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Recommended reading:

• W. H. Press et al., Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press, 2007:
Section 15.5

• L. R. Foulds: Optimization Techniques: An Introduction. Springer-Verlag, 1981: Chapters 7, 8
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Extremum of a Function

• One of most important applied problems: to find maximum or
minimum value of a function f(x) under constraints x ∈ X

• f(x) ≡ f(x1, . . . , xn) is a scalar function of n-dimensional
vector argument

• X is a certain subset of n-dimensional vector space Rn

• Unconstrained optimisation: if X = Rn

Function of one variable
f(x)

x

local and global maximum

x1 x2

local and global minimum

x3

inflection

x4

local maximum

x5

local minimum

• Minimum: df(x)
dx

= 0; d2f(x)

dx2 > 0

• Maximum: df(x)
dx

= 0; d2f(x)

dx2 < 0

• Inflection: df(x)
dx

= 0; d2f(x)

dx2 = 0
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Functions of Many Variables f(x)

• Unconditional local extrema: in these points the gradient of f is

equal to zero: ∇f(x) =
[
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

]T

= 0

• Whether it is a maximum or a minimum, depends on the matrix of
the second derivatives (or Hessian of f):

H(x) =


∂2f(x)
∂x2

1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)
∂x2

2
. . . ∂2f(x)

∂x2∂xn

...
...

. . .
...

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n


• Local minimum: if the Hessian is positive definite (the

quadratic form eTH(x)e > 0 for any e 6= 0)
• Local maximum: if the Hessian is negative definite (the

quadratic form eTH(x)e < 0 for any e 6= 0)
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Quadratic Function f(x) = aTx+ 1
2x

THx of n Variables

f(x) = a1x1 + . . .+ anxn + 1
2

(
H11x

2
1 + H̃12x1x2 + . . .+ H̃1nx1xn

+ H̃21x2x1 +H22x
2
2 + . . .+ H̃2nx2xn

. . .+ H̃n1xnx1 + H̃n2xnx2 + . . .+Hnnx
2
n

)
=

n∑
i=1

(
aixi + Hii

2 x2i +
n∑

j=i+1

Hijxixj

)
where Hij = Hji =

H̃ij+H̃ji

2

• Gradient ∇f(x) = a + Hx:
∂f
∂x1

...
∂f
∂xn

 =

 a1
...
an

+

 H11 H12 . . . H1n

...
...

. . .
...

Hn1 Hn2 . . . Hnn


 x1

...
xn


• Hessian ∂∇f(x)

∂x ≡
[

∂2f
∂xi∂xj

]n
i,j=1

≡ [Hij ]
n
i,j=1 ≡ H
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Useful Definitions of a Positive Definite Matrix

Symmetric n× n matrix A is positive definite if one of the
following definitions holds:

1 All eigenvalues of A are positive (> 0)

2 Choleski decomposition A = LLT exists
• Here, L is a lower triangular matrix with lii > 0

3 Decomposition A = LDLT exists
• Here, L is a lower triangular matrix with lii = 1
• D is a diagonal matrix with di > 0

4 All positive pivots (> 0) in Gaussian elimination without
pivoting

General conditions 2 or 3 are the most efficient as well as ensure easy

solutions to linear systems with coefficients A
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Extrema of f(x, y) = ax2 + by2; a 6= 0; b 6= 0

Gradient ∇f(x, y) = 0 ⇒ ∂f(x,y)
∂x = 2ax = 0; ∂f(x,y)

∂y = 2by = 0

⇒ Single extremum at the point [0, 0]T

Hessian H =

[
2a 0
0 2b

]
• Function f(x, y) has the minimum in [0, 0]T if
a > 0 and b > 0: an elliptic paraboloid (the

Sylvester’s criterion: 2a > 0 and 4ab > 0)

• If a > 0; b < 0 or a < 0; b > 0, there is no
extremum: a hyperbolic paraboloid with a
saddle point [0, 0]T (the Sylvester’s criterion:

2a > 0 and 4ab < 0 or 2a < 0 and 4ab < 0)

• Function f(x, y) has the maximum in [0, 0]T if
a < 0 and b < 0: an elliptic paraboloid (the

Sylvester’s criterion: 2a < 0 and 4ab > 0)

f(x, y)

xy

f(x, y)

xy

f(x, y)
xy
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Line Search for a Maximal Point

