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A Versatile Camera Calibration Techniaue  for 
High-Accuracy 3D Machine Vision Metrology 
Using Off-the-shelf  TV  Cameras and Lenses 

ROGER 

Abstract-A new technique for three-dimensional (3D) camera calibra- 
tion for machine vision metrology using off-the-shelf TV cameras and 
lenses is described. The two-stage technique is aimed at efficient 
computation of camera external position and orientation relative to 
object reference coordinate system as well as the effective  focal length, 
radial lens distortion, and image scanning parameters. The two-stage 
technique has advantage in  terms of accuracy, speed, and  versatility over 
existing state of the art. A critical review of the state of the  art is given in 
the beginning. A theoretical framework is established, supported by 
comprehensive proof in five appendixes, and may pave the way for future 
research on 3D robotics vision. Test results using real data are described. 
Both accuracy and speed are reported. The experimental results are 
analyzed and compared with theoretical prediction. Recent effort indi- 
cates that with slight modification, the two-stage calibration can be done 
in real time. 

I. INTRODUCTION 

A .  The Importance of Versatile  Camera  Calibration 
Technique 

C AMERA CALIBRATION in the context of three- 
dimensional (3D) machine vision  is the process of 

determining the internal camera geometric and optical charac- 
teristics (intrinsic parameters) and/or the  3D  position  and 
orientation of the camera frame relative to a certain world 
coordinate system (extrinsic parameters), for the following 
purposes. 

I )  Inferring 3 0  Information from Computer Image 
Coordinates: There are two kinds of 3D information to be 
inferred. They are different mainly because of the difference 
in applications. 

a) The first is 3D information concerning the location of 
the object, target,  or  feature. For simplicity, if the object is a 
point feature (e.g., a point spot on a mechanical part 
illuminated by a laser beam, or the corner of  an electrical 
component on a printed circuit board), camera calibration 
provides a way  of determining a ray in 3D space that the object 
point must lie  on, given the computer image coordinates. With 
two views either taken from two cameras ,or one camera in  two 
locations, the position of the object point can be determined by 
intersecting the two  rays. Both intrinsic and extrinsic parame- 
ters need to be calibrated. The applications include mechanical 
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part dimensional measurement, automatic assembly of  me- 
chanical or electronics components, tracking, robot calibration 
and trajectory analysis. In the above applications, the camera 
calibration need be done only once. 

b) The second kind is 3D information concerning the 
position  and orientation of moving camera (e.g., a camera 
held  by a robot) relative to the target world coordinate system. 
The applications include robot calibration with camera-on- 
robot configuration, and robot vehicle guidance. 

2) Inferring 2 0  Computer Image Coordinates from 3 0  
In  formation: In model-driven inspection or assembly appli- 
cations using machine vision, a hypothesis of the state of the 
world can be verified or confirmed by observing if the image 
coordinates of the object conform to the hypothesis. In doing 
so, it is necessary to have both the intrinsic and extrinsic 
camera model parameters calibrated so that the two-dimen- 
sional (2D) image coordinate can be properly predicted given 
the hypothetical 3D location of  the object. 

The above purposes can be best served if the following 
criteria for the camera calibration are met. 

I )  Autonomous: The calibration procedure should  not 
require operator intervention such as giving initial guesses for 
certain parameters, or choosing certain system parameters 
manually. 

2) Accurate: Many applications such as mechanical part 
inspection, assembly, or robot arm calibration require an 
accuracy that  is one part in a few thousand of the working 
range. The camera calibration technique should have the 
potential  of meeting such accuracy requirements. This re- 
quires that the theoretical modeling of the imaging process 
must  be accurate (should include lens distortion and perspec- 
tive rather than parallel projection). 

3) Reasonably Efficient: The complete camera calibra- 
tion procedure should  not include high dimension (more than 
five) nonlinear search. Since type b) application mentioned 
earlier needs repeated calibration of extrinsic parameters, the 
calibration approach should allow enough potential for high- 
speed implementation. 

4) Versatile: The calibration technique should operate 
uniformly and autonomously for a wide range of accuracy 
requirements, optical setups, and applications. 

5) Need Only Common  Off-the-shelf Camera  and 
Lens: Most camera calibration techniques developed in the 
photogrammetric area require special professional cameras 
and processing equipment. Such requirements prohibit full 
automation and are labor-intensive and time-consuming to 
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implement. ’ The advantages of using off-the-shelf solid state 
or vidicon  camera  and lens are 

versatile-solid state cameras  and lenses can  be  used for a 
variety of  automation applications; 
availability-since off-the-shelf solid state cameras  and 
lenses are common  in  many applications, they are at  hand 
when  you  need  them  and  need  not be custom ordered; 
familiarity, user-friendly-not  many  people  have the 
experience of operating the professional metric  camera 
used  in  photogrammetry or the tetralateral photodiode 
with  preamplifier  and associated electronics calibration, 
while solid state is easily interfaced with a computer  and 
easy to install. 

The  next section shows deficiencies of existing techniques  in 
one or more of these criteria. 

B. Why Existing  Techniques Need Improvement 
In this section, existing techniques are first classified into 

several categories. The strength and  weakness of each 
category are analyzed. 

Category  I-Techniques Involving Full-Scale  Nonlinear 
Optimization: See [I]-[3], [7], [lo], [14], [17], [22], [30], 
for example. 

Advantage: It  allows  easy  adaptation of  any arbitrarily 
accurate yet  complex  model for imaging. The best  accuracy 
obtained  in this category is comparable to the accuracy  of the 
new  technique  proposed in this paper. 

Problems: I) It requires a good initial guess  to start the 
nonlinear search.  This violates the principle of  automation. 2) 
It  needs  computer-intensive full-scale nonlinear search. 

Classical Approach: Faig’s  technique  [7] is a good 
representative for these techniques. It  uses a very elaborate 
model for imaging,  uses at least 17  unknowns for each  photo, 
and is very  computer-intensive [7]. However, because of the 
large number  of  unknowns, the accuracy is excellent. The rms 
(root mean  square or average) error can  be as good as 0.1 mil. 
However, this rms error is in  photo scale (i.e., error of fitting 
the model  with the observations  in  image plane). When 
transformed into 3D  error, it is comparable to the average 
error  (0.5 mil)  obtained  using  monoview  multiplane calibra- 
tion technique,  which is the typical case among the various 
two-stage  techniques  proposed  in this paper. Another  reason 
why  such  photogrammetric  techniques  produce  very accurate 
results is that large professional format  photo is used rather 
than solid-state image array such as  CCD. The resolution for 
such  photos is generally three to four times better than that for 
the solid-state imaging  sensor array. 

Direct  linear transformation (DL T): Another  example 
is the direct linear transformation (DLT) developed by Abdel- 
Aziz  and  Karara [ 11, [2]. One  reason  why DLT was  developed 
is that only linear equations  need  be solved. However, it was 
later found that, unless lens distortion is ignored, full-scale 
nonlinear  search is needed. In [14, p. 361 Karara, the co- 

’ Although  existing  techniques  such as  direct  linear transformation (see 
Section I-B) can  be  implemented using common  solid  state or vidicon 
cameras,  the  version NBS implemented uses high  resolution  analog  tetra- 
lateral  photodiode,  and  the  associated  optoelectronics  accessories  need  special 
manual  calibration  (see [5] for details). 

inventor of DLT, comments, 

When originally presented in 1971 (Abdel-Aziz and Karara, 
1971), the DLT basic equations did not involve any image 
refinement parameters, and represented an actual linear 
transformation between comparator  coordinates and object- 
space coordinates.  When  the DLT mathematical model was 
later expanded to encompass image refinement parameters,  the 
title DLT was retained unchanged. 

Although  Wong  [30]  mentioned that there are two possible 
procedures  of  using DLT (one entails solving linear equations 
only, and the other requires nonlinear search), the procedure 
using linear equation  solving actually contains approximation. 
One of the artificial parameters  he introduced, K ~ ,  is a function 
of (x, y ,  z )  world  coordinate  and therefore not a constant. 
Nevertheless, DLT bridges the gap  between  photogrammetry 
and  computer vision so that both areas can  use DLT directly to 
solve camera calibration problem. 

When lens distortion is not  considered,  DLT falls into the 
second  category (to be  discussed later) that entails solving 
linear equations only. It,  too, has its pros  and  cons  and will be 
discussed later when the second  category is presented. Dainis 
and Juberts [5]  from the Manufacturing  Engineering  Center of 
NBS reported results using DLT for camera calibrations to do 
accurate measurement of robot trajectory motion.  Although 
the NBS system  can do  3D measurement at a  rate of 40 Hz, the 
camera calibration was  not  and  need  not  be  done  in real time. 
The accuracy  reported  uses the same  type  of  measure for 
accessing or evaluating camera calibration accuracy as Type I 
measure  used in this paper (see Section 111-A). The total 
accuracy in 3D is one part in 2000  within the center 80 percent 
of the detector field of view.  This is comparable to the 
accuracy  of the proposed  two-stage  method  in  measuring the x 
and y parts of the 3D  coordinates (the proposed  two-stage 
technique yields better percentage  accuracy for the depth). 
Notice,  however, that the image  sensing  device NBS  used is 
not a TV  camera  but a tetralateral photodiode. It senses the 
position of  incidence light spot on the surface of detector by 
means  of  analog  and  uses a 12-bit AID  converter to convert the 
analog positions into a digital quantity to be processed by the 
computer. Therefore,  the tetralateral photodiode  has  an 
effective 4K X 4K spatial resolution, as opposed to a 388 X 
480 full-resolution Fairchild CCD area sensor. Many  thought 
that the low resolution characteristics of solid-state imaging 
sensor  could  not  be  used for high-accuracy  3D  metrology. 
This  paper reveals that  wit,h proper calibration, a solid-state 
sensor  (such as CCD)  is still a valid tool in high-accuracy 3D 
machine vision metrology applications. Dainis  and Juberts [5] 
mentioned that the accuracy is 100 percent  lower for points 
outside the center 90-percent field of  view.  This  suggests that 
lens distortion is not  considered  when  using DLT to calibrate 
the camera.  Therefore, only linear equations  need to be 
solved. This actually puts the NBS work in a different category 
that  follows  which  include all techniques that computes the 
perspective transformation  matrix first. Again, the pros  and 
cons for the latter will be  discussed later. 

Sobel,  Gennery, Lowe: Sobel [23] described a system 
for calibrating a camera  using  nonlinear  equation solving. 
Eighteen  parameters  must  be  optimized.  The  approach is 
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similar to Faig’s method described earlier. No accuracy results 
were reported. Gennery [lo] described a method  that finds 
camera parameters iteratively by minimizing the error of 
epipolar constraints without using 3D coordinates of calibra- 
tion points. It is mentioned in [4, p.  2531  and [20,  p. 501 that 
the technique is too error-prone. 

Category 11- Techniques Involving Computing Perspec- 
tive Transformation Matrix First  Using  Linear Equation 
Solving: See [ 13, [2], [9], [ 111, [ 141,  [241,  [251,  and [3 11, for 
example. 

