

2 Y1 Y 2
2 Y2X1 Y2Y1 Y2

X2X
2
1 X2X1Y1 X2X1 Y 2

2 Y1 Y2X1Y1 Y2X1 X2
1 X1Y1 X1

X2X1Y1 X2Y
2
1 X2Y1 Y2X1Y1 Y2Y

2
1 Y2Y1 X1Y1 Y 2

1 Y1

X2X1 X2Y1 X2 Y2X1 Y2Y1 Y2 X1 Y1 n



53 / 85



Outline Introduction Epipolar geometry E/F-matrix 8-point algorithm Rectification 3D reconstruction

The Eight-Point Algorithm

The singularity of F is enforced by adjusting the entries of Fest:

1 The SVD Fest = U◦D◦V
T
◦

2 Set the smallest singular value in the diagonal matrix D◦ to zero in
order to obtain the corrected matrix D+

◦

3 The corrected estimate: F+
est = U◦D

+
◦ V

T
◦

To escape numerical instabilities: make comparable values of entries of A
by normalising coordinates of the corresponding points

• Translate both the coordinates of each point to the centroid of each
data set: mx = 1

n

∑n
i=1 xi; my = 1

n

∑n
i=1 yi

• Scale the norm of each point to make the unit average norm over

the data set: c = n
√
2∑n

i=1

√
(xi−mx)2+(yi−my)2

:

s′i = Hsi ≡

 c 0 −mxc
0 c −myc
0 0 1

 xi
yi
1

 ≡
 c(xi −mx)
c(yi −my)

1
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The Stable Eight-Point Algorithm

Input: n pixel-to-pixel correspondences:{(
s̃1:i = [x1:i, y1:i, 1]

T
; s̃2:i = [x2:i, y2:i, 1]

T
)
: i = 1, . . . , n

}
Data normalisation: {s̃′α:i = Hαs̃α:i : α ∈ {1, 2}; i = 1, . . . , n} where

H1 =

 c1 0 −c1mx:1

0 c1 −c1my:1

0 0 1

 ; H2 =

 c2 0 −c2mx:2

0 c2 −c2my:2

0 0 1


Data restoration

{
s̃α:i = H−1α s̃′α:i : α ∈ {1, 2}; i = 1, . . . , n

}
H−11 =

 1
c1

0 mx:1

0 1
c1

my:1

0 0 1

 ; H−12 =

 1
c2

0 mx:2

0 1
c2

my:2

0 0 1


SVD A = UDV T of the n× 9 matrix A for the homogeneous system of
n linear equations AF = 0; n ≥ 8 (overdetermined system for n > 8)
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The Stable Eight-Point Algorithm

• The SVD solution f◦ =


f◦11
f◦12

...
f◦33

 (up to an unknown signed

scale factor) by using the column of V corresponding to the
least singular value of A

• The SVD of the 3× 3 matrix F ◦est = U◦D◦V
T
◦ in order to

enforce the singularity (i.e. rank 2) constraint of the
fundamental matrix
• Correct the matrix D◦ by setting the least singular value in its

main diagonal equal to 0
• Use the corrected matrix D+

◦ to compute the corrected
estimate F+

est = U◦D
+
◦ V

T
◦ of the fundamental matrix

• Renormalised output estimate Fest =
(
H−12

)T
F+
estH

−1
1
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Locating the Epipoles

Accurate localisation of the epipoles:

• To refine the locations of the conjugate epipolar lines

• To simplify stereo geometry

• To recover 3D structure in the case of uncalibrated stereo

The left epipole e1 sits on all epipolar lines in the left image:

• The relationship sT
2Fe1 = 0 holds for every s2

• F is not identically zero, so it follows that Fe1 = 0

• F has rank 2, so the epipole is the null space of F
• Null space is the set of all solutions s to the equation F s = 0

• Similarly, e2 is the null space of FT

Algorithm: SVD F = UDV T

• e1 – the column of V corresponding to the null singular value

• e2 – the column of U corresponding to the null singular value
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Locating the Epipoles: An Example