Find a maximiser of f(x) along a direction dk from a point xk

x1

xn
xk dk

x(γ) = xk + γdk

xk+1 = xk + γkdk

It is used repeatedly in many multivariate search methods

Univariate unimodal functions u(x): properties of the maximiser x∗ = arg max
x

u(x)

• If x0 < x1 < x∗ or x0 > x1 > x∗, then u(x0) < u(x1) < u(x∗)

• If a ≤ x∗ ≤ b and a ≤ x1 < x2 < b or a < x1 < x2 ≤ b, then
u(x1) < u(x2) ⇒ x1 < x∗ ≤ b
u(x1) = u(x2) ⇒ x1 < x∗ < x2
u(x1) > u(x2) ⇒ a ≤ x∗ < x2

 thus, the search in-
terval a ≤ x∗ ≤ b
is reduced
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Golden Section Search

• At each step, reduce an interval [a0, b0]; a0 ≤ x∗ ≤ b0, with the
maximiser x∗ of a unimodal function u(x) by computing symmetric
internal points (below: τ = (1 +

√
5)/2 is the Greek golden section ratio){

xi = ai + (bi − ai)(2− τ) ≈ ai + 0.382(bi − a1); i = 0, 1, 2, . . .
x̄i = ai + (bi − ai)(τ − 1) ≈ ai + 0.618(bi − ai); i = 0, 1, 2, . . .

and evaluating u(xi) and u(x̄i):

• If u(xi) > u(x̄i), then set ai+1 ← ai and bi+1 ← x̄i
• If u(xi) < u(x̄i), then set ai+1 ← xi and bi+1 ← bi
• If u(xi) = u(x̄i), then set a0 ← xi; b0 ← x̄i, and start the

search again from this new interval [a0, b0] and i = 0

• Proceed until the interval [a0, b0] is sufficiently small, or the next
point is within the resolution distance of the last point
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Golden Section and Fibonacci Search

Golden section search: an example

u(x)

x

a0 b0

x0 x̄0

a1 b1
a2 b2

• Golden section search is less efficient than the
Fibonacci search: for i = 1, 2, . . . , n− 1,

xi = ai + (bi − ai)Fn−i/Fn+2−i
x̄i = ai + (bi − ai)Fn+1−i/Fn+2−i

where Fk is the Fibonacci number: F0 = 0;
F1 = 1; Fk = Fk−1 + Fk−2, k = 2, 3, . . .

• Fibonacci search minimises the maximal
interval of uncertainty about the maximiser
x∗ (in that sense it is optimal)

• But the number of points n to be evaluated
in the Fibonacci search has to be prescribed

• Search for the root x∗ of the first derivative,
du
dx (x∗) = 0, be it available, is even more efficient

10 / 21



Outline Extremum points Univariate search Gradient methods Direct search

Gradient Search

• Gradient vector

∇f(x) =

[
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

]T

is directed to the greatest slope of the function f at any point

• Gradient methods for seeking a maximum (minimum) for f :
• Evaluate the gradient at an initial point
• Move along the gradient direction for a computable distance
• Repeat this process until the maximum (minimum) is found

• If exact partial derivatives are unknown then gradients may be
numerically approximated

• But approximation errors can make the methods less attractive
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Basic Gradient Method

Gradient maximisation: the steepest ascent

• Select an initial point x0 and compute ∇f(x) at x0

• Draw a line x0 + t∇f(x0) through x0 in the gradient direction

• Select the point x1 on this line yielding the greatest value for
f of all points on the line:

f(x1) = max
t∈(−∞,∞)

{f(x : x = x0 + t∇f(x0)}

Search for the best point for f along the line:

• If computable derivatives and well-behaving f then:
• Substitute x0 + t∇f(x0) into the equation for f ,
• Differentiate with respect to t, and
• Set the derivative equal to zero to find t

• Else: any one-dimensional line search
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Gradient Maximisation: An Example

f(x) ≡ f(x, y) = 25− x2 − 4y2; ∇f(x) = (−2x,−8y); x0 = (−3,−2):

f(x0) = 0; f(x1) = 20.1; f(x2) = 24.0; f(x3) = 24.8; f(x4) = 24.9; . . .