Advantage: No nonlinear optimization is needed. 
Problems: 1) Lens distortion cannot be considered. 2) 

The number  of unknowns in linear equations is much larger 
than the actual degrees of freedom (i.e., the unknowns to be 
solved are not linearly independent). The disadvantage of such 
redundant parameterization is that erroneous combination  of 
these parameters can still make a good fit between experimen- 
tal observations and  model prediction in real situation when 
the observation is  not perfect. This means the accuracy 
potential is limited in  noisy situation. 

Although the equations characterizing the transformation 
from 3D world coordinates to 2D image coordinates are 
nonlinear functions of the extrinsic and intrinsic camera model 
parameters (see Section 11-C1 and  -2 for definition of camera 
parameters), they are linear if lens distortion is ignored and if 
the coefficients of the 3 x 4 perspective transformation matrix 
are regarded as unknown parameters (see  Duda  and Hart [6] 
for a definition of perspective transformation matrix). Given 
the 3D world coordinates of a number of points  and the 
corresponding 2D image coordinates, the coefficients in the 
perspective transformation matrix can be solved by least 
square solution of an overdetermined systems of linear 
equations. Given the perspective transformation matrix, the 
camera model parameters can then be computed if needed. 
However, many investigators have found that ignoring lens 
distortion is unacceptable when doing 3D measurement (e.g., 
Itoh et al. [12], Luh and  Klassen [ 161). The error of  3D 
measurement reported in this paper using  two-stage camera 
calibration technique would have been an order of  magnitude 
larger if the lens distortion were not corrected. 

Sutherland: Sutherland [25] formulated very explicitly 
the procedure for computing the perspective transformation 
matrix given 3 0  world coordinates and  2D  image coordinates 
of a number of points. It was applied to graphics applications, 
and  no accuracy results are reported. 

Yakimovsky and Cunningham: Yakimovsky  and Cun- 
ningham’s stereo program [31] was developed for the JPL 
Robotics Research Vehicle, a testbed for a Mars rover and 
remote processing systems. Due to the narrow field of view 
and large object distance, they  used a highly linear lens and 
ignored distortion. They reported that the  3D measurement 
accuracy of k 5 mm  at a distance of 2 m. This is equivalent to 
a depth resolution of one part in 400, which  is one order of 
magnitude less accurate than the test results to be described in 
this paper. One reason is that  Yakimovsky  and Cunningham’s 
system does not consider lens distortion. The other reason is 
probably  that the unknown parameters computed by linear 
equations are not linearly independent. Notice also that  had it 

not  been for the fact that the field of  view in Yakimovsky  and 
Cunningham’s system is narrow and that the  object distance is 
large, ignoring distortion should cause more error. 

DLT: By disregarding lens distortion, DLT developed 
by Abdel-Aziz  and Karara [ 11, [2] described in Category I falls 
into Category 11. Accuracy results on real experiments have 
been reported only  by Dainis and Juberts from NBS [SI. The 
accuracy results and the comparison with the proposed 
technique are described earlier in Category I. 

Hall et al.: Hall et al. [l 11 used a straightforward linear 
least square technique to solve for the elements of perspective 
transformation matrix for doing 3D curved surface measure- 
ment. The computer 3D coordinates were tabulated, but  no 
ground truth was given, and therefore the accuracy is 
unknown. 

Ganapathy, Strat: Ganapathy [9] derived a noniterative 
technique in computing camera parameters given the perspec- 
tive transformation matrix computed using  any of the tech- 
niques discussed in this category. He  used the perspective 
transformation matrix given from Potmesil through private 
communications and computed the camera parameters. It was 
not applied to 3D measurement, and therefore no accuracy 
results were available. Similar results are obtained by Strat 

Category 111-Two-Plane Method: See [13] and 1191 for 
~ 4 1 .  

example. 
Advantage: Only linear equations need  be solved. 
Problems: 1) The number of unknowns is at least 24 (12 

for each plane), much larger than the degrees of freedom. 2) 
The formula used for the transformation between image and 
object coordinates is empirically based only. 

The two-plane method developed by Martins et  ai. [19] 
theoretically can be applied in general without having  any 
restrictions on the extrinsic camera parameters. However, for 
the experimental results reported, the relative orientation 
between the camera coordinate system and the object world 
coordinate system was assumed known (no relative rotation). 
In such a restricted case, the average error is about 4 mil  with a 
distance of 25 in, which is comparable to the accuracy 
obtained  using the proposed technique. Since the formula for 
the transformation between image and object coordinates is 
empirically based, it is not clear what  kind of approximation is 
assumed. Nonlinear lens distortion theoretically cannot be 
corrected. A general calibration using the two-plane technique 
was proposed by Isaguirre et al. [13]. Full-scale nonlinear 
optimization is needed. No experimental results were re- 
ported. 

Category  IV-Geometric  Technique: See [8] for exam- 
ple. 

Advantage: No nonlinear search is needed. 
Problems: 1) No lens distortion can be considered. 2)  

Focal length is assumed given. 3) Uncertainty of image scale 
factor is  not allowed. 

Fischler and Bolles [8] use a geometric construction to 
derive direct solution for the camera locations and orientation. 
However, none of the camera intrinsic parameters (see Section 
11-C2) can be computed. No accuracy results of real 3D 
measurement was reported. 
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11. THE NEW APPROACH TO MACHINE VISION CAMERA 
CALIBRATION USING A TWO-STAGE  TECHNIQUE 

In the following, an  overview is first given  that describes 
the strategy we  took  in  approaching the problem.  After the 
overview, the underlying  camera  model  and the definition of 
the parameters to  be calibrated are described. Then, the 
calibration algorithm  and the theoretical derivation and other 
issues will be presented. For those readers who  would like to 
have a physical feeling of  how to perform calibration in a real 
setup, first read  “Experimental Procedure,” Section  IV-A1 . 
A .  Overview 

Camera calibration entails solving for  a large number  of 
calibration parameters, resulting in the classical approach 
mentioned in the Introduction that requires large scale nonlin- 
ear  search.  The conventional  way of avoiding this large-scale 
nonlinear  search is to use the approaches similar to DLT 
described in the Introduction that solves for  a set of parameters 
(coefficients of homogeneous  transformation  matrix)  with 
linear equations, ignoring the dependency  between the param- 
eters, resulting in a situation with the number of unknowns 
greater than the number of degrees of freedoms. The lens 
distortion is also ignored (see the Introduction for more 
detail). Our  approach is to look for a real constraint or 
equation that is only a function of a subset of the calibration 
parameters to reduce the dimensionality  of the unknown 
parameter space. It turns out  that  such constraint does exist, 
and  we call it the radial  alignment  constraint (to be  described 
later). This constraint (or equations resulting from  such 
physical constraint) is only a function of the relative rotation 
and translation (except for the z component)  between the 
camera  and the calibration points (see Section 11-B for detail). 
Furthermore, although the constraint is a nonlinear function of 
the abovementioned calibration parameters (called group I 
parameters), there  is  a simple  and efficient way  of  computing 
them. The rest of the calibration parameters (called group I1 
parameters) are computed  with  normal projective equations. A 
very  good initial guess  of  group I1 parameters  can  be  obtained 
by ignoring the lens distortion and  using  simple linear equation 
with  two  unknowns. The precise values for group I1 parame- 
ters can  then be computed  with  one or two iterations in 
minimizing the perspective  equation error. Be aware that when 
single-plane calibration points are used, the plane  must  not be 
exactly parallel to image  plane (see (15), to follow, for detail). 

Due to the accurate  modeling for the image-to-object 
transformation  described in the next section, subpixel accu- 
racy interpolation for extracting image  coordinates  of calibra- 
tion points can  be  used to enhance the calibration accuracy to 
maximum.  Note that this is not true if a DLT-type linear 
approximation  technique is used since ignoring distortion 
results in  image  coordinate error more  than a pixel unless very 
narrow  angle lens is used. One  way  of  achieving subpixel 
accuracy  image feature extraction is described  in  Section  IV- 
Al.  

B. The Camera Model 
This section describes the camera  model, defines the 

calibration parameters,  and presents the simple radial align- 

0 )X 

or P(xw,yw,zw) 

Fig. 1. Camera  geometry  with  perspective  projection  and  radial  lens 
distortion. 

ment principle (to be  described in Section 11-E) that provides 
the original motivation for the proposed technique. The 
camera  model itself is basically the same as that used  by  any  of 
the techniques  in  Category I in Section I-B. 

I) The Four Steps of Transformation from 3 0  World 
Coordinate to Camera  Coordinate: Fig.  1 illustrates the 
basic geometry of the camera  model. (xw,  y w ,  z,) is the 3D 
coordinate  of the object point P in the 3D world  coordinate 
system. (x, y ,  z )  is the  3D coordinate of the object point P in 
the 3D  camera  coordinate  system,  which is centered at point 
0, the optical center, with the z axis the same as the optical 
axis. ( X ,  Y )  is the image  coordinate  system  centered at Oi 
(intersection of the optical axis z and the front image plane) 
and parallel to x and y axes. f is the distance between front 
image  plane  and the optical center. (X,, Y,) is the image 
coordinate  of (x, y ,  z )  if a perfect pinhole  camera  model is 
used. ( X d ,  Yd)  is the actual image  coordinate  which differs 
from (X,, Y,) due to lens distortion. However, since the unit 
for ( X f ,  Y f ) ,  the coordinate  used  in the computer, is the 
number  of pixels for the discrete image in the frame  memory, 
additional parameters  need  be specified (and calibrated) that 
relates the image  coordinate in the front image  plane to the 
computer  image  coordinatk  system. The overall transforma- 
tion from (x,,,, y,, z,) to ( X f ,  Yf)  is depicted  in Fig. 2. Step 4 
is special to industrial machine vision application where  TV 
cameras (particularly solid-state CCD  or CID) are used. The 
following is the transformation in analytic form for the four 
steps in Fig. 2. 

Step I: Rigid  body  transformation  from the object world 
coordinate  system (x,,,, yw, z,,,) to the camera  3D  coordinate 
system (x, Y ,  z )  
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(xw, yw, zw) 3 0  world coordinate 

I 
v 
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Step 1 
Rigid  body  transformation  from (xw, y,. zw) to (x, y ,  z )  

Parameters to be  calibrated: R, T 

I 
v 

(x ,  y,  z )  3 0  camera coordinate system 

I 
7 

Step 2 
Perspective  projection  with  pin  hole  geometry 

Parameters to be  calibrated: f 

I 
v 

(X,, Y,) Ideal undistorted  image  coordinate 

I 
v 

Step 3 
Radial  lens  distortion 

Parameters to be  calibrated: K , ,  K* 

I 
v 

(X,, Y,) Distorted image coordinate 

I 
w 

Step 4 
TV scanning,  Sampling,  computer  acquisition 

Parameter  to  be  calibrated:  uncertainty  scale  factor s, for image 
X coordinate 

~ ~ ~~ 

I 
v 

(Xr. Yf) Computer image  coordinate in frame  medory 

Fig, 2. Four steps of transformation  from 3D world  coordinate to computer  image  coordinate. 

where R is the 3 X 3 rotation matrix Step 2: Transformation from 3D camera coordinate (x, 
y ,  z )  to ideal (undistorted) image coordinate (Xu ,  Yu) using 

f-1 r2  r3 perspective projection with pinhole camera geometry 
R = r4 rs r6 , [ r7  r8 r9] 

(2) 
X 

Z 
X u = f -  (44  

and T is the translation vector 

T E  [;I. (3) 

The parameters to be calibrated are R and T. 
Note  that  the rigid body transformation from one Cartesian 

coordinate system (x,,,, yw, z,) to another (x, y ,  z )  is  unique if 
the transformation is defined as 3D rotation around the origin 
(be it  defined as three  separate rotations-yaw, pitch, and roll- 
around an axis passing through the origin) followed by the 3D 
translation. Most  of the existing techniques for camera 
calibration (e.g., see Section I-B) define the transformation as 
translation followed by rotation. It will be seen later (see 
Section 11-E) that  this order (rotation followed by translation) 
is crucial to the motivation and development of the new 
calibration technique. 

