THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2011
 Campus: City

\qquad

COMPUTER SCIENCE

COMPSCI 773: Intelligent Vision Systems

(Time allowed: TWO hours)

NOTE: Attempt all questions!
Write the answers in the boxes below the questions.

Marks for each question are shown just before each answer box.

This is an open book exam. Candidates may bring calculators, notes, reference books, or other written material into the examination room.

Section:	\mathbf{A}	\mathbf{B}	\mathbf{C}	Total
Possible marks:	25	50	25	100
Awarded marks:				

Student ID: \qquad

Section A: Patrice: 3D geometry/calibration: $\mathbf{2 5}$ marks
1.
\square

Student ID: \qquad

Section B: Epipolar geometry and binary machine vision

Section B:. 1 Calibration

2. Consider a 3 by 3 calibration matrix with r_{1}, r_{2}, and r_{3} colum vectors. In both Tsai and Zhang's calibration, r_{1} and r_{2} are obtained first. Explain why and how r_{3} can be inferred from r_{1} and r_{2} ?
\square
3. Application: Consider q 2 , vector $r_{1}=\left[\begin{array}{c}1 \sqrt{2} \\ 1 \sqrt{2} \\ 0\end{array}\right]$ and $r_{2}=\left[\begin{array}{c}1 \sqrt{2} \\ 0 \\ 1 \sqrt{2}\end{array}\right]$
[2 marks]

Student ID: \qquad
4. Consider the 3D world reference frame in which all cartesian points are written as $X_{w}=\left[\begin{array}{c}X_{w} \\ Y_{w} \\ Z_{w}\end{array}\right]$. Consider the camera reference frame in which all cartesian points are written as $M_{c}=\left[\begin{array}{c}X_{c} \\ Y_{c} \\ Z_{c}\end{array}\right]$. Consider the 3 by 3 rotation R and translation T which relates the camera reference frame to the world reference frame. Write the transform M such that $X_{w}=M X_{c}$ as a 4 by 4 homogeneous matrix.

5. Write the homogeneous matrix \tilde{M} which relates X_{c} to X_{w} as a function of R and $\mathrm{T}\left(X_{c}=\tilde{M} X_{w}\right)$.
[3 marks]

Student ID: \qquad
(
6. Application: Consider q4 and q5, Rotation $R=\left[\begin{array}{ccc}1 \sqrt{2} & 1 \sqrt{2} & 0 \\ -1 \sqrt{2} & 1 \sqrt{2} & 0 \\ 0 & 0 & 1\end{array}\right]$ and translation $\mathrm{T} r_{2}=$ $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Compute M and \tilde{M}. Show your working. $\quad[4$ marks $]$

Section B:. 2 Stereo vision

7. Two identical cameras, with optical centres O_{1} and O_{2}, are placed in epipolar positions with parallel optical axes ($O_{1} O_{1}$ and $O_{2} O_{2}$) as displayed in the above figure. The distance between the optical centres is known as the baseline distance b and the focal length for both camera is given by $f . p$ is the physical width of one pixel on the cameras sensor and n the number of pixels on

Student ID: \qquad
one scanline with $W_{\text {chip }}$ the cameras sensor width, or scanline width. A point P at depth Z appears in each image at different position on a scanline. The disparity d_{P} of point P, is given by $d_{P}=d_{2}-d_{1}$.
Exhibit the formula which links the disparity d_{P} to the depth Z at point P, the focal length f and the baseline b (Show your working).
\square
8. Consider R_{1}, T_{1} and R_{2}, T_{2} rotation and translation matrices which relate camera 1 , respectively camera 2, with the same calibration object. Find the matrix P which relates camera 1 and camera 2 optical centers ($O_{2}=P O_{1}$) as a function of matrices R_{1}, T_{1}, R_{2}, and T_{2}. Show your working.
\square
9. Consider the following values for R_{1}, T_{1} and R_{2}, T_{2}. Compute the baseline b .

