# Unconstrained Nonlinear Optimisation 

Georgy Gimel'farb<br>ggim001@cs.auckland.ac.nz

(1) Extremum points
(2) Univariate search
(3) Gradient methods
(4) Direct search

Recommended reading:

- W. H. Press et al., Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press, 2007: Section 15.5
- L. R. Foulds: Optimization Techniques: An Introduction. Springer-Verlag, 1981: Chapters 7, 8


## Extremum of a Function

- One of most important applied problems: to find maximum or minimum value of a function $f(\mathbf{x})$ under constraints $\mathbf{x} \in \mathbf{X}$
- $f(\mathbf{x}) \equiv f\left(x_{1}, \ldots, x_{n}\right)$ is a scalar function of $n$-dimensional vector argument
- $\mathbf{X}$ is a certain subset of $n$-dimensional vector space $\mathbf{R}_{n}$
- Unconstrained optimisation: if $\mathbf{X}=\mathbf{R}_{n}$

Function of one variable


## Functions of Many Variables $f(\mathbf{x})$

- Unconditional local extrema: in these points the gradient of $f$ is equal to zero: $\nabla f(\mathbf{x})=\left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \ldots, \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right]^{\top}=\mathbf{0}$
- Whether it is a maximum or a minimum, depends on the matrix of the second derivatives (or Hessian of $f$ ):

$$
\mathbf{H}(\mathbf{x})=\left[\begin{array}{cccc}
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}}
\end{array}\right]
$$

- Local minimum: if the Hessian is positive definite (the quadratic form $\mathbf{e}^{\top} \mathbf{H}(\mathbf{x}) \mathbf{e}>0$ for any $\mathbf{e} \neq \mathbf{0}$ )
- Local maximum: if the Hessian is negative definite (the quadratic form $\mathbf{e}^{\top} \mathbf{H}(\mathbf{x}) \mathbf{e}<0$ for any $\mathbf{e} \neq \mathbf{0}$ )


## Quadratic Function $f(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+\frac{1}{2} \mathbf{x}^{\top} \mathbf{H x}$ of $n$ Variables

$$
\begin{aligned}
& f(\mathbf{x})=a_{1} x_{1}+\ldots+a_{n} x_{n}+ \frac{1}{2}\left(H_{11} x_{1}^{2}+\widetilde{H}_{12} x_{1} x_{2}+\ldots+\widetilde{H}_{1 n} x_{1} x_{n}\right. \\
&+\widetilde{H}_{21} x_{2} x_{1}+H_{22} x_{2}^{2}+\ldots+\widetilde{H}_{2 n} x_{2} x_{n} \\
&\left.\ldots+\widetilde{H}_{n 1} x_{n} x_{1}+\widetilde{H}_{n 2} x_{n} x_{2}+\ldots+H_{n n} x_{n}^{2}\right) \\
&=\sum_{i=1}^{n}\left(a_{i} x_{i}+\frac{H_{i i}}{2} x_{i}^{2}+\sum_{j=i+1}^{n} H_{i j} x_{i} x_{j}\right) \text { where } H_{i j}=H_{j i}=\frac{\widetilde{H}_{i j}+\widetilde{H}_{j i}}{2}
\end{aligned}
$$

- Gradient $\nabla f(\mathbf{x})=\mathbf{a}+\mathbf{H x}$ :

$$
\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right]=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]+\left[\begin{array}{cccc}
H_{11} & H_{12} & \ldots & H_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
H_{n 1} & H_{n 2} & \ldots & H_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

- Hessian $\frac{\partial \nabla f(\mathbf{x})}{\partial \mathbf{x}} \equiv\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]_{i, j=1}^{n} \equiv\left[H_{i j}\right]_{i, j=1}^{n} \equiv \mathbf{H}$


## Useful Definitions of a Positive Definite Matrix

Symmetric $n \times n$ matrix $\mathbf{A}$ is positive definite if one of the following definitions holds:
(1) All eigenvalues of $\mathbf{A}$ are positive ( $>0$ )
(2) Choleski decomposition $\mathbf{A}=\mathbf{L L}^{\top}$ exists

- Here, $\mathbf{L}$ is a lower triangular matrix with $l_{i i}>0$
(3) Decomposition $\mathbf{A}=\mathbf{L D L}^{\top}$ exists
- Here, $\mathbf{L}$ is a lower triangular matrix with $l_{i i}=1$
- $\mathbf{D}$ is a diagonal matrix with $d_{i}>0$
(4) All positive pivots $(>0)$ in Gaussian elimination without pivoting
General conditions 2 or 3 are the most efficient as well as ensure easy solutions to linear systems with coefficients A