The parameter to be calibrated is the effective focal length f .  
Step 3: Radial  lens distortion is 

x d + D x = x u  (54  

Y d + D y =  Y u  (5b) 

where ( X d ,  Yd) is the distorted or  true image coordinate on the 
image plane ,and 

DX =Xd( K ,  r2 + ~~r~ + -)  

Dy= Y d ( ~ I r 2 + ~ 2 r 4 +  * e - )  

r = q d .  
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The parameters to be calibrated are distortion coefficients K ~ .  

The modeling of lens distortion can  be  found  in [ 181. There 
are two kinds of distortion: radial and tangential. For each 
kind  of distortion, an infinite series is required. However, my 
experience shows  that for industrial machine vision applica- 
tion, only  radial distortion needs to be considered, and  only 
one term is needed. Any more elaborate modeling  not  only 
would  not help but also would cause numerical instability. 

Step 4: Real image coordinate ( X d ,  Yd) to computer 
image coordinate coordinate ( X f ,  Y f )  transformation 

where 

(X f ,   Y f )  row  and column numbers of the image pixel in 
computer frame memory, 

(ex, Cy) row and column numbers of the center of 
computer frame memory, (6c) 

dX center to center  distance  between  adjacent  sensor 
elements  in X (scan  line) direction, @e) 

dY center to center distance between adjacent CCD 
sensor in  the Y direction, (6f) 

N c x  number of sensor elements in the X direc- 
tion, (6g) 

Nfx number of pixels in a line as sampled by the 
computer. (6h) 

The parameter to be calibrated is the uncertainty image scale 
factor s,. 

To transform between the computer image coordinate (in 
the forms of rows and columns in frame buffer) and the real 
image coordinate, obviously the distances between the two 
adjacent pixels in both the row and column direction in the 
frame buffer mapped to the real image coordinates need be 
used. When a vidicon camera is used where both  such 
distances are not  known a priori, the multiplane (rather than 
single plane) calibration technique described in  this paper must 
be used. However, the scale in y is absorbed by the focal 
length since focal length scales the image in  both the x and y 
directions. Therefore, dy (6b) should be set to one while  the 
computed focal length f will be a product of the actual focal 
length  and the scale factor in y .  Also, Ncx and Nfx in (6d) 
should be set to one since they  only apply to CCD cameras. 

Note  that  if a vidicon type camera is used, the sensor 
element or pixel  mentioned earlier should be regarded as each 
individual resolution element in the receptor area with the 
resolution being determined by the sampling rate. If a solid- 
state CCD or CID discrete array sensor is used  and if full 
resolution is used, since the image is scanned line by line, 
obviously the distance between adjacent pixels in the y 
direction is just the same as dy , center to center distance 
between adjacent CCD sensor elements in Y direction. 
Therefore, (6b) is the right relationship between Yd and Y. If 

only the odd or the even  field is used, then dy is twice the 
center-to-center distance between adjacent CCD sensor ele- 
ments in the Y direction. The situation in X is different. 
Normally, in TV camera scanning, an analog  waveform  is 
generated for each image line by zeroth-order sample and 
hold.  Then it is sampled by the computer into Nfx samples. 
Therefore, one would  easily draw the conclusion that 

Normally, manufacturers of CCD cameras supply informa- 
tion  of dx and dy (defined in (6e) and (6f)) to submicron 
accuracy. However, an additional uncertainty parameter has to 
be introduced. This is due to a variety of factors, such as slight 
hardware timing mismatch  between image acquisition hard- 
ware and camera scanning hardware, or the imprecision of the 
timing of TV scanning itself. Even a one-percent difference 
can cause three- to five-pixels error for a full resolution frame. 
Our experience with  the Fairchild CCD 3000 camera shows 
that  the uncertainty is as much  as five-percent. Therefore, an 
unknown parameter sx in  (6a)  is introduced to accommodate 
this uncertainty, and to include it  in the list of unknown 
parameters to be calibrated, multiplane calibration technique 
described in this paper should  be used. However, there are  a 
variety of other simple techniques one can  use to determine 
this scale factor in advance (see  Lenz  and Tsai [ZS]). In this 
case, the single plane calibration technique suffices. The issue 
of (ex, Cy) will  be discussed later (see Note at end  of paper). 

C. Equations Relating the 3 0  World Coordinates to the 
2 0  Computer Image  Coordinates 

By combining the last three steps, the ( X ,  Y )  computer 
coordinate is related to (x ,  y ,  z ) ,  the  3D coordinate of the 
object  point in camera coordinate system, by the following 
equation: 

s;'d:X+s;'d:XK1r2= f - 
X 

2 

dy'Y+dyYKIr2=f- Y (7b) 
Z 

where 

r=d(s;1d:X)2+(dyY)2 .  
\, 

Substituting (1) into (7a) and  (7b) gives 

where 
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The parameters used  in the transformation in Fig. 2  can  be 
categorized into the following two classes: 

1) Extrinsic Parameters: The parameters in Step 1 in Fig. 
2 for the transformation from 3D object world coordinate 
system to the camera 3D coordinate system centered at the 
optical center are called the extrinsic parameters. There are 
six extrinsic parameters: the Euler angles yaw 8, pitch +, and 
tilt $ for rotation, the three components for the translation 
vector T. The rotation matrix R can be expressed as function 
of 8, 9, and $ as follows: 

r cos $ cos 8 

according to (4a) and (4b), z changes X ,  and Y, by the same 
scale, so that oiP,//oiPd). 
- Observation IV.‘ The constraint that OjPd is parallel to 
Po,P for every point, being shown to be independent of  the 
radial distortion coefficients K ]  and K ~ ,  the effective focal 
length f, and the z component of  3D translation vector T,  is 
actually sufficient to determine the  3D rotation R,  X ,  and Y 
component of 3D translation from the world coordinate system 
to the camera coordinate system, and the uncertainty scale 
factor s, in X component of the image coordinate. 

- -  

sin $ cos 8 -sin 8 1 
R= -sin$cos++cos$sin8cos+ cos $cosc$+sin$sinesin+  cosOsin+ . 1 1 (9) 

sin$sin++cos$sin8cos+  -cos$sin++sin$sinOcos+ C O S ~ C O S +  

2) Intrinsic Parameters: The parameters in  Steps 2-4 in 
Fig. 2 for the transformation from 3D object coordinate in the 
camera coordinate system to the computer image coordinate 
are called the intrinsic parameters. There are six intrinsic 

effective focal  length, or image  plane to projec- 
tive center distance, 
lens distortion coefficient, 
uncertainty scale factor for x ,  due to TV camera 
scanning and acquisition timing error, 
computer image coordinate for the origin in the 
image plane. 

D. Problem Definition 
The problem of camera calibration is to compute the camera 

intrinsic and extrinsic parameters based  on a number  of  points 
whose object coordinates in the (xw, yw ,  z,) coordinate system 
are known  and whose image coordinates ( X ,  Y )  are mea- 
sured. 

E. The  New  Two-Stage Camera Calibration Technique: 
Motivation 

The original basis of the new technique is the  following four 
observations. 

Observation Z: Since we assume that the distortion is 
radial, no matter how  much the distortion is, the direction of 
the vector OiPd extending from the origin oi in the image 
plane to the image point (Xd, Yd) - remains unchanged  and  is 
radially aligned with the vector P,,P extending from the 
optical axis (or, more precisely, the point Po, on the optical 
axis whose z coordinate is the same as that for the object point 
( x ,   y ,  z ) )  to the object point (x, y, z ) .  This is illustrated in Fig. 
3. See Appendix I for a geometric and  an algebraic proof of 
the radial alignment constraint (RAC). 

Observation ZI: The effective focal length f also does not 
influence the direction of the vector Oipd, since f scales the 
image coordinate Xd and Yd by  the same rate. 

Observation ZIZ: Once the object world coordinate system 
is rotated and translated in x and y as in step 1 such  that OiPd is 
parallel to PozP for every point, then translation in  will  not 
alter the direction of OjPd (this comes from the fact that, 

- 

- 

- 
- 

Among the four observations, the first three are clearly true, 
while the last one requires some geometric intuition and 
“imagination” to establish its validity. It  is possible for the 
author to go into further details on  how this intuition was 
reached, but it will  not  be sufficient for a complete proof. 
Rather, the complete proof  will  be  given analytically in the 
next  few sections. In fact,  as we will see later, not  only is the 
radial alignment constraint sufficient to determine uniquely the 
extrinsic parameters (except for T,) and one of the intrinsic 
parameters (s,), but also the computation entails only the 
solution of linear equations with five to seven unknowns. This 
means  it can ‘be done fast and done automatically since no 
initial guess, which  is normally required for nonlinear 
optimization, is needed. 

F. Calibrating a Camera  Using a Monoview Coplanar 
Set of Points 

To aid those readers who intend to implement the proposed 
technique in their applications, the presentation will be 
algorithm-oriented. The computation procedure for each 
individual step will first be given, while the derivation and 
other theoretical issues will follow. Most technical details 
appear in the Appendices. 

Fig. 4 illustrates the setup for calibrating a camera using a 
monoview coplanar set of points. In the actual setup, the plane 
illustrated in the figure is the top surface of a metal block. The 
detailed description of the physical setup is given in Section 
IV-A1. Since the calibration points are on a common plane, 
the (xw,   yw,  z,) coordinate system can be chosen  such  that zw 
= 0 and the origin is not close to the center of the view or y 
axis of the camera coordinate system. Since the (xw,  y w ,  z,) is 
user-defined and the origin is arbitrary, it  is  no problem setting 
the origin of ( xw ,   yw ,  z,) to be  out of the field of  view  and not 
close to the y axis. The purpose for the latter is to make sure 
that T, is not exactly zero, so that the presentation of the 
computation procedure to be described in  the following can be 
made more unified and simpler. (In case it is zero, it is quite 
straightforward to modify the algorithm but  is unnecessary 
since it can be avoided.) 

I )  Stage I-Compute 3D Orientation, Position (x and 
Y): 
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O A X  /* Y I I \  L .  \ 

--j-\---)Pd(Xd,Yd) 

Fig. 3. Illustration of radial  alignment  constraint.  Radial  distortion doesnot 
alter  direction  of  vector  from  origin to image  point,  which  leads to O,P,// 
O,P,//O,,P. 
-- 

flat surface 
holding the 
calibration 
po i nta, whi ch 
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of squares. 
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Fig. 4. Schematic  diagram of experimental  setup  for  camera  calibration 
using  monoview  coplanar  set of points. 

a) Compute  the distorted  image  coordinates ( X d ,  Yd): 
Procedure: 

i) Grab  a  frame into the computer  frame  memory. 
Detect the row  and  column  number  of  each calibra- 
tion point i. Call it (Xfi, Yfi). 

ii)  Obtain N,,  Nf,, d i  , dy according to (6c)-(6h) using 
information of camera  and  frame  memory supplied 
by manufacturer. 

iii) Take (C,, Cy)  to be the center pixel  of  frame  memory 
(see i )  in  “Derivation  and  discussion”  below). 

iv) Compute (Xdi,  Ydj) using (6a) and (6b): 

X d i  = S i  d i  (X ,  - c,) 
Ydj=dy(Yfj-Cy) 

for i = 1, . . . , N, and N is the total number of 

calibration points. See ii) in “Derivation  and discus- 
sion below  concerning s,. 

