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Extremum points

Extremum of a Function

e One of most important applied problems: to find maximum or
minimum value of a function f(x) under constraints x € X
o f(x)= f(x1,...,2,) is a scalar function of n-dimensional
vector argument
e X is a certain subset of n-dimensional vector space R,

e Unconstrained optimisation: if X = R,

Function of one variable
f(z) ,
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Extremum points

Functions of Many Variables f(x)

e Unconditional local extrema: in these points the gradient of f is
: _fore  are]"
equal to zero: Vf(x) = |5>=,...., %5~ =0

e Whether it is a maximum or a minimum, depends on the matrix of
the second derivatives (or Hessian of f):

f(x)  *f(x) 9% f(%)
89:% 0x10x2 e Ox10x,
’f(x) (%) 9% f(x)
H(X) _ Ox20x1 Ox3 ©t Oxo0xy,
i) 0*f(x) 2*f(x)
Ox, 011 Oy 0xo ce ox2

e Local minimum: if the Hessian is positive definite (the
quadratic form e"H(x)e > 0 for any e # 0)

e Local maximum: if the Hessian is negative definite (the
quadratic form e H(x)e < 0 for any e # 0)



Extremum points

Quadratic Function f(x) = a'x + XTHX of n Variables

f(X> =a1%1 + ...+ apTy + l (Hll‘r% +ﬁ12$1$2+...+ﬁ1n1’1$n
+ Horzomy + Hoox3  + ...+ Hono,
A Hoyzny + Hpotpas + ..+ Hnnmi)

H.itH:
<aixi—|— Lig? + Z J:Z-xj) where H;; = Hj; = “452s

ol

2
=1 Jj=i1+1

e Gradient Vf(x) = a+ Hx:

aagl a Hyy Hyy ... Hi, Ty
: = |+ : : L :
o @ Huy Hps ... Hpn || 2n
2, 1M
o Hessian V1) — [8281;1}“_1 =[Hyl; -, =H



Extremum points

Useful Definitions of a Positive Definite Matrix

Symmetric n X n matrix A is positive definite if one of the
following definitions holds:

@ All eigenvalues of A are positive (> 0)
® Choleski decomposition A = LLT exists
e Here, L is a lower triangular matrix with [;; > 0

© Decomposition A = LDLT exists

e Here, L is a lower triangular matrix with [;; =1
e D is a diagonal matrix with d; > 0

@ All positive pivots (> 0) in Gaussian elimination without
pivoting
General conditions 2 or 3 are the most efficient as well as ensure easy
solutions to linear systems with coefficients A
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Extremum points

Extrema of f(x,y) = ax® +by* a # 0; b # 0

Gradient Vf(z,y) = 0 = 20 = 940 = 0; 2L00) — 9y = ¢
= Single extremum at the point [0,0]7

Hessian H = { 2(;1 20b } + f(z,y)
e Function f(z,y) has the minimum in [0,0]7 if ﬁ
a >0 and b > 0: an elliptic paraboloid (the -7
Sylvester’s criterion: 2a > 0 and 4ab > 0) + f(z,y)

e Ifa>0;b<0ora<0;b>0, there is no
extremum: a hyperbolic paraboloid with a

saddle point [0, O]T (the Sylvester's criterion:
2a > 0 and 4ab < 0 or 2a < 0 and 4ab < 0)

e Function f(z,y) has the maximum in [0,0]T if LA
a < 0 and b < 0: an elliptic paraboloid (the @

Sylvester’s criterion: 2a < 0 and 4ab > 0)




Univariate search

Line Search for a Maximal Point

Find a maximiser of f(x) along a direction dj, from a point xy,

Univariate unimodal functions u(z): properties of the maximiser z* = arg max u(z)
xT

x*)

o |fa<zg* Sbanda<x1<x2<bora<x1<x2<b then
u(z1) <u(rz) = =z <2*<Db thus, the search in-
w(zy) =u(ry) = 1 <2*<®2 pterval a < 2* < b
u(z1) > u(r2) = a<z* <z is reduced
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Univariate search

Golden Section Search

e At each step, reduce an interval [ag, bo]; agp < x* < by, with the
maximiser z* of a unimodal function u(z) by computing symmetric
internal points (below: 7 = (1 +1/5)/2 is the Greek golden section ratio)

{ zi=a; + (b — a;)(2 = 7) ~ a; + 0.382(b; — a1);

0,1,2,...
T = a; + (b — a;) (T — 1) = a; + 0.618(b; — a;); 0,1,2

1
i =0,

g Ly

and evaluating u(z;) and u(Z;):
o |f u(l’l) > u(il), then set Qi1 < G4 and bi+1 — T
o If u(x;) < u(z;), then set a;41 < x; and b1 « b;
o If u(x;) = u(Z;), then set ag + z;; by < T;, and start the
search again from this new interval [ag, bo] and i =0

e Proceed until the interval [ag, bo] is sufficiently small, or the next
point is within the resolution distance of the last point



Univariate search

Golden Section and Fibonacci Search

Golden section search: an example
u(z) e Golden section search is less efficient than the
R Fibonacci search: fori=1,2,...,n—1,

N
/ i =a; + (b — a;)Frui/Frqa—s
| Zi=a; + (b — ;) Fry1—i/Fnio—;

] where Fj, is the Fibonacci number: Fy = 0;
Fi=1F,=F, 14+ F. 2, k=2,3,...