Student ID: \qquad
\square
10. Consider point M_{1} in camera 1 situated at the horizontal distance x_{1} from the camera 1 optical center. M_{1} is the projection of world point M into camera 1 . Compute X_{1} horizontal ccordinate of point M_{1} as a function of x_{1}, camera 1 and 2 parameters and Z_{M} the shortest distance between point M and $O_{1} O_{2}$. Show your working.
[3 marks]
\square
11. Knowing Z and the stereo system parameters f , and \mathbf{b}, infer x_{2}. Consider point M_{1} in camera 1 situated at the horizontal distance x_{2} is the horizontal distance from the camera 1 optical center of point M_{2} which is the projection of world point M into camera 2.
[3 marks]

Student ID: \qquad
\square
12. What is the disparity for point M in the cameta systsem defined in question X

13. what is the disparity value when point P is at the horizon, respectively on the cameras scanline?
[2 marks]

Student ID:

Student ID: \qquad
14. Practically, the camera resolution (that is its pixels width p and sensors width $W_{\text {chip }}$) will determine the minimum measurable depth $Z_{\text {min }}$. Give the formula which gives $Z_{\text {min }}$ as a function of the sensors width, b and f. Compute $Z_{\text {min }}$ when the cameras are 5 centimetres apart, the focal length is 25 mm , the number of pixel elements per line is 1000 and the pixel width is $5 \mu \mathrm{~m}$.
[5 marks]

Student ID:

Section B:. 3 Calibration

15. Explain what is the Radius of Ambiguity and what is it used for.
[2 marks]
\square
16. The world reference frame is situated on the cube and follows the clock-wise orientation rule (xaxis horizontal rightwards, y-axis vertical upwards). Patches P_{1}, P_{2} and P_{3} with respective centre at coordinates $[100,100,0],[104,100,0],[100,104,0]$ are circular targets on the plane used to calibrate a camera. After calibration, the rotation matrix R linking the camera optical centre to the world reference frame is equal to $[1,0,0 ; 0,-1,0 ; 0,0,1]$, the translation vector T linking the WRF centre to the camera optical centre is given by $T=[0,0,-1000]^{T}$ where v^{T} is the transpose of vector v . The focal length f is calculated equal to 5 mm and the camera sensor specifications are:
Width $\quad 4.800 \mathrm{~mm}$ (640 elements)
Height $\quad 3.600 \mathrm{~mm}$ (480 elements)
A distortion-free lens is assumed. After some processing steps on the image of the calibration plane acquired for calibration purpose, the target P_{1} is found to have its centre at position $(389,308.333)$ in the image.

Draw the different reference frames as well as the patch centres and image point respecting the usual convention as well as the above-mentioned requirements.
[3 marks]

Student ID:
17. Compute the corresponding Radius of Ambiguity using the L_{2} Euclidean distance as a distance measure.

Student ID: \qquad
18. in your opinion, is the calibration satisfactory?
\square
19. Assume a radial distortion effect with $\kappa_{1}=-0.00066 \mathrm{~mm}^{-2}$ and Tsai formulation between distorded and undistorded coordinates: $r_{u}=r_{d}\left(1+\kappa_{1} r^{2}\right)$
Compute the new radius of ambiguity. Comments?
\square

Student ID: \qquad

Section C: Epipolar Geometry and Stereo Matching: $\mathbf{5 0}$ marks

20. Let the baseline of a two-camera system coincide with the X-axis of the world $X Y Z$-coordinates. How are both the cameras placed one with respect to another if the epipole in the left image coincides with the principal point (trace of the optical axis) and the epipole in the right image is sitting infinitely far along the X-axis and has zero y-coordinate?
\square
21. How are two cameras placed one with respect to another if epipoles in both images are sitting infinitely far along the Y-axis of the world co-ordinate frame and have the same x-coordinate? [4 marks]
\square
22. Given a camera with the projection matrix $P_{1}=\left[\begin{array}{cccc}0.25 & 0 & 0 & -4 \\ 0 & 0.5 & 0 & -2 \\ 0 & 0 & 0.25 & -1\end{array}\right]$, determine the optical centre of this camera?

Student ID: \qquad
23. Given the same camera as in Question 22 above, and the second camera with the projection matrix $P_{2}=\left[\begin{array}{cccc}0.5 & 0 & 0 & 4 \\ 0 & 0.25 & 0 & 2 \\ 0 & 0 & 0.5 & 1\end{array}\right]$, determine the point $\widetilde{\mathbf{D}}_{1}=\left[\begin{array}{c}\mathbf{D}_{1} \\ 0\end{array}\right]$ at the infinity of the projection ray, which projects the 3 D point with homogeneous coordinates $[1,1,1,1]^{\top}$ to the image plane of the first camera, and project $\widetilde{\mathbf{D}}_{1}$ to the image plane of the second camera. [6 marks]
\square
24. What relationship does exist between the fundamental matrix $\mathbf{F}=\left[F_{i, j}\right]_{i, j=1}^{3}$ of a pair of cameras and the homogeneous coordinates $\widetilde{\mathbf{p}}_{1}$ and $\widetilde{\mathbf{p}}_{2}$ of corresponding points with the Cartesian coordinates \mathbf{p}_{1} and \mathbf{p}_{2} in the left and right images, respectively, of a stereo pair captured by the cameras.
[5 marks]