Canonical stereo geometry:

F =

 0 0 0
0 0 1
0 −1 0

⇒
 0 0 0

0 0 1
0 −1 0

 0 0 0
0 0 −1
0 1 0

 =

 0 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

FFT(=FTF )⇒ |FFT−λI|=−λ(1−λ)2=0

⇒ λ1,2 = 1; eT
1,2 = [0 ± 1 0]; eT

2,1 = [0 0 ± 1]; λ3 = 0; eT
3 = [±1 0 0]

F =

 0 0 1
0 1 0
1 0 0


︸ ︷︷ ︸

U

 1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

D

 0 −1 0
0 0 1
−1 0 0


︸ ︷︷ ︸

V T

⇒ e1 =

 1
0
0

 ; e2 =

 −10
0

 i.e. x-coordinates of both the epipoles are at

±infinity and y-coordinates are indefinite

58 / 85



Outline Introduction Epipolar geometry E/F-matrix 8-point algorithm Rectification 3D reconstruction

Distance to an Epipolar Line

Squared Cartesian distance between a point s̃◦ =

 x◦

y◦

1

 and an

epipolar line αx+ βy + γ = 0 with coefficients c = (α, β, γ):

d2 = min
x,y

{
(x◦ − x)2 + (y◦ − y)2 | αx+ βy + γ = 0

}
Constrained Lagrange optimisation:

d2 =
(αx◦ + βy◦ + γ)2

α2 + β2

Distance: d = 1√
α2+β2

|αx◦ + βy◦ + γ|

Signed distance: d = 1√
α2+β2

(αx◦ + βy◦ + γ)
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Distance to an Epipolar Line

Coefficients of the epipolar lines from the relation s̃T
2:iF s̃1:i = 0:

1 Epipolar line on image 1:
c1 = (f11x2:i+f21y2:i+f31, f12x2:i+f22y2:i+f32, f13x2:i+f23y2:i+f33)

2 Epipolar line on image 2:
c2 = (f11x1:i+f12y1:i+f13, f21x1:i+f22y2:i+f23, f31x2:i+f32y2:i+f33)

Squared distances between the corresponding points and related
conjugate epipolar lines:

d21:i =
(s̃T

2:iF s̃1:i)
2

(f11x2:i+f21y2:i+f31)2+(f12x2:i+f22y2:i+f32)2

d22:i =
(s̃T

2:iF s̃1:i)
2

(f11x1:i+f12y1:i+f13)2+(f21x1:i+f22y1:i+f23)2

where s̃T
2:iF s̃1:i = aT

i f (see Slide 49).
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Distance to an Epipolar Line

• The 8-point algorithm accounts for only the nominators of the
squared distances between the points and epipolar lines.

• The nominators are quadratic forms with the 9× 9 matrices
Ai = aia

T
i of the corresponding coordinates and their products:(

aT
i f
)2

= fTAif .

• The denominators are also the quadratic forms:

d21:i = fTAif
(f11x2:i+f21y2:i+f31)2+(f12x2:i+f22y2:i+f32)2

= fAif
fB1:if

d22:i = fTAif
(f11x1:i+f12y1:i+f13)2+(f21x1:i+f22y1:i+f23)2

= fAif
fB2:if

• Components of the 9× 9 matrices B1:i and B2:i depend on the
coordinates s̃2 and s̃1, respectively.
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Distance to an Epipolar Line

• Minimising the total sum of the nominators:

f∗ = arg min
|f |=1

{
fTAf

}
with A =

∑n
i=1Ai does not guarantee the minimal mean distance

of the corresponding points from their epipolar lines.