Derivation  and  discussion (also see Note at  end of 
paper): 

i) Issues  concerning  image  origin: Currently, we 
do  not  include the image center (C,, Cy) in the list of camera 
parameters to be  calibrated. We  simply take the apparent 
center of the computer  image frame buffer to be the center. 
The results of the real experiments  show that when a full 
resolution CCD camera is calibrated with the proposed 
technique, it is so well  equipped as to be able to  make 3D 
measurement  with  one part in 4000 average  accuracy.  To see 
the consequence of having a wrongly  guessed  image center 
when  doing calibration, we intentionally alter the apparent 
image center by ten pixels. The results of 3D  measurement 
still is about as accurate. We  have  not  yet  conducted 
experiments  with the image origin way  off the apparent center 
of the sampled  image.  While  doing the experiments,  we  did 
not take the center of the frame  memory to be the center of the 
sampled  image or the image origin. It is often the case that 
image acquisition hardware  may  have a slight timing error 
such that the starting of each line may either be  too early or too 
late, causing the RS170 video  from CCD camera to be 
sampled  in the front or back  porch  (porch is the blanking 
interval between  each line of active video). Similar situation 
may  occur  in the vertical direction, but  usually to a much 
lesser extent. The  user  should  observe the pixel  values  in the 
frame  memory,  and see if there are any  blank lines on the 
border.  For example,  if there are eight blank lines on the left 
border  and five blank lines on the top border, the image 
origin should  be  taken as the center in the frame  memory offset 
(added) by (8, 5 ) ,  which is the case we encountered  in the real 
experiments  described in Section IV. 

ii)  Issues  concerning  uncertainty  scale factor s,: 
Unlike the multiplane case, the single plane case does  not 
calibrate the scale factor s,. In e) of Section  IV-A1, it is 
explained  in  what situation one  does  not  need to calibrate s, 
and  how to get apriori knowledge of s,. See also Step 4 in the 
transformation  from  3D  world  coordinate to camera coordi- 
nate  in  Section  11-B. 

b) Compute the five unknowns T;lrl, T;’r2, T;lT,, 
T;lr4, T;’r5.  

Procedure: For each point i with (xwj,  ywj ,  zwj) ,  (&i, 

Ydj) as the 3D object coordinate  and the corresponding  image 
coordinate  (computed  in a) above), set up the following linear 
equation  with T;lrl, T;lr2, T; ‘T,, T;Ir4, and as 
unknowns: 

[ Ydjxwi Ydiywj Y d i  - x d i x w i  - x d i ~ w i I  T; 1 T, = (10) 7:;1 
With N (the number  of object points) much larger than five, an 
overdetermined  system of linear equations  can  be established 
and  solved for the five unknowns T; lrl ,  T y  ‘r2, T i  T,, 
T;lr4, and Ty1r5 .  
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Derivation and uniqueness of solutions: Equation - 
(10) - follows simply from the radial alignment constraint 0;Pd 
//P,,P depicted in Fig. 3 and  mentioned  in Section 11-E. The 
detailed derivation is given in Appendix I. Obviously, the 
matrix linear equation in (10) has a unique solution if and  only 
if the coefficient matrix has full column rank, or equivalently, 
all columns are linearly independent. Appendix I1 gives a 
detailed proof that the coefficient matrix has  full  column rank 
for N much larger than five. 

c) Compute ( r l ,  * * * ,  r9, T,, T,) from  (T;lr1,  T;lr2, 
Ti'T,,  T;lr4,  T;lr5): 

I )  Compute 1 Ty I from  T;  lrl,  T;'r2, T;'T,, 
T;  'r4,  T; 'r,: 

Procedure: Let C be a 2 x 2 submatrix of the 
rotation matrix R ;  i.e., C is defined as 

IF (not a whole row or column of C vanishes), THEN compute 
T; with 

where S, = r;2 + r i2  + r i 2  + r;2; ELSE (this rarely 
happens, if ever), compute T; with 

T;=(r:2+rj2) -1  (13)  

where r; , rj' are the elements in the row or column of C that 
do not vanish. 

Derivation and uniqueness of solution: The deri- 
vation  of the computation procedure actually follows the  proof 
of uniqueness. Notice that the elements in (1 1 )  for C are 
computed  in  b)  and are unique. Furthermore, C in ( 1 1 )  is 
actually the upper left 2 x 2 submatrix of the orthonormal 
matrix (of the first kind) R scaled by UT,. The following 
lemma puts a restriction on how one can scale the 2 X 2 
submatrix of a 3 x 3 orthonormal matrix ,while still 
maintaining orthogonality. 

Lemma I: There do not exist two 3 X 3 orthonormal 
matrices that differ in their 2 X 2 submatrix by a scale factor 
other than +. 1 .  Equivalently, if the 2 X 2 submatrix of an 
orthonormal matrix is given except for the scale factor, then 
that scale factor is unique except for the sign. 

The proof for Lemma I is given in  Appendix 111. Note  that C 
(the 2 X 2 submatrix of R )  is fixed in  b)  and  had there been 
two or more solutions for I Ty 1, then from ( 1  l ) ,  there would be 
two or more scale factors r I ,  r2, r4, r5, which contradicts 
Lemma I. Therefore, Lemma I clearly establishes the unique- 
ness  of I T, I. Equation (13)  is rarely used, if ever, as discussed 
in Appendix IV.  The formula (12) is derived in  Appendix IV. 
Actually, as described in Appendix IV, the procedure for 
deriving (12) yields two expressions for I Ty I. From Lemma 1 
only one is valid. As for why (12) is chosen, a theoretical 
analysis is  given  in Appendix IV. 

2) Determine the sign of T,: 
Procedure: 

i) Pick an object point i whose computer image 
coordinate (XB, Yfi) is away from the image 
center (C,,  Cy); the object world coordinate is 
( x w i ,  ~ w ; ,  2 3 .  

ii) Pick the sign  of Ty to be + 1. 
iii) Compute the following: 

r l=(T; l r l )  T, r2=(T,-'rz) + Ty 

r4=(T;lr4) - Ty 

r5=(T; 'r5)  Ty  T,=(T;lT,) T, 

x=rlx,+r2yw+ T, y=r4x,+r5yw+T, 

where Tilt-' ,  TY-'r2,  T;'T,,  T;'r4, and T;lr5 
are determined in b). 

iv) IF ( ( x  and X have the same sign) and ( y  and Y 
have the same sign)), THEN sgn ( T,) = + 1 ,  ELSE 

sgn (T,) = - 1 .  

Derivation and uniqueness of solution: Although 
T; or I Ty I is determined uniquely  in cl) above, Ty can still 
assume + or - signs. Note  that since (10) computes T;  lrl, 
T;lr2,  T;'T,,  T;lr4,  T;'r5, reversing the sign of Ty 
reverses the signs of r l ,  r2, r4, r,, and T,. Recall that the linear 
equation (10) used to solve for Ti l r l ,   T i1r2 ,   T i 'T , ,   T i1r4 ,  
T i  'r5 was  derived  from  the  radial  alignment  constraint oiPd// 
PozP, or ( X d ,  Yd)//(& y ) ,  where x = rlxw + r2yw + T, and 
y = r4xw + r5y, + Ty . This sign reversal of Ty causes (x ,  y )  
to become - ( x ,  y ) ,  which is still parallel to (Xdy  Yd),  
although pointing in the opposite direction. However, (4a) and 
(4b)  say  that  not  only is (&, Yd)//(Xu,  Y,)//(x, y ) ,  but also 
since f and z are both positive, and x have the same sign, 
and Yd and y have the same sign (this can also be seen by 
observing the simple geometry in Fig. 3 ) .  Therefore, only one 
of the two signs for Ty is  valid  and can be determined by using 
the procedure described. 

3) Compute  the 3 0  rotation matrix R, or rl ,  r2, , 
r9 : 

- 

- 

Procedure: 

i) Compute the following: 

r l=(T; l r1 )  Ty r2=(T;'rZ) Ty 

r4= ( T;lr4) Ty 

r5=(T;lr5)  * Ty  T,=(T;lT,) * Ty 

where T;lrl,  T;lr2,  TiIT,,  T;lr4,  Ti1r5 are 
determined in b) above. 

ii) Compute R with the following formula: 

rl  rz ( l - r : - r i )1 /2  
R =  r4 r5 s ( l - r ~ - r ~ ) 1 / 2  (144 [ r-i  rx 1 r9 

where s = - sgn (rlr4 + r2r5). sgn (e) signifies 
the sign  of its argument. r7, rs, r9 are determined 
from the outer product of the first two rows using 
the orthonormal and  right-handed property of R .  
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iii) Compute the effective focal  length f using (15) in 
d), to follow. IF ( f  < 0), THEN 

rl r2 - (1 -r;-r?j)l’2 

R =  [ r4 
r5 -s(l-r:-rz)1’2 . (14b) 

- r7 - r8 r9 1 
Derivation  and  uniqueness of solution: Since 

T;lrl,  T;lr2,  T;lr4,  T;lr5 are uniquely determined in  b) 
and T, is  uniquely determined in c-1) and -2), obviously, rl, 
r2,  r4, r5 are uniquely determined. Note  that rl ,  r2 are the 
elements in the upper 2 X 2 submatrix of rotation matrix R. 
The problem becomes how to compute the rest of the 
elements uniquely  in R. This  is provided by the following 
lemma: 

Lemma 2: Given 2 x 2 submatrix of a 3 x 3 orthonormal 
matrix of the first kind,2 there are exactly  two possible 
solutions for the orthonormal matrix. They are given in (14a) 
and (14b). 

Proof: The proof of Lemma 2 is given in Appendix V. 

Now  we explain why the procedure described earlier for 
choosing the one among (14a)  and  (14b) gives the correct and 
unique solution. 

In (14a) and (14b), only the first two rows are given 
explicitly in terms of  the  given quantities rl ,  r2,  r4,  r5. From 
the orthonormal property of R and the right-handed rule (i.e., 
determinant of R is 1, not - l ) ,  r,, r8, and r9 are easily and 
uniquely  computed from the first two rows. Only one among 
(14a) and (14b) is valid. This follows from the fact that by 
reversing the sign  of z for all points  in the camera 3D 
coordinate system, i.e., (x ,  y ,  z )  + (x, y ,  - z ) ,  all  points are 
still coplanar (note that this is not permissible for noncoplanar 
points since the mirror image of object points  with  respect to z 
= 0 plane reverses the right-handed rule). However, since T, 
is  not  yet  computed  in stage 1, one cannot compute the z 
coordinate (=  r7x, + r8yw + r9.0 + T,) yet. From (4a) and 
(4b), it is  seen  that reversing the  sign  of z also reverses the sign 
off. Therefore, the easiest way to select the valid one among 
the two solutions in (14a) and (14b) is to use the linear 
equation in d) below for computing approximation o f f  and T, 
by ignoring distortion. The wrong one will  yield negative f 
and  the right one will  yield positive f .  Note  that there is  no 
need  to worry about distortion just for deciding which  among 
the  two cases would  yield positive f ,  since the actual quantity 
off is  not needed for this purpose. This is always confirmed 
by the experimental results, as to be seen in Section IV. 