25. In terms of the relationship in Question 24 , specify the epipolar line $\mathbf{a}^{\top} \widetilde{\mathbf{p}}_{1}=0$ in the left image that corresponds to the point with Cartesian coordinates $\mathbf{p}_{2}=\left(x_{2}, y_{2}\right)$ in the right image. [4 marks]

26. In which point(s) do all the epipolar lines of the right and left image of a stereo pair intersect?
[3 marks]

Student ID: \qquad
27. Describe, in brief, main reasons why stereo matching that searches for corresponding areas in a stereo pair of images is an ill-posed, in the math sense, problem.
[4 marks]
\square
28. 3D stereo reconstruction of human heads / faces typically uses stereo pairs captured with cameras having a vertically oriented baseline. Explain in brief why such pairs are more appropriate than the pairs with the conventional horizontal baseline.

29. Describe in brief which differences between the corresponding image signals are taken into account in the the correlation based matching.
Hint: Consider math models of signals and noise that lead to the matching score.

30. Describe in brief which problem does the dynamic programming stereo (DPS) solve. [6 marks] Hint: Consider simplifications of a 3D surface model and the choice of the matching score leading to DPS.

Student ID: \qquad

Section D: Patrice: PCA: 25 marks

31. the database A contains ten $2 D$ points:

$$
\begin{gathered}
x_{1}\binom{3}{3}, x_{2}\binom{1}{1}, x_{3}\binom{2}{3}, x_{4}\binom{2}{1}, x_{5}\binom{6}{5}, x_{6}\binom{7}{6}, x_{7}\binom{5}{7}, x_{8}\binom{7}{7}, \\
x_{9}\binom{8}{9} \text { and } x_{10}\binom{9}{8}
\end{gathered}
$$

Points x_{1}, x_{2}, x_{3} and x_{4} belong to class $1, x_{5}, x_{6}, x_{7}$ belong to class $2, x_{8}, x_{9}$ and $x_{1} 0$ belong to class 3.

Section D:. 1 PCA

(a) Compute the covariance matrix of the centred database given by: $C=\sum_{i=1}^{i=10} y_{i} y_{i}^{T}$

Student ID: \qquad
(b) Compute the eigenvalues $\left(\lambda_{1}, \lambda_{2}\right)$ of the matrix C .

(c) Find the eigenvectors e_{1}, e_{2} associated to the eigenvalues λ_{1}, λ_{2}.

Student ID:
(d) Find the principal components of the database vectors along the direction of the largest variance.
(e) Express each vector of the database x_{i} as a weighted linear combination of eigenvectors e_{1} and e_{2}.
[3 marks]

Student ID: \qquad

Compute the Euclidean distance between points x_{6} and $x_{8}\left(d_{68}\right), x_{5}$ and $x_{7}\left(d_{57}\right), x_{8}$ and $x_{9}\left(d_{89}\right)$. Compute the same distances using the projected coordinates in the direction of the largest variance. Any comments?

Student ID: \qquad

Section D:. 2 LDA

32. Use the same database as in question 31.
(a) Compute the between-class scatter matrix S_{B} and the within-class scatter matrix S_{W} for the database A. [7 marks]

Student ID:
(b) Find the direction (described by the vector e) which maximises the distance between the projected mean values of the classes of the database A while keeping the within class variances low. In other terms, do the LDA!
[6 marks]

Student ID: \qquad
(c) Draw the database set and the directions of projections computed via PCA and LDA. [3 marks]
\square
(d) Compare the distances obtained in question ?? with their values when the database points are projected along the direction obtained via LDA analysis. Comments?

Student ID: \qquad
33. Compute for each class 1,2 and 3 the mean and standard deviation before and after projection on the main PCA and LDA axis. What do you think of the following two assertions:
(a) PCA maximises the variance of the overall dataset
(b) LDA maximises the between-class variance while minimizing the within-class variance [6 marks]

Student ID:

Overflow page 1

Student ID:

Overflow page 2