• The constrained minimisation, making the total sum of the
denominators, fTBf , equal to the unit value may result in a more
accurate and noise-resistant 8-point algorithm:

f∗ = arg min
|f |=1

{
fTAf : fTBf = 1

}
where B =

n∑
i=1

(B1:i +B2:i).
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Rectification of Stereo Images

Rectification of a stereo pair – a transformation (warping) of each
image such that pairs of conjugate epipolar lines become collinear
and parallel to one of the image axes (typically, the x-axis)

• Goal: 1D search on scan-lines for point-to-point
correspondences after rectification

• Computation: from the known intrinsic and extrinsic
parameters of stereo cameras
• Rectified images are thought of as acquired by a new stereo rig

obtained by rotating the original cameras around their optical
centres

• Epipolar lines associated to a 3D point P in the original
cameras become collinear in the rectified cameras

• Original cameras can be in any position, and their optical axes
may not intersect
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Rectification of a Stereo Pair

Rotation Rrect

Rotation Rrect

Rotation R

←Rectified stereo pair→

←Original pair→
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Rectification Algorithm

Assumptions for the two cameras (without losing generality):
• Origin of the image reference frame – in the principal point (the trace of

the optical axis)

• The same focal lengths f of both cameras

• Coordinate frames of the left and right cameras are related by the
translation vector T = O2 −O1 and the relative rotation matrix R

Basic steps of rectification:

1 Rotate the left camera to make its image plane parallel to the
baseline of the system (the epipole goes to infinity along the x-axis)

2 Apply the same rotation Rrect to the right camera to recover
the original geometry

3 Rotate the right camera by R to make its image plane parallel
to the baseline

4 Adjust the scale in both the camera reference frames
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Rectification Algorithm: Rotation Matrix Rrect for Step 1

From a triple of mutually orthogonal unit vectors: Rrect =

 eT
1

eT
2

eT
3


• An arbitrary choice due to the under-constrained problem

• Vector e1 – along the direction of translation (as the image
centre is in the origin): e1 =

T
|T| =

1√
T 2
x+T

2
y+T

2
z

[Tx Ty Tz]
T

• Vector e2 – orthogonal to the plane containing both optical
centres (i.e. the translation vector T) and the optical axis Z
of the left camera with the directional vector dz = [0 0 1]T:

e2 =
e1×dz
|e1×dz | =

1√
T 2
x+T

2
y

[−Ty Tx 0]T

• Vector e3 – orthogonal to the first two vectors:

e3 = e1 × e2 = 1√
(T 2

x+T
2
y )(T

2
x+T

2
y+T

2
z )

[
−TxTz − TyTz T 2

x + T 2
y

]T
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Rectification Algorithm

Input:

• Intrinsic and extrinsic parameters (in particular, the right camera
translation T and rotation R w.r.t. the left camera)

• Images (or sets of their points) to be rectified

• Assumptions in Slide 65 about the origins and focal distances hold

Basic steps:

1 Build the matrix Rrect (see Slide 66)

2 Set R1 = Rrect and R2 = RRrect

3 For each left-camera point, sT
1 = [x y f ], compute

• s′1 ≡ [x′ y′ z′]
T
= R1s1 and then

• the rectified coordinates ŝT
1 =

[
fx′

z′
fy′

z′ f
]

4 Repeat Step 3 for the right camera using R2 and s2

67 / 85



Outline Introduction Epipolar geometry E/F-matrix 8-point algorithm Rectification 3D reconstruction

Rectification of a Stereo Pair

Original pair

Rectified pair
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Three Basic Cases for a Stereo Pair

Reconstruction of an optical 3D surface depending on the amount
of a priori knowledge about parameters of stereo cameras:

• Known both intrinsic and extrinsic parameters: a 3-D
scene is uniquely reconstructed by triangulation of the
corresponding image points

• Known only intrinsic parameters: a 3-D scene is still
reconstructed and also the extrinsic parameters are estimated,
but up to an unknown scaling factor

• Unknown intrinsic and extrinsic parameters: a 3-D scene
is still reconstructed, but up to an unknown global projective
transformation

Stereo matching: determining the corresponding points in a pair
or multiple images of the same 3D scene
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Triangulation from Projections

O1

s1

1

O2

s2

2

S′

w

A 3D point S, projected onto a pair of corresponding points s1 and
s2, lies at the intersection of two inverse optical rays, 1 and 2,
from O1 through s1 and from O2 through s2, respectively