2) Stage 2-Compute Effective Focal Length, Distor- 
tion Coefficients, and z Position: 

d)  Compute an approximation o f f  and T, by ignoring 
lens  distortion: 

Procedure: For each calibration point i, establish the 
following linear equation with f and T, as unknowns: 

[Y;  - dy Yil [ ;,I = W d y  Yi (1 5 )  

Orthonormal  matrix of the  first  kind, by definition,  has  determinant + 1, 
as opposed to  orthonormal  matrix of the  second  kind,  whose  determinant is 
- 1 .  

where 

y; = r4xwi + r5ywi + r6 * 0 + Ty 

wi = r7xWi + rs ywi + r9 0. 

With several object calibration points, this yields an overdeter- 
mined system of linear equations that  can  be  solved for the 
unknowns f and T,. The calibration plane must  not be exactly 
parallel to image plane, otherwise (15) becomes linearly 
dependent. 

Derivation: Equation (15)  is derived by setting K~ to 
zero in (8b). Since R,  T,, and Ty have all  been determined at 
this point, y and w are fixed. Thus (15) is a linear equation 
with f and T, as unknowns. Note  that although (8a)  can give 
rise to a similar equation, it is redundant. To solve for an 
approximation of f and T,, using (15), an overdetermined 
system  of linear equation using a number of points can be 
established, and a least square solution is easily obtained. The 
proof for uniqueness off and T, can be found in Tsai [29]. 

e) Compute the exact solution f o r   f ,  T,, K ~ :  

Procedure: Solve (8b) with f ,  T,, K~ as unknowns 
using standard optimization scheme such as steepest descent. 
Use the approximation for f and T, computed  in  d) as initial 
guess, and zero as the initial guess for K ~ .  

Derivation  and  uniqueness of solution: With R, T,, 
and Ty have  all  been determined previously, (8b) becomes a 
nonlinear equation with f ,  T,, K~ as unknowns. Usually  only 
one or two iterations are needed. 

G. Calibrating a Camera  Using Monoview Noncoplanar 
Points 

When s,, the uncertainty scale factor in X ,  is not  known a 
priori, the calibration techniques using a noncoplanar  set of 
calibration points  should  be used. The same pattern used in 
coplanar case can  be used, except  that it is moved to several 
different heights  by a z stage. One can of  course use a 
calibration pattern that is noncoplanar physically, but it is 
much easier to fabricate a coplanar set of calibration points 
than noncoplanar points whose image coordinates must  be 
known accurately. Since zw is no longer identically zero, the 
linear matrix equation derived from the RAC  yield solutions 
for seven unknowns instead of five, making  both the computa- 
tion  and  proof  of uniqueness in stage 1 less tricky than the 
coplanar case. Just like the monoview coplanar case, the 
origin for the object world coordinate system  should  be  set up 
away from the origin and the y axis of the camera coordinate 
system. 
1) Stage  1-Compute 3 0  Orientation, Position (x and 

y )  and  Scale  Factor: 
a) Compute image  coordinate ( X i ,  Y i ) ,  where ( X i ,  

Y; )  is defined the same as the (Xd, Yd) in  (6a)  and (6b) 
except that s, is  set to 1 (that is, the uncertainty  scale factor 
is taken to be a perfect I): 

Procedure: The procedure is the same as a) for stage 
1 in Section 11-F except that s, is taken to be one. s, is absorbed 
into the unknowns for the linear equations in  b) below  and  will 
be  computed explicitly in c-3). 



T;Ir4,  T;lr5,  T;lr6: 
Procedure: For each calibration point i with (xwi,  ywi, 

zwi) as the 3D world coordinate and (Xi i ,  Y&) as the modified 
image coordinate computed in a) above, set  up  the  following 
linear equation with T - Isxrl, T;  's,r2, T;  'sXr3,  T; 's,T,, 
TY-lr4, T; 'r5,  and T; P r6 as unknowns: 

[ YiiXw;  YiiY, YiiZWi Yii  -X&Xwi  -x;;ywi -X;izwil 

= X i i .  (16) 

With N (the number of object points)  much larger than seven, 
an overdetermined system of linear equations can be estab- 
lished and solved for the seven unknowns T;'sxrl, T;ls,r2, 
T;IsXr3, T;'sxTx,  T;lr4,  T;lr5, and T;Ir6. 

Derivation and uniqueness of solutions: Equation 
(16) is derived by following exactly the same procedure as 
coplanar case in  using the radial alignment constraint but  with 
zw not  set to zero (see Appendix I for detail). Obviously, the 
matrix linear equation in (16) has a unique solution if and  only 
if the coefficient matrix has full column rank, or equivalently, 
all columns are linearly independent: Appendix I1 contains a 
detailed proof that the coefficient matrix has full column rank 
for N much larger than seven. 

e) Compute ( r l ,  + , rg, T,, Ty)  from T;Isxr1, 
T;Isxr2, T;  's,r3, T;IsxTX,  T; lr4, T;'r5, T;lr6: The 
derivation and proof of uniqueness of solution are straightfor- 
ward, and can be found in Tsai [29]. 

I )  Compute 1 Ty I from  TJ1s,rl, T;'s,r2, T; ls,r3, 
T;'s,Tx,  T;Ir4, T;lr5, T;lr6: 

Procedure: Let ai, i = 1, * - - , 7 be  defined as al = 
T;  lsxrl, a2 = T-'sxr2, a3 = T;  lsXr3, a4 = T;'s,T,, a5 = 
T; 'r4, a6 = T; c5, a7 = T; 'r6. Note  that  all  the ai from i = 
1, - * ,  7 are determined in b). Compute I Ty I using the 
following formula: 

2) Determine the sign of Ty: The procedure, deriva- 
tion, and uniqueness argument are the same as those for the 
coplanar case. 

3) Determine s,: 
Procedure: Use the following formula to compute 

S, : 

sx=(a~+a~+a:)1 '21  Tyl .  (18) 

4) Compute  the 3 0  rotation matrix R, or r l ,  r2, * , 

Procedure: Compute rl,  r2,  r3, r4, r5, r6, and T, 
rg : 

with the following formula: 

rl = a1 - Ty/s,  r2= a2 Ty/s, r3 = a3 Ty/s, 

r4= a5 . Ty r5 = a6 Ty  r6= a7 _ *  Ty 

T,=u~ * Ty 

where ai, i = 1, e ,  7 are defined in (1) and are the seven 
variables computed in b). 

Given r;, i = 1, - + , 6, which are the elements in the first 
two rows of R,  the third row  of R can  be  computed  as the cross 
product of the first two rows, using the orthonormal property 
of R and the right-handed rule (determinant of R = 1, not 
- 1). 

Derivation and  uniqueness: The derivation simply 
follows from the definition of ai in b). The uniqueness follows 
from the fact that the formula is explicit and  that  given two 
rows  of a 3 x 3 orthonormal matrix with determinant + 1, the 
third row  is always unique. 

2) Stage 2-Compute  Effective Focal Length, Distor- 
tion  Coefficients, and z Position: 

a) Compute of an approximation of f and Tz by 
ignoring  lens distortion: The procedure, derivation, and 
uniqueness are exactly the same as that for the coplanar case. 

b)  Compute  the exact solution for  f, T,, K ' :  This again 
is the same as the coplanar case. 

H.  Multiple Viewing Position Calibration 
When more than one view is taken at different position  and 

orientation relative to the calibration points with a single 
camera, the extrinsic parameters of  the camera differs from 
view to view, but the intrinsic parameters remain the same. 
We can exploit this when  using multiple views by choosing the 
set  of intrinsic parameters that optimizes the global consist- 
ency  between camera model  and observations. The disadvan- 
tage that quickly comes to mind  is the increase of dimensional- 
ity  in parameter space, making the computation less suitable 
for automated robotics application. However, because the  new 
two stage technique computes most  of the extrinsic parameters 
in stage 1, the disadvantage of increase in dimensionality for 
parameter space no longer prevails. Due to the limit of space, 
the technique using multiple view is  not described here. See 
Tsai [29] for detail. 

111. ACCURACY ASSESSMENT 

It is difficult to obtain high accuracy ground truth for 
camera calibration parameters that can serve as absolute 
reference. Therefore, we  will assess the accuracy of the two- 
stage camera calibration by  how well it can sense or measure 
the 3D world. 

A .  Three Types of Measures for Camera  Calibration 
Accuracy 

We  will adopt the following three types of measures. 
Type I-Accuracy of 3 0  Coordinate Measurement 

Obtained through Stereo  Triangulation  Using the Cali- 
brated  Camera  Parameters: The procedure is as follows. 

1) Calibrate one camera using either coplanar or nonco- 
planar points, monoview or multiview. If  monoview calibra- 
tion  is used, repeat the calibration procedure for another 
camera rigidly connected with camera 1 (the purpose of the 
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second camera is to provide stereo triangulation capability to 
be  used later). 

2) Acquire 2D image coordinates for a set of test points 
whose 3D coordinates are known relative to the same 3D 
world coordinate system used for the calibration points, using 
the camera (or cameras) in the same viewing  position as for the 
calibration. 

3) Compute the 3D coordinates of the above test points in 
the  world coordinate system  using stereo triangulation. If 
multiview calibration was used, two views are sufficient for 
stereo triangulation. If monoview calibration was used, then 
since two cameras rigidly connected together in (1) were 
calibrated, stereo triangulation can still be done. 

4) The accuracy of camera calibration is assessed by 
comparing the difference between the known  3D coordinates 
of the test  points  and the coordinates computed  in (3). That 
comparison can  be done either in the 3D  world coordinate 
system, or in the computed 3D camera coordinate system. We 
will  use the latter throughout this section because in 3D 
camera coordinate system, physical  meaning can be easily 
attached to the x, y ,  z coordinates. For example, z coordinate 
is the depth, and x and y coordinate axes are parallel to X, Y 
coordinate axes in the image plane. 

Type 11-Radius of Ambiguity  Zone in Ray Tracing: 
As shown in Fig. 1, the calibration process tries to find 

camera model parameters such  that the ray starting from the 
optical center 0, passing through the true image point Pd (the 
ray bends at Pd according to the extent of radial distortion), 
will eventually pass through the calibration object point P. Of 
course, due to  error, the ray will  not  exactly  pass through P. 
After the camera model  is calibrated or reconstructed, this 
path of ray in Fig. 1 can be back traced, that is, starting from 
the optical center, the  ray can be traced through the image 
point  and “back projected” into the object  world  passing 
through the object  point P. One way  of  measuring the camera 
calibration accuracy is the extent of ambiguity of error of this 
ray tracing in one view, which is the basis of Type I1 measure. 
As seen in Fig. 5 ,  error of camera model reconstruction causes 
the  ray to miss the point P. Using Type I1 measure in assessing 
camera calibration accuracy is to see how much the  ray  misses 
the object point P. To see the relationship between Type I1 and 
I measures, consider the fact that if the ray tracing can be done 
very accurately, then  obviously  with  two views, the intersec- 
tion of the two rays gives the 3D coordinate of the object  point 
P. Therefore, the accuracy of reconstructing the 3D coordi- 
nate of P is a measure of the accuracy of camera calibration, 
which is the basis for the Type I measure just described. The 
procedure is as follows. 