f = 0

f = 18.8

x0 = (−3,−2)

x1 = (−2.17, 0.20)

x2 = (−0.59,−0.39)

x3 = (−0.43, 0.04)

x4 = (−0.12,−0.08)

f∗ = 25
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Accelerated Gradient Search

f = 0

f = 18.8

x0

x1

x2

x3

x4

f∗ = 25

• Once i > 2, xi for i odd is found by gradient search from xi−1, and
xi+1 is found by an accelerated step by maximising over the line
through xi and xi−2

• Global maximum of a negative definite quadratic function of n
variables is provably found after 2n− 1 steps of this procedure
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Conjugate Directions

• Producing a sequence of points x0, x1, . . . , such that each
point improves values in maximising a quadratic function
f(x) = aT + 1

2x
THx

• All directions di of search obey the relationship: dT
i Hdj = 0

for all i, j, i 6= j

General method of conjugate directions

• Choose x0 near an optimal point or randomly

• Carry out a one-dimensional search in the first conjugate
direction d1 to find a new point x1

• For i = 2, . . . , n, search for a new point xi along the next
conjugate direction di such that dT

j Hdk = 0; j, k ≤ i, j < k

• The maximum is located in at most n steps
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Conjugate Gradients

Each new conjugate direction – from the gradient at the point concerned

Conjugate gradient method for maximising f(x)

• Choose a starting point x0

• Carry out a one-dimensional search in the gradient direction
d1 = ∇f(x0) to find the maximum point x1

• For i = 2, . . . , n, form di from ∇f(xi) to be conjugate to di−1:
di = ∇f(xi) + γi−1di−1 and dT

i Hdi−1 = 0

⇒ di = ∇f(xi)−

(
(∇f(xi))

T
Hdi−1

dT
i−1Hdi−1

)
di−1

• Can be proven by induction: all di are mutually conjugate
• In actual implementation the directions di can be computed by a simple

recurrence relation, and only a few vectors and no matrices need be stored
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Direct Search Methods

• If both the gradient and Hessian of f(x) are too complicated
to compute but f can be evaluated at any point x ∈ Rn

Pattern search of K. Hooke and T. A. Jeeves

• For i = 1, . . . , n sequentially:

• If f(x1, . . . , xi + εi, . . . , xn) > f(x1, . . . , xi, . . . , xn), replace
xi ← xi + ε

• Else if f(x1, . . . , xi − εi, . . . , xn) > f(x1, . . . , xi, . . . , xn),
replace xi ← xi − ε

• Repeat this cycle of perturbations until no perturbations about xj

bring about an improvement

• Halve the pre-defined perturbation sizes εi and repeat the process
while the next point brings an improvement over xj
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Sectioning

One-at-a-time search, or sectioning, from an initial point x0

• For i = 1, . . . , n sequentially, search for the maximum in the
direction of the variable xi by one of the one-dimensional search
methods and replace xi by the maximiser x∗i : xi ← x∗i

• Repeat this cycle of one-dimensional searches until the steps
xi − x∗i ; i = 1, . . . , n become less than a given threshold

Convergence rate is usually too slow and the search may halt far from the optimum

Accelerated search of H. H. Rosenbrock

• Use one-at-a-time search from x0 to find the next point x∗1 and the
direction δ with components δi = x∗1:i − x0:i

• Search for the maximum in the direction δ and replace x0 by the
maximiser x1 found

• Repeat this cycle until xt and xt−1 are closer than a threshold
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One-at-a-time Search: An Example

x2

x1

[x1, x2] [x1 ← x∗1, x2]
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Rosenbrock’s Search: An Example

x2

x1

[x1, x2] [x1 ← x∗1, x2]

[x∗1, x
∗
2]
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Search Method of M. J. D. Powell

• Similar to the method of conjugate gradients, except that
derivatives are not required

• Similar to the Rosenbrock’s method, except that each search is
carried out along a conjugate direction

• Directions d1, . . . ,dn become conjugate w.r.t. an
approximation of the Hessian matrix

If x0 is the initial estimate of the maximiser of f(x) then

1 Set the search directions be equal to the coordinate directions

2 For i = 1, . . . , n sequentially find the maximiser xi of f in the the
direction di from xi−1

3 Let di ← di+1 for i = 1, . . . , n− 1 and dn = xn − x0

4 Set x0 be equal to the maximiser of f in the dn direction from xn

5 Return to 2 unless some termination criterion is met
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