• Due to approximate camera parameters and image locations,
the two rays may not actually intersect in the 3D space

• Least-squares estimation of the intersection: the point S′ at
the minimum distance from both the rays along w

• w – a vector being orthogonal to both the optical rays
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Triangulation (in the Left Reference Frame)

O1

s1

1

O2

s2

2

S′

w

Y1

Z1

X1

Y2

Z2
X2

Translation T from O1 to O2 in the left frame

Rotation R of the frame X2Y2Z2 w.r.t. X1Y1Z1

w = s1 ×RTs2 – a vector orthogonal to both 1 and 2

• Cross product (see Slide 39 and http://en.wikipedia.org/wiki/Cross product ): αx
αy
αz

×
 βx
βy
βz

 =

 γx
γy
γz

 ≡
 αyβz − αzβy
αzβx − αxβz
αxβy − αyβx


• S′ – midpoint of the segment joining 1 and 2 and parallel to w
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Triangulation (in the Left Reference Frame)

O1

s1

1

O2

s2

2

S′

w

Y1

Z1

X1

Y2

Z2
X2

Translation T from O1 to O2 in the left frame

Rotation R of the frame X2Y2Z2 w.r.t. X1Y1Z1

• as1; a ∈ R = (−∞,∞): ray 1 through the left origin O1 and point s1

• T+ bRTs2; b ∈ R: ray 2 through the right origin O2 and point s2

• R – orthonormal rotation matrix (3D rotation of the right
frame w.r.t. the left frame)

• RT – transposed (i.e. inverted) matrix R (3D rotation of the
right frame vectors back to the left frame)
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Triangulation (in the Left Reference Frame)

O1

s1

1

O2

s2

2 T+ b0R
Ts2

S′

a0s1

w

Y1

Z1

X1

Y2

Z2
X2

Translation T from O1 to O2 in the left frame

Rotation R of the frame X2Y2Z2 w.r.t. X1Y1Z1

• Endpoints, a0s1, and T+ b0R
Ts2, of the segment joining 1

and 2 and parallel to w are computed by solving the linear
system of equations for a0, b0, and c0:

as1 + c
(
s1 ×RTs2

)
= T+ bRTs2

⇒ as1 − bRTs2 + c
(
s1 ×RTs2

)
= T
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Reconstruction up to a Scale

• Reconstruction by using the essential matrix, E
• If q1 and q2 are normalised homogeneous coordinates of the

corresponding points in images, then qT
2Eq1 = 0

• Normalised coordinates are measured in a coordinate system
with the origin at the trace of 3D axis Z on the image plane

• See http://en.wikipedia.org/wiki/Essential matrix

and Slides 40 and 41

• Known data: only the intrinsic parameters and n pairs of the
corresponding points, n ≥ 8

• Since the baseline is unknown, the true scale of the viewed
scene cannot be recovered

The estimated essential matrix, E, can only be specified up to
an arbitrary scale factor
• Convenient normalisation of E - by normalising the length of

the translation vector T to unit
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Normalising the Essential Matrix E

From the definition: E = RS

ETE = (RS)TRS = STRTRS = STS

=

 0 Tz −Ty
Tz 0 −Tx
−Ty Tx 0

 0 −Tz Ty
−Tz 0 Tx
Ty −Tx 0



=

 T 2
y + T 2

z −TxTy −TxTz
−TyTx T 2

z + T 2
x −TyTz

−TzTx −TzTy T 2
x + T 2

y

 ⇒ Tr(ETE) = 2|T|2

• Normalised translation: T̂ = T
|T| ≡

[Tx Ty Tz ]
T

√
T 2
x+T

2
y+T

2
z

=
[
T̂x T̂y T̂z

]
• Normalised essential matrix: Ê = E√

Tr(ETE)/2

• ÊTÊ =

 1− T̂ 2
x −T̂xT̂y −T̂xT̂z

−T̂yT̂x 1− T̂ 2
y −T̂yT̂z

−T̂zT̂x −T̂zT̂y 1− T̂ 2
z
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Finding the Pair (T̂, R)