## Extrema of $f(x, y)=a x^{2}+b y^{2} ; a \neq 0 ; b \neq 0$

Gradient $\nabla f(x, y)=0 \Rightarrow \frac{\partial f(x, y)}{\partial x}=2 a x=0 ; \frac{\partial f(x, y)}{\partial y}=2 b y=0$
$\Rightarrow$ Single extremum at the point $[0,0]^{\top}$ Hessian $\mathbf{H}=\left[\begin{array}{cc}2 a & 0 \\ 0 & 2 b\end{array}\right]$

- Function $f(x, y)$ has the minimum in $[0,0]^{\top}$ if $a>0$ and $b>0$ : an elliptic paraboloid (the Sylvester's criterion: $2 a>0$ and $4 a b>0$ )
- If $a>0 ; b<0$ or $a<0 ; b>0$, there is no extremum: a hyperbolic paraboloid with a saddle point $[0,0]^{\top}$ (the Sylvester's criterion:


$$
2 a>0 \text { and } 4 a b<0 \text { or } 2 a<0 \text { and } 4 a b<0)
$$

- Function $f(x, y)$ has the maximum in $[0,0]^{\top}$ if $a<0$ and $b<0$ : an elliptic paraboloid (the Sylvester's criterion: $2 a<0$ and $4 a b>0$ )


## Line Search for a Maximal Point

Find a maximiser of $f(\mathbf{x})$ along a direction $\mathbf{d}_{k}$ from a point $\mathbf{x}_{k}$


It is used repeatedly in many multivariate search methods
Univariate unimodal functions $u(x)$ : properties of the maximiser $x^{*}=\arg \max _{x} u(x)$

- If $x_{0}<x_{1}<x^{*}$ or $x_{0}>x_{1}>x^{*}$, then $u\left(x_{0}\right)<u\left(x_{1}\right)<u\left(x^{*}\right)$
- If $a \leq x^{*} \leq b$ and $a \leq x_{1}<x_{2}<b$ or $a<x_{1}<x_{2} \leq b$, then $u\left(x_{1}\right)<u\left(x_{2}\right) \Rightarrow x_{1}<x^{*} \leq b \quad$ thus, the search in$\left.u\left(x_{1}\right)=u\left(x_{2}\right) \Rightarrow x_{1}<x^{*}<x_{2}\right\}$ terval $a \leq x^{*} \leq b$ $u\left(x_{1}\right)>u\left(x_{2}\right) \Rightarrow a \leq x^{*}<x_{2} \quad$ is reduced


## Golden Section Search

- At each step, reduce an interval $\left[a_{0}, b_{0}\right] ; a_{0} \leq x^{*} \leq b_{0}$, with the maximiser $x^{*}$ of a unimodal function $u(x)$ by computing symmetric internal points (below: $\tau=(1+\sqrt{5}) / 2$ is the Greek golden section ratio)

$$
\begin{cases}x_{i}=a_{i}+\left(b_{i}-a_{i}\right)(2-\tau) \approx a_{i}+0.382\left(b_{i}-a_{1}\right) ; & i=0,1,2, \ldots \\ \bar{x}_{i}=a_{i}+\left(b_{i}-a_{i}\right)(\tau-1) \approx a_{i}+0.618\left(b_{i}-a_{i}\right) ; & i=0,1,2, \ldots\end{cases}
$$

and evaluating $u\left(x_{i}\right)$ and $u\left(\bar{x}_{i}\right)$ :

- If $u\left(x_{i}\right)>u\left(\bar{x}_{i}\right)$, then set $a_{i+1} \leftarrow a_{i}$ and $b_{i+1} \leftarrow \bar{x}_{i}$
- If $u\left(x_{i}\right)<u\left(\bar{x}_{i}\right)$, then set $a_{i+1} \leftarrow x_{i}$ and $b_{i+1} \leftarrow b_{i}$
- If $u\left(x_{i}\right)=u\left(\bar{x}_{i}\right)$, then set $a_{0} \leftarrow x_{i} ; b_{0} \leftarrow \bar{x}_{i}$, and start the search again from this new interval $\left[a_{0}, b_{0}\right]$ and $i=0$
- Proceed until the interval $\left[a_{0}, b_{0}\right]$ is sufficiently small, or the next point is within the resolution distance of the last point


## Golden Section and Fibonacci Search

Golden section search: an example


- Golden section search is less efficient than the Fibonacci search: for $i=1,2, \ldots, n-1$,

$$
\begin{aligned}
& x_{i}=a_{i}+\left(b_{i}-a_{i}\right) F_{n-i} / F_{n+2-i} \\
& \bar{x}_{i}=a_{i}+\left(b_{i}-a_{i}\right) F_{n+1-i} / F_{n+2-i}
\end{aligned}
$$

where $F_{k}$ is the Fibonacci number: $F_{0}=0$; $F_{1}=1 ; F_{k}=F_{k-1}+F_{k-2}, k=2,3, \ldots$