] e Fibonacci search minimises the maximal
interval of uncertainty about the maximiser
x* (in that sense it is optimal)

e But the number of points n to be evaluated
in the Fibonacci search has to be prescribed

L
)

(=)
+ - - - - ==

> X
Z(}] — b‘ bo e Search for the root z* of the first derivative,
a2 e o by %(Jc*) = 0, be it available, is even more efficient
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Gradient methods

Gradient Search

e Gradient vector

_[of or  or]"
V) = Ox1’ Oxy” " Oz
is directed to the greatest slope of the function f at any point
e Gradient methods for seeking a maximum (minimum) for f:

e Evaluate the gradient at an initial point
e Move along the gradient direction for a computable distance
e Repeat this process until the maximum (minimum) is found

o If exact partial derivatives are unknown then gradients may be
numerically approximated

e But approximation errors can make the methods less attractive
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Gradient methods

Basic Gradient Method

Gradient maximisation: the steepest ascent
e Select an initial point x¢ and compute V f(x) at xg
e Draw a line xog +tV f(x¢) through xg in the gradient direction

e Select the point x; on this line yielding the greatest value for
f of all points on the line:

f(x1) = te(rflgoxoo){f(x tx=x9+tVf(x0)}

Search for the best point for f along the line:
o If computable derivatives and well-behaving f then:

e Substitute xg + tV f(xg) into the equation for f,
e Differentiate with respect to ¢, and
e Set the derivative equal to zero to find ¢

e Else: any one-dimensional line search
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Gradient methods

Gradient Maximisation: An Example

18.8

/ p-}Um

x4 = (—0.12, —0.08)
0.39)
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Gradient methods

Accelerated Gradient Search

e Once i > 2, x; for i odd is found by gradient search from x;_1, and
X;+1 Is found by an accelerated step by maximising over the line
through x; and x;_»

e Global maximum of a negative definite quadratic function of n

variables is provably found after 2n — 1 steps of this procedure
14 /21



Gradient methods

Conjugate Directions

e Producing a sequence of points xq, X1, ..., such that each
point improves values in maximising a quadratic function
f(x)=a + Ix"Hx

o All directions d; of search obey the relationship: d]Hd; = 0
forall i, j, i #j

General method of conjugate directions

e Choose x( near an optimal point or randomly

e Carry out a one-dimensional search in the first conjugate
direction d; to find a new point x;

e Fori=2,...,n, search for a new point x; along the next
conjugate direction d; such that d;!—Hdk =0;4,k<i j<k

e The maximum is located in at most n steps
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Gradient methods

Conjugate Gradients

Each new conjugate direction — from the gradient at the point concerned

Conjugate gradient method for maximising f(x)

e Choose a starting point xg

e Carry out a one-dimensional search in the gradient direction
d; = Vf(xg) to find the maximum point x;

e Fori=2,...,n, form d; from V f(x;) to be conjugate to d;_1:
d;, = Vf(Xl) = ’Yifldifl and d;erZ,1 =0

(Vf(x:)" Hdi—l) ;.

:dl:V X;) —
£(x:) ( oy ra

e Can be proven by induction: all d; are mutually conjugate
® |n actual implementation the directions d; can be computed by a simple

recurrence relation, and only a few vectors and no matrices need be stored
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Direct search

Direct Search Methods

e If both the gradient and Hessian of f(x) are too complicated
to compute but f can be evaluated at any point x € R,

Pattern search of K. Hooke and T. A. Jeeves

e Fori=1,...,n sequentially:
o If f(z1,...,%i+¢&4...,2n) > f(z1,...,24,...,2,), replace
T; < T3 +€
o Elseif f(z1,...,@i—€iyeoy@n) > f(X1,. 0oy Tiy oy Tp),

replace z; < x; — ¢

e Repeat this cycle of perturbations until no perturbations about x;
bring about an improvement

e Halve the pre-defined perturbation sizes &; and repeat the process
while the next point brings an improvement over x;
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Direct search

Sectioning

One-at-a-time search, or sectioning, from an initial point xg

e Fori=1,...,n sequentially, search for the maximum in the
direction of the variable x; by one of the one-dimensional search
methods and replace z; by the maximiser x: x; < z}

® Repeat this cycle of one-dimensional searches until the steps
x; —x;; 1 =1,...,n become less than a given threshold

Convergence rate is usually too slow and the search may halt far from the optimum

Accelerated search of H. H. Rosenbrock

e Use one-at-a-time search from xq to find the next point x} and the
direction 6 with components 0; = z3.; — To.;

e Search for the maximum in the direction 6 and replace x¢ by the
maximiser x; found

® Repeat this cycle until x; and x; 1 are closer than a threshold
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Direct search

One-at-a-time Search: An Example
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Direct search

Rosenbrock’s Search: An Example
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Direct search

Search Method of M. J. D. Powell

e Similar to the method of conjugate gradients, except that
derivatives are not required

e Similar to the Rosenbrock’s method, except that each search is
carried out along a conjugate direction

e Directions dy,...,d, become conjugate w.r.t. an
approximation of the Hessian matrix

If xg is the initial estimate of the maximiser of f(x) then

@ Set the search directions be equal to the coordinate directions

@® For i =1,...,n sequentially find the maximiser x; of f in the the
direction d; from x;_1

© Letd; +d;;q fori=1,...,n—1and d, =x, —Xg

@ Set x( be equal to the maximiser of f in the d,, direction from x,,

® Return to 2 unless some termination criterion is met
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