Components of T̂ – from any row or column of G = ÊTÊ

• The estimates Tx = ±
√
1−G11; Ty = −G12

Tx
, and Tz = −G13

Tx
may differ from the true components by a global sign change
(due to quadratic entries of G)

• Rotation matrix R – from Ê and T̂ :

Ê =

 ÊT
1

ÊT
2

ÊT
3

 ⇒ wi = Êi × T̂
i=1,2,3

⇒ R =

 RT
1 = (w1 +w2 ×w3)

T

RT
2 = (w2 +w3 ×w1)

T

RT
3 = (w3 +w1 ×w2)

T


• Due to the twofold ambiguity in the sign of Ê and T̂, there

are four different estimates for the goal pair (T̂, R)

• 3D reconstruction of the viewed points resolves the ambiguity
and finds the only correct estimate
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Finding the Pair (T̂, R)

To resolve the ambiguity, the third component of every point in the
left reference frame is computed for each of the four pairs (T̂, R)

S2 = R(S1 − T̂) → Z2 = RT
3 (S1 − T̂) → s2 =

f2
Z2

S2

⇒ s2 =
f2R(S1−T̂)

RT
3 (S1−T̂)

→ x2 =
f2RT

1 (S1−T̂)

RT
3 (S1−T̂)

⇒ s1 =
f1
Z1

S1 → Z1 = f1
(f2R1−x2R3)TT̂
(f2R1−x2R3)Ts1

⇒ S1 =
(f2R1−x2R3)TT̂
(f2R1−x2R3)Ts1

s1; S2 = R(S1 − T̂)
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Reconstruction Algorithm

Input: a set of corresponding points and an estimated E

1 Recover the normalised translation vector T̂

2 Recover the rotation matrix R

3 Reconstruct the 3D coordinates Z1 and Z2 of each point

1 If the signs of Z1 and Z2 of the reconstructed points are both
negative for some point, change the sign of T̂ and go to 3

2 Otherwise if the signs of Z1 and Z2 of the reconstructed
points are one negative and one positive for some point,
change the sign of each entry of E and go to 2

3 Otherwise if the signs of Z1 and Z2 of the reconstructed
points are both positive for all points, exit
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Uncalibrated Reconstruction

No information on the intrinsic and extrinsic parameters

• Only n point-to-point correspondences, n > 8, are given
• Location of the epipoles is thus known
• Reconstruction accuracy is affected by accuracy of disparities,

not calibration

Reconstruction is unique only up to an unknown projective
transformation of the world

• Projection matrix of each camera is recovered from 5 arbitrary
scene points and the epipoles up to this transformation
• No three of these 3D points should be collinear
• No four of these 3D points should be coplanar

• Then 3D location of any point can be found by triangulation
• Five 3D points S1, . . . ,S5 to be recovered from their 2D

locations, s1:1, . . . , s1:5 and s2:1, . . . , s2:5 on the images
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Uncalibrated Reconstruction

• Planar projective transformation is fixed if destinations of 4
spatial points in an image are known

• Spatial projective transformation is fixed if the destinations
of 5 points are known: MSi = ρisi; ρi 6= 0; i = 1, . . . , 5,
where M is the projection 3× 4 matrix

• Without losing generality, a projective transformation is set up
to associate the 5 image points with the following 3D points:

1 S1 = [1, 0, 0, 0]T – an infinitely far 3D point along the X-axis
2 S2 = [0, 1, 0, 0]T – an infinitely far 3Dpoint along the Y -axis
3 S3 = [0, 0, 1, 0]T – an infinitely far 3D point along the Z-axis
4 S4 = [0, 0, 0, 1]T – the 3D coordinate frame origin [0 0 0]
5 S5 = [1, 1, 1, 1]T – the “unit” 3D point [1 1 1]T

in homogeneous coordinates: [X,Y, Z]T ↔ [X,Y, Z, 1]T and [x, y]T ↔ [x, y, 1]T
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Uncalibrated Reconstruction

Spatial projective transformation is set up to associate the image
points si with the standard projection basis Si on Slide 80:

1 s1 = [1, 0, 0]T – an infinitely far 2D point along the x-axis

2 s2 = [0, 1, 0]T – an infinitely far 2D point along the y-axis

3 s3 = [0, 0, 1]T – the 2D coordinate frame origin [0 0]T

4 s4 = [1, 1, 1]T – the “unit” 2D point [1 1]T

5 s5 = [α, β, γ]T – an arbitrary other point
[
α
γ
β
γ

]
in the image

The projection matrix M is found from MSi = ρisi; i = 1, . . . , 5:
e.g.