1) Calibrate the camera using a coplanar set of points  on a 
plane (called plane V in Fig. 5 ) .  

2) Set up a coplanar set of test points whose 3D coordinates 
in the object world coordinate system (in  which the coordinate 
of the calibration points are defined) are known, and  the 
position of the plane (called plane U in Fig. 5) on  which the 
test points reside is also known. Take one view. 

3) For each image point Pd on  the test plane U,  use  the 
calibrated camera model in (1) to back project the ray from 0 
through Pd and intersect with plane U at P’ . The distance 

Fig. 5. Radius of ambiguity  zone is Type 11 measure  for  camera  calibration 
accuracy, P is ideal  object  point,  and P’ is point  where  back  projected  ray 
using  calibrated  camera  model  intersects  with  object  surface  plane U. 

between P’ and P (the ideal point in plane U )  is called the 
radius of the ambiguity zone (as depicted in Fig. 5) .  

Type 111-Accuracy of 3 0  Measurement: Since a cali- 
brated camera may be applied to measure relative 3D 
information instead  of absolute 3D coordinate, e.g., dimen- 
sional inspection of mechanical parts, it is useful to measure 
the goodness of camera calibration by  how well the camera 
can  be  used to perform dimensional measurement. 

B. Accuracy Analysis  Summary 
As explained earlier in  this section, we assess the accuracy 

of camera calibration by measuring how accurately the camera 
measures the 3D world. The remainder of  this  section reviews 
the formula of accuracy or  error for camera calibratiod3D 
measurement provided in Tsai [26] which  will later be  used for 
the analysis of experimental results. It is important to note  that 
the purpose of this section  is  not to propose a new accuracy 
results or to prove its validity. The accuracy analysis formula 
is  only to double check the numerical figures of the experi-, 
mental results. 

C.  Theoretical Upper Bound of Error for  3 0  
Measurement 

It is  shown  in Tsai [26]  that  the error of 3D measurement  of 
the x, y ,  z coordinate of a feature point  using stereo 
triangulation is bounded above by 

1 1 Z +- +--I - * 6 + A q  (22) 
2- 2 a . f  II Gll 

where 

6 effective image spatial quantization or the error of 
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estimated image feature location (see more discus- 
sion about 6 in the following), 

No total number of  points  used  in calibration, 
11 T,ll distance between the optical centers of the two 

camera viewing stations, 
Nf number of views  used  in calibration (i.e., one for 

monoview calibration, two for multiple viewing 
position calibration using  two views, etc.), 

L dimension of the image sensor chip, or more 
generally the size of the active area in image plane 
scanned by the camera, 

A q  target ambiguity in three-space (e.g., if the corner 
of a rectangular block is the target point, then the 
edge break or the sharpness of edges determines the 
extent of ambiguity for the true location  of  the target 
point). 

Here it is assumed  that for single-plane calibration, the 
calibration plate is sufficiently tilted with respect to the image 
plane (at least 30"). For the experiments described below, all 
the image coordinates are extracted with special interpolation 
algorithm that aims at subpixel accuracy. Therefore, 6 in the 
above error formula is about one-half or one-third of d, and dy 
in (6e) and (6f). In Section IV-A1, d) contains more details on 
how the special interpolation technique is implemented during 
experiments. 

Equation (22) serves as the theoretical upper bound for the 
error in Types I and  I1 measures described in Section 111-A. 
The upper bound for the error of  making dimensional 
measurement is twice as much as that for a single feature 
point. In all  of the tests to be described in Section IV the 
experimentally obtained accuracy measures of the camera 
calibration will  be compared against the accuracy predicted by 
the theoretical formula in (22). 

I )  Effect of Number of Points on Calibration Accu- 
racy: By observing the expression for errortotal in (22), one 
can see that there are two groups of terms, one scaled by 1/ 
fro, l/*, or 1/Nf, while the other not influenced by NO or 
Nf at all. We shall call the former errorcalib and the latter 
errornoncalib. They are given in the following: 

+--I 1 - z * 6 (23) 

2m.f II T.11 
z z  

errornoncalib = - - 
f I1 Tsll 6 + A q .  

By observing (23) and (24), one can see that errornoncalib 
remains the same for either coplanar, noncoplanar, or multiple 
viewing calibration, while errorcalib varies depending on NO 
and NJ. If, for instance, No is large enough for coplanar 
calibration, the accuracy should not  be worse than  that for the 
noncoplanar or multiple viewing calibration. Again, the 
calibration plate has to be sufficiently tilted for single-plane 

If  only  one  camera  station is  involved,  e.g., the  setup  for  Type I1 measure 
described  in  Section 111-A, then 11 T,/i is  to  be  taken  as  the  average depth of 
calibration  points from  the  lens  center. 

calibration. In this case, errorcalib 4 errornoncalib, and that 
errortoal = errorno,,,lib. A good indication of whether the 
number  of points is large enough is that the ratio errorcalib/ 
errornoncalib predicted using (23) and (24) is small. In all  of the 
tests to be presented in the next section, the number of 
calibration points NO is  at least 60. That is the reason why the 
accuracy for all cases are good  and that the single-plane 
calibration performs just  as well as multiple planes or multiple 
viewing position'calibration. If fewer points are used, the error 
can be predicted by (22), and the actual experimentation for 
testing the effect of the number of points is part of list of our' 
future activity. 

IV. TEST RESULTS 
In this section, we will describe the procedure and analyze 

the results of two different tests of the two-stage camera 
calibration technique: 1) monoview single-plane calibration, 
type of measure for calibration accuracy is Type 11; 2) 
monoview multiplane multicamera measurement, type of 
measure for calibration accuracy is Type I and 111. 

A. Test Results for  Monoview Single-Plane  Calibration 
1) Experimental Procedure: The procedure for Type I1 

measure described in Section 111-A is followed step by step to 
compute the Type I1 measure. The first step, which  is  to 
calibrate the camera, is described in greater detail here. 

a)  Description of the mechanical  hardware of calibra- 
tion and test points and the procedure for  constructing  it: 
The calibration and test points were created by impressing a 
template  of Letraset instant lettering graphics sheet containing 
16 black squares on the top surface of a steel block 2 in X 1.5 
in X 0.5 in in size (see Fig. 6). The corners of the 16 squares 
are treated as calibration points, making a total of 64 points. 
Only 60 points were chosen for the experiment due to defects 
or blemishes in the squares (see Fig. 8, the square on the top 
left corner is defected, leaving two points out) and the 
omissions  in the process of obtaining 3D coordinates of the 
corner points needed for calibration leaving another two  points 
out,  as indicated by the missing white dots on the two corners 
of the  twelfth block counting from left to right, top to bottom, 
in Fig. 10). 

b)  The process of obtaining 3 0  world  coordinates of 
the calibration  and  test points: The 3D coordinates of the 
corners of the squares, which  will be used as input to the 
calibration process, were obtained by using an X Y  micrometer 
stage (0.1 mil resolution) and a Nikon 400 x micro~cope.~ 
Because  the corners for the instant lettering graphics template 
are always rounded, it is necessary to measure the coordinate 
of a number of points along the edges of the square away from 
the corners, and  then extrapolate the edges to obtain the 
ground truth for the corners which lie on the intersection of the 
adjacent edges. 

e)  How accurate should the 3 0  coordinates of the 
calibration points be? To obtain calibration patterns'that are 

The process  can  be  automated by using  a  motor  driven X Y  translation 
stage  and  a TV  camera  hooked  up  to  the  microscope  (such  facility is very 
common  in  the  market).  Since  the  same  calibration  pattern can  be used  again 
and  again,  and  the  calibration  process  need  not  be  done  frequently  to  the  same 
camera, it is not  important  to  worry  about  automating  the  process  for 
collecting 3D coordinates of calibration  points. 
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Fig. 6 .  Steel  block on top of which  Letraset  instant  lettering  graphics  are 
impressed. Corners of black  squares  are  calibration points. 

highly accurate and  easily processed by the computer is not 
easy. Therefore, one should consider how accurate the 
calibration points  must be to achieve a certain accuracy for 
calibratiod3D measurement. Note  that errorcalibration in (23) is 
scaled by -I. Therefore, for a large number of points, 
errorcalibration becomes  negligible  compared with er- 
rornoncalibration. However, (23) assumes that the error of calibra- 
tion  points is either comparable to image spatial quantization 
error and random, or is  much less than  image spatial 
quantization error irrespective of randomness. Therefore, if 
there is  any factor during the process of creating and 
measuring the 3D coordinates of the calibration points  that 
would cause the error of calibration coordinates to be 
nonrandom or systematic, that factor must be reduced to a 
minimum  such that the nonrandom error is less than the 
desired final accuracy of 3D measurement. If the desired 
measurement accuracy is  of the order of 1 mil, then  the factors 
such as flatness of the surface holding  the calibration pattern 
and  the parallelism between the top and  bottom  of the surfaces 
are the  only factors that  need to be controlled. All other factors 
tend to give random error and can easily  be  made smaller than 
image spatial quantization. It is important to keep the tolerance 
for the flatness and parallelism at least one order of  magnitude 
tighter than the final goal of 3D measurement using  the 
calibrated camera; for example, if the find accuracy is desired 
to be 1 mil, then the surface flatness and parallelism has to be 
0.1 mil accurate. 

d) Extraction of computer image  coordinates for  the 
calibration  and  test points: Images of calibration and test 
objects were acquired with a Fairchild CCD 3000 camera and 
a Fuji 25-mm focal length TV lens, using the setup shown in 
Fig. 7. The objects were illuminated using a fiber-optic 
illuminator (any intense diffuse source would also work). 

Computer image coordinates for calibration and  test  points 
(corners of black Letraset squares) were extracted as follows. 

1) Acquire a gray scale image (see Fig. 8). 
2) Threshold the image to produce a binary image (see Fig. 

9); the exact threshold value is not critical and  could be 
set by analysis of  intensity histograms or some ad hoc 
method  (in  the current work, the threshold was  selected 
manually). 

Fig. 7. Setup  for  camera calibration for all  tests.  Only  one  of  two  cameras is 
used for first  two  tests. 

Fig, 8. Gray  scale  image  of  calibration  pattern  viewed by computer.  One 
square  is  defective. 

Fig. 9.  Thresholded  binary  image of calibration  pattern  viewed by com- 
puter. 
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Fig. 10. White  dots  at  corners of black  squares  are calibration  points 
extracted  by  computer  using  special  interpolation  technique,  which  reduces 
effect  of  image  spatial  quantization of factor of 2 or 3. 

