Outline	Extremum points	Univariate search	Gradient methods	Direct search

Unconstrained Nonlinear Optimisation

Georgy Gimel'farb ggim001@cs.auckland.ac.nz

Outline	Extremum points	Univariate search	Gradient methods	Direct search

Extremum points

2 Univariate search

3 Gradient methods

4 Direct search

Recommended reading:

- W. H. Press et al., Numerical Recipes: The Art of Scientific Computing. Cambridge Univ. Press, 2007: Section 15.5
- L. R. Foulds: Optimization Techniques: An Introduction. Springer-Verlag, 1981: Chapters 7, 8

Extremum of a Function

- One of most important applied problems: to find maximum or minimum value of a function $f(\mathbf{x})$ under constraints $\mathbf{x} \in \mathbf{X}$
 - $f(\mathbf{x}) \equiv f(x_1, \dots, x_n)$ is a scalar function of n-dimensional vector argument
 - ${f X}$ is a certain subset of *n*-dimensional vector space ${f R}_n$
- Unconstrained optimisation: if $\mathbf{X} = \mathbf{R}_n$

Functions of Many Variables $f(\mathbf{x})$

- Unconditional local extrema: in these points the gradient of f is equal to zero: $\nabla f(\mathbf{x}) = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right]^{\mathsf{T}} = \mathbf{0}$
- Whether it is a maximum or a minimum, depends on the matrix of the second derivatives (or Hessian of *f*):

$$\mathbf{H}(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_2^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{bmatrix}$$

- Local minimum: if the Hessian is positive definite (the quadratic form $e^T H(x) e > 0$ for any $e \neq 0$)
- Local maximum: if the Hessian is negative definite (the quadratic form $e^T H(x) e < 0$ for any $e \neq 0$)

Quadratic Function $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x}$ of *n* Variables

$$\begin{split} f(\mathbf{x}) &= a_1 x_1 + \ldots + a_n x_n + \frac{1}{2} \left(H_{11} x_1^2 &+ \widetilde{H}_{12} x_1 x_2 + \ldots + \widetilde{H}_{1n} x_1 x_n \\ &+ \widetilde{H}_{21} x_2 x_1 + H_{22} x_2^2 &+ \ldots + \widetilde{H}_{2n} x_2 x_n \\ &\ldots + \widetilde{H}_{n1} x_n x_1 + \widetilde{H}_{n2} x_n x_2 + \ldots + H_{nn} x_n^2 \right) \\ &= \sum_{i=1}^n \left(a_i x_i + \frac{H_{ii}}{2} x_i^2 + \sum_{j=i+1}^n H_{ij} x_i x_j \right) \quad \text{where} \quad H_{ij} = H_{ji} = \frac{\widetilde{H}_{ij} + \widetilde{H}_{ji}}{2} \end{split}$$

• Gradient $\nabla f(\mathbf{x}) = \mathbf{a} + \mathbf{H}\mathbf{x}$:

$$\begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} + \begin{bmatrix} H_{11} & H_{12} & \dots & H_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{n1} & H_{n2} & \dots & H_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

• Hessian
$$\frac{\partial \nabla f(\mathbf{x})}{\partial \mathbf{x}} \equiv \left[\frac{\partial^2 f}{\partial x_i \partial x_j}\right]_{i,j=1}^n \equiv \left[H_{ij}\right]_{i,j=1}^n \equiv \mathbf{H}$$

・ < 目 > < 目 > < 目 > 目 の Q (* 5/21)

Useful Definitions of a Positive Definite Matrix

Symmetric $n \times n$ matrix A is positive definite if one of the following definitions holds:

- **1** All eigenvalues of \mathbf{A} are positive (> 0)
- **2** Choleski decomposition $\mathbf{A} = \mathbf{L}\mathbf{L}^\mathsf{T}$ exists
 - Here, \mathbf{L} is a lower triangular matrix with $l_{ii} > 0$
- **3** Decomposition $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathsf{T}}$ exists
 - Here, \mathbf{L} is a lower triangular matrix with $l_{ii} = 1$
 - **D** is a diagonal matrix with $d_i > 0$
- **4** All positive pivots (> 0) in Gaussian elimination without pivoting