- Fibonacci search minimises the maximal interval of uncertainty about the maximiser $x^{*}$ (in that sense it is optimal)
- But the number of points $n$ to be evaluated in the Fibonacci search has to be prescribed
- Search for the root $x^{*}$ of the first derivative, $\frac{d u}{d x}\left(x^{*}\right)=0$, be it available, is even more efficient


## Gradient Search

- Gradient vector

$$
\nabla f(\mathbf{x})=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right]^{\top}
$$

is directed to the greatest slope of the function $f$ at any point

- Gradient methods for seeking a maximum (minimum) for $f$ :
- Evaluate the gradient at an initial point
- Move along the gradient direction for a computable distance
- Repeat this process until the maximum (minimum) is found
- If exact partial derivatives are unknown then gradients may be numerically approximated
- But approximation errors can make the methods less attractive


## Basic Gradient Method

## Gradient maximisation: the steepest ascent

- Select an initial point $\mathbf{x}_{0}$ and compute $\nabla f(\mathbf{x})$ at $\mathbf{x}_{0}$
- Draw a line $\mathbf{x}_{0}+t \nabla f\left(\mathbf{x}_{0}\right)$ through $\mathbf{x}_{0}$ in the gradient direction
- Select the point $\mathbf{x}_{1}$ on this line yielding the greatest value for $f$ of all points on the line:

$$
f\left(\mathbf{x}_{1}\right)=\max _{t \in(-\infty, \infty)}\left\{f\left(\mathbf{x}: \mathbf{x}=\mathbf{x}_{0}+t \nabla f\left(\mathbf{x}_{0}\right)\right\}\right.
$$

Search for the best point for $f$ along the line:

- If computable derivatives and well-behaving $f$ then:
- Substitute $\mathbf{x}_{0}+t \nabla f\left(\mathbf{x}_{0}\right)$ into the equation for $f$,
- Differentiate with respect to $t$, and
- Set the derivative equal to zero to find $t$
- Else: any one-dimensional line search


## Gradient Maximisation: An Example

$$
\begin{aligned}
& f(\mathbf{x}) \equiv f(x, y)=25-x^{2}-4 y^{2} ; \nabla f(\mathbf{x})=(-2 x,-8 y) ; \mathbf{x}_{0}=(-3,-2) \\
& f\left(\mathbf{x}_{0}\right)=0 ; f\left(\mathbf{x}_{1}\right)=20.1 ; f\left(\mathbf{x}_{2}\right)=24.0 ; f\left(\mathbf{x}_{3}\right)=24.8 ; f\left(\mathbf{x}_{4}\right)=24.9 ; \ldots
\end{aligned}
$$



## Accelerated Gradient Search



- Once $i>2, \mathbf{x}_{i}$ for $i$ odd is found by gradient search from $\mathbf{x}_{i-1}$, and $\mathbf{x}_{i+1}$ is found by an accelerated step by maximising over the line through $\mathbf{x}_{i}$ and $\mathbf{x}_{i-2}$
- Global maximum of a negative definite quadratic function of $n$ variables is provably found after $2 n-1$ steps of this procedure


## Conjugate Directions

- Producing a sequence of points $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$, such that each point improves values in maximising a quadratic function $f(\mathbf{x})=\mathbf{a}^{\top}+\frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x}$
- All directions $\mathbf{d}_{i}$ of search obey the relationship: $\mathbf{d}_{i}^{\top} \mathbf{H d} \mathbf{d}_{j}=0$ for all $i, j, i \neq j$


## General method of conjugate directions

- Choose $\mathbf{x}_{0}$ near an optimal point or randomly
- Carry out a one-dimensional search in the first conjugate direction $\mathbf{d}_{1}$ to find a new point $\mathbf{x}_{1}$
- For $i=2, \ldots, n$, search for a new point $\mathbf{x}_{i}$ along the next conjugate direction $\mathbf{d}_{i}$ such that $\mathbf{d}_{j}^{\top} \mathbf{H d} \mathbf{x}_{k}=0 ; j, k \leq i, j<k$
- The maximum is located in at most $n$ steps


## Conjugate Gradients

Each new conjugate direction - from the gradient at the point concerned
Conjugate gradient method for maximising $f(\mathbf{x})$