Link edge points in the binary image to extract a set of 
approximate boundary edges. 
Scan  in the direction perpendicular to the approximate 
edge locations in the gray scale image to locate the 
“true” edge points using interpolation. 
Fit straight lines to true edge points. Then compute 
intersections, yielding feature point (corner) coordi- 
nates. Fig. 10 illustrates the result by superimposing 
white dots on the original gray scale image at computed 
feature locations. This procedure yielded image coordi- 
nates  with an accuracy of 1/2  to  1/3 pixel; in the CCD 
3000 camera, pixels .are spaced approximately 1 mil 
apart (center to center, in X and Y directions). 

e) Compute camera  intrinsic  and  extrinsic  parameters 
using the two-stage  technique: With the image coordinates 
extracted in d) and the 3D world coordinates of the calibration 
points obtained in b), the key equations (lo), (15), and (8b) 
used for camera calibration can  be  used  if s, is given. A priori 
knowledge  of s, is  needed  only for single plane case. Since our 
experience shows that s, is quite consistent for CCD 3000 
camera, the same s, can be  used for any Fairchild 3000 
camera. Furthermore, in  many cases, when one changes the 
lens and/or exterior orientation/position of the camera, the 
calibration must  be done again, but s, is already calibrated 
before. We simply take the value of s, that  we  normally  find 
for Fairchild CCD 3000, which is 1.042, in  this experiment. It 
is found that with Fuji 25-mm lens, the angle is wide enough 
so that the radial distortion is significant. The distortion is 
found to be barrel type negative distortion, as expected. The 
undistorted image coordinate (Xu,  Y,) computed from com- 
puter image coordinate (X, Y )  and the calibrated distortion 
coefficients K ~ ,  ~2 are displayed in Fig. 11, together with the 
original distorted points. For the points far away from the 
center, the distortion is about three to four pixels. 

2) Experimental Results for Monoview Single-Plane 
Calibration: A total of 60 calibration points and 60 test points 
were used, and Type I1 measure described in Section 111-A is 
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computed and tabulated below. Type I1 measure: 

Average  radius of ambiguity zone 0.7 mil 
Maximum  radius of ambiguity  zone  1.3  mil 

-______- 

- 

Note: 1 mil = 0.001 in. 
The computer time for calibration is 1.5 s. This computer 

time refers to the time taken for performing steps 1 and 2 of 
the calibration procedure. It can be reduced to half a second 
when seven calibration points are used. The program is not 
optimized for speed performance. It can further be reduced if 
effort is invested to optimize the program. The computer used 
is a 68 000 based  MASSCOMP minicomputer. We have very 
recently improved the speed such that it only takes 20 ms to do 
extrinsic calibration and less than 1 s to do the whole 
calibration when 36 points are used. It is expected to improve 
even more. In fact with slight modification, the entire two- 
stage calibration can be done in less than 30 ms. 

In the above test, the image origin is  chosen to be the 
apparent center of  the sampled image (see the discussion and 
derivation of  a) in Stage 1 of Section I-F. Experiments were 
also conducted  using  an arbitrarily chosen image origin (10 X 
10 off the origin used  in  the above test); the results show no 
significant difference (see discussion and derivation of a) in 
Stage 1 of Section I-F. 

3) Analysis: 
a) Comparison between  experimentally  obtained  er- 

ror  and  predicted  error: To use (22)-(24) to obtain a 
theoretical upper bound  on error, the following parameters are 
necessary: 

L = 0.4 in f-1.1 in 2-4 in Ts=3 in 

Aqz0.1  mil Nf= 1 d,= dy - 1 mil 

No(number of points) = 60. 

Since super resolution interpolation scheme was  used  when 
extracting image coordinates, the effective image spatial 
quantization 6 is about 1/2 or  1/3 of d, or dy , the distance 
between adjacent CCD sensor elements. Using  (22)-(24), the 
following table for the theoretical upper bound  of three types 
of error described in Section 111-B is obtained. 

Effective  image  quantization 6 = 112 mil 6 = 113 mil 
Errortolal (predicted) 3.3 mil 2.3 mil 

It  is clearly seen by comparing the order of magnitude between 
the theoretical error bound and the actual error, the error 
bound  is tight enough. 

b) Predicted effect of number of calibration points: 
In Section 111-C1 it is explained why the ratio errorcalib/ 
error,,,,lib gives a good indication or theoretical prediction of 
whether the number of points is large enough. From (23)  and 
(24), the following table is obtained: 

______ 

Effective  Image  Quantization 6 = 112 mil 6 = 113 mil 

Error,,,,, 0.7 mil 0.5 mil 

ErrOr,,lib/errOr,,,calih 29  percent 28 percent 
ErrOrnoncd>h 2.5 mil 1.7 mil 

______ 
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Fig.  11.  White  dots  near  corners of black  square  are  original calibration  points  and  corrected or undistorted  points.  Size of frame 
buffer  holding  image is 480 x 512.  Therefore, it is seen  that  distortion  near  border is roughly  three  to  four  percent. 

Since the ratio is small, it  can  be inferred that increasing the 
number of calibration points will not  reduce the error measure 
for calibration significantly. This is the reason  why the 
accuracy  obtained in this case is not  worse  than that for  the 
noncoplanar  and multiple viewing calibration to be described 
later. 

B. Test Results for  Monoview Multiple-Plane 
Multicamera  Measurement 

I )  Experimental  Procedure: The procedure is exactly the 
same as that for the previous test (coplanar case) except  that a 
Klinger  vertical  micrometer  stage  is  used to move  the  steel  block 
to  eight  different  heights  and  eight  views are taken  without 
moving  the  camera.  However,  instead of  computing Type II 
measure,  Types I and ID are to be  computed.  For this reason,  the 
second  camera  in Fig. 7 is  needed.  The  image  coordinates 
extracted  from  the  eight  views are collected  together  and 
treated as if  they  were  taken  from  one single view  of eight 
planes  of calibration points. The total height variation is  only 
about 0.18 in, because the depth of focus  and the total travel 
range  of the vertical stage are limited. Nevertheless, the 
experimental results indicate that the extra depth  information 
was  good  enough to estimate all the intrinsic and extrinsic 
parameters (including s,) with  good  accuracy, as can  be  seen 
in the following report of experimental results. The calibration 
done to one of the cameras as in the previous test is repeated 
identically to the second camera. Then a new set of  test points 
(60 in total) whose 3D world  coordinates are measured  in 
advance are viewed by  both  cameras.  Then stereo triangula- 
tion is used to compute  Type I and I11 measure. 

2) Experimental Results for  Monoview Multiple-Plane 
Calibration: 

~ ~ ~ _ _  

Type I Measure  Type 111 Measure 
~-~ 

X Y distance  between 
coordinate  coordinate  depth  corners of square 

Average error 0.4 mil 0.3 mil 0.6 mil 0.5 mil 
Maximum error 1.3  mil 1.5 mil 1.8 mil 1.4 mil 
_ _ _ _ ~  -- 

The total range of x,  y are the size of the calibration pattern 
(1 in X 1 in), and the total range of depth in the camera 
coordinate  system is about  from 4 in to 4.5 in. Since eight 
planes  were used, the computer  time for calibration is 9 s. 
However,  only  two or three planes are actually needed.  That 
time  should be reduced by a factor of five. Also,  on  each 
plane, 60 points were used. Another factor of ten can  be 
reduced in the computer  time if only  seven points are used  on 
each plane, When  fewer points are used, the accuracy 
degrades  somewhat,  but  not  much.  Since  complete  camera 
calibration need  not be done  every millisecond, using 60 
points give great accuracy  with  good speed. However,  we  will 
investigate the real benefit of reducing the number of points in 
the future. 

3) Analysis: The experimental setup and  parameters are 
identical to that  in the previous test. The only difference is the 
type of measure  used to assess the camera calibration 
accuracy.  Since  same error formula applies both to measures 
Type I and  Type 11, the theoretical error  as well as the analysis 
is identical to that of the previous test. Notice that the actual 
error  for type 111 measure is similar to that for Type I .  
According to Section 111-B the upper  bound for measurement 
of dimension theoretically should  be  twice as much as that for 
a single point feature. However, in measuring  dimension,  such 
as distance between  corners of a square, certain systematic 
error sometimes  cancels  out  when  one subtracts the 3D 
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coordinate of one corner from another. That is why the actual 
error for Type 111 is very similar to  that of Type I. Since 
systematic error may not cancel out  in all cases, it is better to 
regard the theoretical upper  bound for Type 111 measure as 
twice as much as that for Type I or 11. 

V. CONCLUSION 
The new  two-stage- technique is theoretically and experi- 

mentally proven to be viable for 3D machine vision metrol- 
ogy. It is shown to be efficient, accurate, and straightforward 
to implement in real environment. A new theoretical frarne- 
work is established, supported by comprehensive proof  in the 
appendixes, and  may pave the way for future research in 3D 
robotics vision. The issues involving the image origin are not 
fully exploited, although limited experimental results indicate 
that it has negligible effect on the accuracy of final 3D 
measurement. The effect of the number  of calibration points is 
not fully investigated. Experimental results show  that 60 
points or more are more than sufficient. Future work may be 
needed  in investigating the effect of the number of points on 
the accuracy on the three cases (monoview single plane, 
monoview multiplane, multiview). Finally, although experi- 
ments on real data are reported in this paper, the potential of 
any new technique will  not be fully revealed unless extensive 
applications are implemented using the new technique. Read- 
ers  are encouraged to apply the new technique to a wide 
variety of machine vision applications to exploit its full 
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or 
Xd ' y -  Yd ' x=o.  (25) 

Note  that (25) can also be derived algebraically from (4a), 
(4b), @a), and (5b). To  arrive at an equation like (10) that 
contains the image coordinate (Xd ,  Yd) and 3D world 
coordinate (xw,   yw,  z,) of the calibration point, (l), (4a), and 
(4b) are used to convert (25) to the following: 

xd(r4xw+r5Yw+r6~w+ T,)= Y d ( r l ~ , + r 2 ~ ~ f r 3 z ~ +  T,). 
(26) 

By rearranging the terms in (26) such  that T i  lsXrl, T; 's,r2, 
T,-IsXr3, T; 's,Tx, T;lr4, T; 'rS,  T;lr6 are treated as 
unknown variables, (16) is obtained. 

The subscript i for all Xi ,  Yi, x,!, ywi, zwi in (16) simply 
puts an index to ( X ,  Y )  and (xw,  y,, z,) for identification 
purpose. For the coplanar case, by setting zw in (26) to 0, and 
by treating T i  lsxr1, T; ls,r2, T; Is,r3, T i  's,T,, T; lr4; 
T; 'r5, T i  'r6 as unknown variables, (10) is obtained. 

APPENDIX I1 
PRWF FOR THE LINEAR INDEPENDENCE OF COLUMNS OF 

COEFFICIENT MATRIX IN (10) AND (16) 
Proof for  the Linear Independence of Columns of 
Coefficient  Matrix in (16) 

coefficient matrix in  (1 6). 'Then 
Let N be the total number of calibration points, and G be  the 

1 

L 

potential. Recent effort indicates that  with slight modification, 
the entire two-stage calibration can be done in  speed faster 
than  the video frame rate. 