General conditions 2 or 3 are the most efficient as well as ensure easy solutions to linear systems with coefficients ${\bf A}$

Extrema of $f(x, y) = ax^2 + by^2$; $a \neq 0$; $b \neq 0$

Gradient
$$\nabla f(x,y) = 0 \Rightarrow \frac{\partial f(x,y)}{\partial x} = 2ax = 0; \frac{\partial f(x,y)}{\partial y} = 2by = 0$$

 \Rightarrow Single extremum at the point $[0,0]^{\mathsf{T}}$

$$\mathsf{Hessian} \ \mathbf{H} = \begin{bmatrix} 2a & 0\\ 0 & 2b \end{bmatrix}$$

- Function f(x, y) has the minimum in $[0, 0]^{\mathsf{T}}$ if a > 0 and b > 0: an elliptic paraboloid (the Sylvester's criterion: 2a > 0 and 4ab > 0)
- If a > 0; b < 0 or a < 0; b > 0, there is no extremum: a hyperbolic paraboloid with a saddle point $[0,0]^T$ (the Sylvester's criterion: 2a > 0 and 4ab < 0 or 2a < 0 and 4ab < 0)
- Function f(x, y) has the maximum in $[0, 0]^{\mathsf{T}}$ if a < 0 and b < 0: an elliptic paraboloid (the Sylvester's criterion: 2a < 0 and 4ab > 0)

< ロ > < 同 > < 回 > < 回 >

Line Search for a Maximal Point

Find a maximiser of $f(\mathbf{x})$ along a direction \mathbf{d}_k from a point \mathbf{x}_k

It is used repeatedly in many multivariate search methods

Univariate unimodal functions u(x): properties of the maximiser $x^* = \arg \max u(x)$

• If
$$x_0 < x_1 < x^*$$
 or $x_0 > x_1 > x^*$, then $u(x_0) < u(x_1) < u(x^*)$

• If
$$a \le x^* \le b$$
 and $a \le x_1 < x_2 < b$ or $a < x_1 < x_2 \le b$, then
 $u(x_1) < u(x_2) \Rightarrow x_1 < x^* \le b$
 $u(x_1) = u(x_2) \Rightarrow x_1 < x^* < x_2$
 $u(x_1) > u(x_2) \Rightarrow a \le x^* < x_2$
 b is reduced

Golden Section Search

4

• At each step, reduce an interval $[a_0, b_0]$; $a_0 \le x^* \le b_0$, with the maximiser x^* of a unimodal function u(x) by computing symmetric internal points (below: $\tau = (1 + \sqrt{5})/2$ is the Greek golden section ratio)

$$\begin{cases} x_i = a_i + (b_i - a_i)(2 - \tau) \approx a_i + 0.382(b_i - a_1); & i = 0, 1, 2, \dots \\ \bar{x}_i = a_i + (b_i - a_i)(\tau - 1) \approx a_i + 0.618(b_i - a_i); & i = 0, 1, 2, \dots \end{cases}$$

and evaluating $u(x_i)$ and $u(\bar{x}_i)$:

- If $u(x_i) > u(\bar{x}_i)$, then set $a_{i+1} \leftarrow a_i$ and $b_{i+1} \leftarrow \bar{x}_i$
- If $u(x_i) < u(\bar{x}_i)$, then set $a_{i+1} \leftarrow x_i$ and $b_{i+1} \leftarrow b_i$
- If $u(x_i) = u(\bar{x}_i)$, then set $a_0 \leftarrow x_i$; $b_0 \leftarrow \bar{x}_i$, and start the search again from this new interval $[a_0, b_0]$ and i = 0
- Proceed until the interval $[a_0, b_0]$ is sufficiently small, or the next point is within the resolution distance of the last point

Golden Section and Fibonacci Search

Golden section search: an example

 Golden section search is less efficient than the Fibonacci search: for i = 1, 2, ..., n − 1,

$$x_{i} = a_{i} + (b_{i} - a_{i})F_{n-i}/F_{n+2-i}$$

$$\bar{x}_{i} = a_{i} + (b_{i} - a_{i})F_{n+1-i}/F_{n+2-i}$$

where F_k is the Fibonacci number: $F_0 = 0$; $F_1 = 1$; $F_k = F_{k-1} + F_{k-2}$, k = 2, 3, ...