- Choose a starting point $\mathbf{x}_{0}$
- Carry out a one-dimensional search in the gradient direction $\mathbf{d}_{1}=\nabla f\left(\mathbf{x}_{0}\right)$ to find the maximum point $\mathbf{x}_{1}$
- For $i=2, \ldots, n$, form $\mathbf{d}_{i}$ from $\nabla f\left(\mathbf{x}_{i}\right)$ to be conjugate to $\mathbf{d}_{i-1}$ :

$$
\begin{aligned}
& \mathbf{d}_{i}=\nabla f\left(\mathbf{x}_{i}\right)+\gamma_{i-1} \mathbf{d}_{i-1} \text { and } \mathbf{d}_{i}^{\top} \mathbf{H} \mathbf{d}_{i-1}=0 \\
& \quad \Rightarrow \mathbf{d}_{i}=\nabla f\left(\mathbf{x}_{i}\right)-\left(\frac{\left(\nabla f\left(\mathbf{x}_{i}\right)\right)^{\top} \mathbf{H d}_{i-1}}{\mathbf{d}_{i-1}^{\top} \mathbf{H d}_{i-1}}\right) \mathbf{d}_{i-1}
\end{aligned}
$$

- Can be proven by induction: all $\mathbf{d}_{i}$ are mutually conjugate
- In actual implementation the directions $\mathbf{d}_{i}$ can be computed by a simple recurrence relation, and only a few vectors and no matrices need be stored


## Direct Search Methods

- If both the gradient and Hessian of $f(\mathbf{x})$ are too complicated to compute but $f$ can be evaluated at any point $\mathbf{x} \in \mathbb{R}_{n}$


## Pattern search of K. Hooke and T. A. Jeeves

- For $i=1, \ldots, n$ sequentially:
- If $f\left(x_{1}, \ldots, x_{i}+\varepsilon_{i}, \ldots, x_{n}\right)>f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$, replace $x_{i} \leftarrow x_{i}+\varepsilon$
- Else if $f\left(x_{1}, \ldots, x_{i}-\varepsilon_{i}, \ldots, x_{n}\right)>f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)$, replace $x_{i} \leftarrow x_{i}-\varepsilon$
- Repeat this cycle of perturbations until no perturbations about $\mathbf{x}_{j}$ bring about an improvement
- Halve the pre-defined perturbation sizes $\varepsilon_{i}$ and repeat the process while the next point brings an improvement over $\mathbf{x}_{j}$


## Sectioning

## One-at-a-time search, or sectioning, from an initial point $\mathrm{x}_{0}$

- For $i=1, \ldots, n$ sequentially, search for the maximum in the direction of the variable $x_{i}$ by one of the one-dimensional search methods and replace $x_{i}$ by the maximiser $x_{i}^{*}: x_{i} \leftarrow x_{i}^{*}$
- Repeat this cycle of one-dimensional searches until the steps $x_{i}-x_{i}^{*} ; i=1, \ldots, n$ become less than a given threshold

Convergence rate is usually too slow and the search may halt far from the optimum

## Accelerated search of H. H. Rosenbrock

- Use one-at-a-time search from $\mathbf{x}_{0}$ to find the next point $\mathbf{x}_{1}^{*}$ and the direction $\delta$ with components $\delta_{i}=x_{1: i}^{*}-x_{0: i}$
- Search for the maximum in the direction $\delta$ and replace $\mathbf{x}_{0}$ by the maximiser $\mathrm{x}_{1}$ found
- Repeat this cycle until $\mathbf{x}_{t}$ and $\mathbf{x}_{t-1}$ are closer than a threshold


## One-at-a-time Search: An Example



## Rosenbrock's Search: An Example



## Search Method of M. J. D. Powell

- Similar to the method of conjugate gradients, except that derivatives are not required
- Similar to the Rosenbrock's method, except that each search is carried out along a conjugate direction
- Directions $\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}$ become conjugate w.r.t. an approximation of the Hessian matrix

If $\mathbf{x}_{0}$ is the initial estimate of the maximiser of $f(\mathbf{x})$ then
(1) Set the search directions be equal to the coordinate directions
(2) For $i=1, \ldots, n$ sequentially find the maximiser $\mathbf{x}_{i}$ of $f$ in the the direction $\mathbf{d}_{i}$ from $\mathbf{x}_{i-1}$
(3) Let $\mathbf{d}_{i} \leftarrow \mathbf{d}_{i+1}$ for $i=1, \ldots, n-1$ and $\mathbf{d}_{n}=\mathbf{x}_{n}-\mathbf{x}_{0}$
(4) Set $\mathbf{x}_{0}$ be equal to the maximiser of $f$ in the $\mathbf{d}_{n}$ direction from $\mathbf{x}_{n}$
(5) Return to 2 unless some termination criterion is met