 M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34




1
0
0
0

 = ρ1

 1
0
0

⇒M11 = ρ1; M21 = 0; M31 = 0
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Uncalibrated Reconstruction

The chosen standard basis simplifies the expression of M :

MS1 = ρ1s1 ⇒ M11 = ρ1; M21 = 0; M31 = 0
MS2 = ρ1s2 ⇒ M12 = 0; M22 = ρ2; M32 = 0
MS3 = ρ3s3 ⇒ M13 = 0; M23 = 0; M33 = ρ3
MS4 = ρ4s4 ⇒ M14 = ρ4; M24 = ρ4; M34 = ρ4
MS5 = ρ5s5 ⇒ M11 +M12 +M13 +M14 = αρ5

M21 +M22 +M23 +M24 = βρ5
M31 +M32 +M33 +M34 = γρ5
ρ1 = αρ5 − ρ4
ρ2 = βρ5 − ρ4
ρ3 = γρ5 − ρ4

M =

 αρ5 − ρ4 0 0 ρ4
0 βρ5 − ρ4 0 ρ4
0 0 γρ5 − ρ4 ρ4
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Uncalibrated Reconstruction

MSi = ρisi
i=1,...,5

⇒
M =

 ρ1 0 0 ρ4
0 ρ2 0 ρ4
0 0 ρ3 ρ4


MS5 = ρ5s5


⇒ M =

 αρ5 − ρ4 0 0 ρ4
0 βρ5 − ρ4 0 ρ4
0 0 γρ5 − ρ4 ρ4



⇒ M =

 ακ− 1 0 0 1
0 βκ− 1 0 1
0 0 γκ− 1 1

 ; κ = ρ5
ρ4

The projection matrix M depends on the parameter κ and the

chosen image point [α, β, γ]T →
[
α
γ
β
γ

]T
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Uncalibrated Reconstruction

Projection matrices of the left (M1) and right (M2) cameras are
found up to unknown parameters κ1 and κ2:

Mc =

 αcκc − 1 0 0 1
0 βcκc − 1 0 1
0 0 γcκc − 1 1

 where c ∈ {1, 2}

The parameters are computed using known projection centres O1,
O2 and locations of the epipoles e1, e2 (see Slide 32).

• Projection centres – the null spaces of M1 and M2, i.e.
M1O1 = 0 and M2O2 = 0

• Epipoles: M1O2 = σ1e1 and M2O1 = σ2e2 with σ1 6= 0,
σ2 6= 0

Then any 3D point is reconstructed using the inverse projective
rays through O1 and O2
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Uncalibrated Reconstruction

Parametric projection matrices for c = 1, 2:

Mc =

 αcκc − 1 0 0
0 βcκc − 1 0
0 0 γcκc − 1︸ ︷︷ ︸

3×3 matrix Qc

1
1
1


︸ ︷︷ ︸
qc

⇒ [Qc qc]

• Optical centres: Oc = −Q−1c qc = −

 (1/(αcκc − 1)
1/(βcκc − 1)
1/(γcκc − 1)


• Epipoles: ẽj = −QjQ−1i qi + qj = 1− (αjκj − 1)/(αiκi − 1)

1− (βjκj − 1)/(βiκi − 1)
1− (γjκj − 1)/(γiκi − 1)

 ≡
 (αiκi − αjκj)/(αiκi − 1)

(βiκi − βjκj)/(βiκi − 1)
(γiκi − γjκj)/(γiκi − 1)
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