- Fibonacci search minimises the maximal interval of uncertainty about the maximiser x^* (in that sense it is optimal)
- But the number of points n to be evaluated in the Fibonacci search has to be prescribed
- Search for the root x^* of the first derivative, $\frac{du}{dx}(x^*) = 0$, be it available, is even more efficient

Gradient vector

$$abla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right]^\mathsf{T}$$

is directed to the greatest slope of the function $f\xspace$ at any point

- Gradient methods for seeking a maximum (minimum) for *f*:
 - Evaluate the gradient at an initial point
 - Move along the gradient direction for a computable distance
 - Repeat this process until the maximum (minimum) is found
- If exact partial derivatives are unknown then gradients may be numerically approximated
 - But approximation errors can make the methods less attractive

Basic Gradient Method

Gradient maximisation: the steepest ascent

- Select an initial point \mathbf{x}_0 and compute $\nabla f(\mathbf{x})$ at \mathbf{x}_0
- Draw a line $\mathbf{x}_0 + t
 abla f(\mathbf{x}_0)$ through \mathbf{x}_0 in the gradient direction
- Select the point x₁ on this line yielding the greatest value for *f* of all points on the line:

$$f(\mathbf{x}_1) = \max_{t \in (-\infty,\infty)} \{ f(\mathbf{x} : \mathbf{x} = \mathbf{x}_0 + t\nabla f(\mathbf{x}_0) \}$$

Search for the best point for f along the line:

- If computable derivatives and well-behaving f then:
 - Substitute $\mathbf{x}_0 + t \nabla f(\mathbf{x}_0)$ into the equation for f,
 - Differentiate with respect to t, and
 - Set the derivative equal to zero to find \boldsymbol{t}
- Else: any one-dimensional line search

Gradient Maximisation: An Example

$$f(\mathbf{x}) \equiv f(x, y) = 25 - x^2 - 4y^2; \ \nabla f(\mathbf{x}) = (-2x, -8y); \ \mathbf{x}_0 = (-3, -2):$$

$$f(\mathbf{x}_0) = 0; \ f(\mathbf{x}_1) = 20.1; \ f(\mathbf{x}_2) = 24.0; \ f(\mathbf{x}_3) = 24.8; \ f(\mathbf{x}_4) = 24.9; \dots$$

Accelerated Gradient Search

- Once i > 2, x_i for i odd is found by gradient search from x_{i-1}, and x_{i+1} is found by an accelerated step by maximising over the line through x_i and x_{i-2}
- Global maximum of a negative definite quadratic function of n variables is provably found after 2n-1 steps of this procedure.

14/21

- Producing a sequence of points \mathbf{x}_0 , \mathbf{x}_1 , ..., such that each point improves values in maximising a quadratic function $f(\mathbf{x}) = \mathbf{a}^{\mathsf{T}} + \frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x}$
- All directions d_i of search obey the relationship: d^T_iHd_j = 0 for all i, j, i ≠ j

General method of conjugate directions

- Choose \mathbf{x}_0 near an optimal point or randomly
- Carry out a one-dimensional search in the first conjugate direction d_1 to find a new point \mathbf{x}_1
- For i = 2,...,n, search for a new point x_i along the next conjugate direction d_i such that d^T_iHd_k = 0; j, k ≤ i, j < k
- The maximum is located in at most n steps

Conjugate Gradients

Each new conjugate direction - from the gradient at the point concerned

Conjugate gradient method for maximising $f(\mathbf{x})$

- Choose a starting point \mathbf{x}_0
- Carry out a one-dimensional search in the gradient direction $d_1 = \nabla f(x_0)$ to find the maximum point x_1

• For i = 2, ..., n, form \mathbf{d}_i from $\nabla f(\mathbf{x}_i)$ to be conjugate to \mathbf{d}_{i-1} : $\mathbf{d}_i = \nabla f(\mathbf{x}_i) + \gamma_{i-1}\mathbf{d}_{i-1}$ and $\mathbf{d}_i^\mathsf{T}\mathbf{H}\mathbf{d}_{i-1} = 0$ $\Rightarrow \mathbf{d}_i = \nabla f(\mathbf{x}_i) - \left(\frac{(\nabla f(\mathbf{x}_i))^\mathsf{T}\mathbf{H}\mathbf{d}_{i-1}}{\mathbf{d}_{i-1}^\mathsf{T}\mathbf{H}\mathbf{d}_{i-1}}\right)\mathbf{d}_{i-1}$

- Can be proven by induction: all \mathbf{d}_i are mutually conjugate
- In actual implementation the directions d_i can be computed by a simple recurrence relation, and only a few vectors and no matrices need be stored

 If both the gradient and Hessian of f(x) are too complicated to compute but f can be evaluated at any point x ∈ ℝ_n

Pattern search of K. Hooke and T. A. Jeeves

- For $i = 1, \ldots, n$ sequentially:
 - If $f(x_1, \ldots, x_i + \varepsilon_i, \ldots, x_n) > f(x_1, \ldots, x_i, \ldots, x_n)$, replace $x_i \leftarrow x_i + \varepsilon$
 - Else if $f(x_1, \ldots, x_i \varepsilon_i, \ldots, x_n) > f(x_1, \ldots, x_i, \ldots, x_n)$, replace $x_i \leftarrow x_i - \varepsilon$
- Repeat this cycle of perturbations until no perturbations about \mathbf{x}_j bring about an improvement
- Halve the pre-defined perturbation sizes ε_i and repeat the process while the next point brings an improvement over \mathbf{x}_j

Sectioning

One-at-a-time search, or sectioning, from an initial point \mathbf{x}_0

- For i = 1,...,n sequentially, search for the maximum in the direction of the variable x_i by one of the one-dimensional search methods and replace x_i by the maximiser x_i^{*}: x_i ← x_i^{*}
- Repeat this cycle of one-dimensional searches until the steps $x_i x_i^*$; i = 1, ..., n become less than a given threshold

Convergence rate is usually too slow and the search may halt far from the optimum

Accelerated search of H. H. Rosenbrock

- Use one-at-a-time search from \mathbf{x}_0 to find the next point \mathbf{x}_1^* and the direction $\boldsymbol{\delta}$ with components $\delta_i = x_{1:i}^* x_{0:i}$
- Search for the maximum in the direction $\boldsymbol{\delta}$ and replace \mathbf{x}_0 by the maximiser \mathbf{x}_1 found
- Repeat this cycle until \mathbf{x}_t and \mathbf{x}_{t-1} are closer than a threshold

One-at-a-time Search: An Example

Rosenbrock's Search: An Example

Search Method of M. J. D. Powell

- Similar to the method of conjugate gradients, except that derivatives are not required
- Similar to the Rosenbrock's method, except that each search is carried out along a conjugate direction
 - Directions $\mathbf{d}_1,\ldots,\mathbf{d}_n$ become conjugate w.r.t. an approximation of the Hessian matrix

If \mathbf{x}_0 is the initial estimate of the maximiser of $f(\mathbf{x})$ then

- 1 Set the search directions be equal to the coordinate directions
- 2 For i = 1, ..., n sequentially find the maximiser \mathbf{x}_i of f in the the direction \mathbf{d}_i from \mathbf{x}_{i-1}
- 3 Let $\mathbf{d}_i \leftarrow \mathbf{d}_{i+1}$ for $i = 1, \dots, n-1$ and $\mathbf{d}_n = \mathbf{x}_n \mathbf{x}_0$
- 4 Set \mathbf{x}_0 be equal to the maximiser of f in the \mathbf{d}_n direction from \mathbf{x}_n
- 5 Return to 2 unless some termination criterion is met