APPENDIX I 
PROOF OF RADIAL ALIGNMENT CONSTRAINT AND DERIVATION OF 

(10) AND (16) FROM THE CONSTRAINT 
The radial alignment constraint oiPd//Po,P depicted in 

Fig. 3 follows from the very simple geometric argument that 
OiPd and P,,P are the intersection of a plane (passing through 
0, Po,, and P )  with  two parallel planes (one  being the image 
plane, and the other being the plane parallel to image plane and 
passing through P and Poz). Similarly, OiP,//P,,P. There- 
fore, o i ~ d / / P o , ~ / / o ; P , .  Since oipd//p,$ is equivalent to 
oipd x PozP = 0 where x signifies vector outer product, we 
have 

__- 

- - 

- -  
- - -  - -  

__- 

( x d ?  yd) x (x,   Y>=O 

H =  

- 
Y l X W I  YlYWl Y l Z W l  

Y 2 X w 2  Y 2 Y w 2  Y 2 Z W 2  

YNXWN YNYWN YNZWN 
- 

A 

By replacing Xii with s,-Xd, and replacing (Xd, Yd) with 
terms involving (X,, Y,) using (5a) and (5b), followed by 
replacing (X,, Y,) with terms involving ( x ,   y ,  z )  using (4a) 
and (4b), it is straightforward to show that (27) is equivalent to 

G=D1 H * 0 2  (28) 

where Dl ,  D2 are diagonal matrices given 

D=f - diag {(KIZ~I)-~, (K2zw2)V1, ( K N Z ~ N ) - ' }  

Kj= 1 + f K2rf 

ri= ( X i +  Y$)1'2 

D2=diag  (1,  1,  1, 1, s,, s,, s,} 

and H is  given by 

YI - X I X w l  - X I Y w l  -XIZWl  

Y2 -x2xw2 - X 2 Y w 2  - x2zw2 

. ,  
YN - X N X W N  - XNYWN - X N Z W N  
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Notice  that all the diagonal  elements in Dl and D2 are nonzero 
since zwi is always greater than the effective focal lengthf, and 
Ki is never zero.  (From (5a) and (5b), had Ki been zero,  a 
nonzero (X,, Y,) would  be  mapped into a  zero (Xu ,  Yu),  
which is optically impossible.) Therefore, the linear indepen- 
dence of the columns  of G ,  which is the product of the three 
matrices D l ,  H ,  and 4 ,  is not  influenced by Dl ,  D2. That is, 
it suffices to verify the linear independence of the columns of 
H. 

Let Hi be the ith column of H. It is to be  shown that the 
necessary  and sufficient condition for 

The  purpose is to show that the above constraints will force all 
a;, i = 1, . . . , 7, to be identically zero. 

Although theoretically more  complicated,  it  can  be  proved 
that all ai must  vanish irrespective of whether T, or Ty is zero. 
However, since T, and Ty can easily be  made  nonzero  with 
proper  experimental setup (see a) in Stage 1 for the calibration 
algorithm), and  that for the purpose of simplicity and clarity, 
we  now  assume that T, and Ty are nonzero. 

From (41), a4 = 0. Then (38)-(40) become 

a1 = - 

U2 = - U6 Tx/ Ty (43) 
is  that ai = 0 for i = 1, . . a ,  7. The sufficiency is obvious. 
We now show the necessity part. Substituting (xi, yi, zi) in a3 = - a7 Tx/Ty.  (44) 
(29) by expressions  involving (xwi, ywi,  zwi) using (11, (30) 
becomes Substituting (42) into (32), (43) into (33), and (44) into (34) 

gives 

for i = 1, , N. That is, (3 1) has  to  hold  simultaneously for 
all i from 1 to N.  Since, for the purpose of accuracy, N should 
be  chosen to  be much larger than  seven, asymptotically, (31) 
has to be satisfied for all possible values of (xwi, ywir zwi). 
Therefore, (31) can  be treated as a polynomial  equation  with 

Y:, z2,, xWyw, x,zw, yWz,, xu,, yw, z,, 1,  as nominals. 
Since for  a polynomial to be identically zero, all leading 
coefficients for the nominals  must vanish, we obtain the 
following  set of constraints on a;, i = 1, . . e ,  8: 

for x;, alr4+u5r1=0 (32) 

for Y ”,, a2r5 + a6r2 = 0 (33) 

for zt, a3  r6 + a7 r3 (34) 

forxIYyW, a l rS+a2r4+a5r~+a~r l=0  (35) 

for xwzw,  alr6+a3r4+a5r3+a7rl=0 (36) 

foryWzw, azr6+a3r5+a6r3+a7r2=0 (37) 

[ I  r6 =g [;I  
which is impossible since R is orthonormal,  and [r4r5r6] must 
not  be  equal to [rlr2r3] scaled by a constant. Therefore, at least 
one  of a5, a6, a7 must  be zero. Due to symmetry,  it suffices to 
take as as zero (the same  proof applies if 0 6  or a7 is taken to be 
zero first). Then  from (42), a1 = 0 ,  and  from (48) 

U6(T4T,/Ty-rl)=0. (52)  

If  none  of a6, a7 is zero, then from (52) 

r4 = rl   Ty/T, (53) 

and  from (46), 

r5 = r2 Ty / T, (54) 

and  from (47), 

r, = r3 TJT,. (55 )  
for x,, a4r4+al  Ty+a5 T,=O 

for yw,  a4r5+a2Ty+a6T,=0 

(38) Then  from (53)-(55), (51) again holds, which is impossible for 
(39) the  same  reason stated earlier.  Therefore, at least one  of 0 6 ,  a7 
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must vanish. Again, for symmetry and simplicity, we take a6 
to be zero. Then from (43) a2 = 0. From (49) 

a7(rlr4  Tx/T,) = O .  (56) 

From (50), 

a7(r2rs  Tx/T,)=O.  (57) 

If,  at this point, a7 is not zero, then from (47) 

r3 = r6 Tx/ T, 

from (56), 
rl = r4 Tx/T, 

from (57), 
r2 = rs Tx/ Ty 

which implies that 

Proofi Let R be defined as a 3 X 3 orthonormal matrix 
defined in (2), and let R2 be the 2 X 2 submatrix of R :  

The purpose is to show that there is  no way one can construct a 
3 X 3 orthonormal matrix from a 2 X 2 submatrix 

c = s * [;; ;] 
with s different from t 1 .  Since orthonormality is  maintained 
no  matter  how the rows and columns are permuted, we assume 
that  the 2 x 2 submatrices are in the upper left corner of  the 3 
x 3 orthonomal matrices. Let R and Re be 3 x 3 orthonormal 
matrices constructed from R2 and C. Then from the fact that 
the  norm  of each row  and column of R is unity  (without yet 
considering orthogonality), R must assume the following 
form: 

rl  r2 k(1  - r f - r i ) 1 / 2  
R = [  r4 r5 t ( l  - r : - r : )1 /2  

t ( 1  - r: - r ! )   f ( l - r i - r : ) 1 / 2  f ( -  1 + S,)’/2 

and  is impossible. Thus a7 must vanish, which also implies where S, = r f  + r i  + ri + r:. 
from (44) that a3 = 0. In conclusion, the necessary  and Similarly, if R, exists, it must assume the following form 
sufficient condition for (30) is that ai = 0 for i = 1 ,  * * * , 7 .  (using the property of unity  row  and column norm only) 

ST1 sr2 t [ l  - ~ ~ ( r f - r i ) ] I / ~  
Re= [ sr4 sr5 -t [ l   - ~ ~ ( r i - r ; ) ] l / ~  . 1 (59) 

t [ l - ~ ~ ( r f - - r ; ) ] ’ / ~   f [ l - ~ ~ ( r i - r : ) ] I ’ ~  f (- 1 +s2Sr)”2 

Proof for  the Linear Independence of Columns of 
Coefficient Matrix in (IO) 

The only differences between coefficient matrix in (10) and 
in (16) are that ( X d ,  Y d )  is  used  in ( lo ) ,  while ( X ; ,  Y i )  = 
( S x X d ,  Y d )  is used  in (16), and  that  the column space  of (10) is 
part of the column space in (16) (the third and  seventh columns 
are missing (10)). By setting D2 in (28) to an  identity matrix, 
which takes care of the first difference, and  by considering the 
fact that the subspace of a linearly independent column space is 
always linearly independent, the coefficient matrix in (10) also 
has linearly independent columns. This completes the proof. 

APPENDIX I11 

PROOF OF LEMMA 1 

Lemma I :  There do not exist two 3 x 3 orthonormal 
matrices that differ in their 2 x 2 submatrix by a scale factor 
other than +. 1 .  Equivalently, if the 2 x 2 submatrix of a 3 x 
3 orthonormal matrix is given except for the scale factor, then 
that scale factor is  unique except for the sign. 

In  the following, it is to be shown  that  with  the orthogonality 
condition imposed, s is forced to take the values  of & 1 only. 

Since the first two columns of R are mutually orthogonal, 
we have 

r1r2+r4rs= * ( I  -rf-r:)Il2(1  -ri-r:)II2.   (60) 

Similarly, for Re, 

s2(rlr2+r4rs)= k [ 1  - s 2 ( r ~ + r ~ ) ] ~ ~ z [ l - s z ( r ~ + r ~ ) ] .  (61) 

By substituting rlr2 + r4rs in (61) with the right-hand side of 
(60),  (61) becomes 

( 1 - ~ ~ s 4 + ~ ~ 9 - 1 = 0  

or 

[ ( l  - Sr)s2+ ll(s2- 1) = 0. (62) 

From (62), s2 can assume two possible values: 

s2= 1 (63) 



342 

or 

IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RP-3, NO. 4, AUGUST 1987 

Now  we  show  that (64) is valid and  is equivalent to (63). 
Observe that r9 (the (3, 3)th element) in (58)) is k ( -  1 + 
Sr)lI2. Since lr91 I 1 ,  we have 

- 1 + S , I  1 .  (65) 

Let the (3, 3)th element of R, be denoted as rC9. Substituting 
(64) into  the expression for rC9 in (59) gives 

rC9= f 1 -- ( s,: 1 >,I2 

=i(> 1 1/2 . 
s,- 1 

Since lrC9l I 1, I/($ - 1 )  I 1, or 

From (65) and (66) S, - 1 = 1 .  Thus (64) becomes 

and 

From Lemma 1, I Ty I of T;  is unique. Thus only one among 
(71a) and (71b) is valid. We now prove that  only (71a) or (12) 
is valid. Substituting (70) into expression for r9 in (69) gives 

r9= f [ T;?(r,'r;-r;r;)2]1/2. (71) 

Thus from (71) 

Substituting (71b) into (72) gives 

After  some simple algebraic manipulation, the following  is 
derived: 

However, from triangular inequality, 
Thus s = + 1 .  This completes the proof. 

APPENDIX IV 

DERIVATION OF COMPUTATION PROCEDURE FOR Ty 

Case I: Not a Whole Row or Column of C Vanishes 

From the definition of C and r ,' , ri , r i ,  r; in ( 1  l), we have 

Using  the property that the rows and columns of R have unity 
norm, we  have 

Substituting the above two equations into (74) gives 

Notice in the above inequality expressions that  the leftmost 
expression and the rightmost expression are identical. Thus 
equality must  hold throughout, giving 

Substituting the above into (73)  gives 

where S, = r ;2  + r i2  + r i 2  + r i2 .  Sr+[S~-4(r;r;-r , ' r , ' )2]1/2 

orthogonal, we have 
Since the first two columns of R in (69) are mutually = 1  

S r  

[S~-4(r;r5/-r4/ri)2]1/2 
( r , ' r ; - r ;r i )2T;-SrT;+l  =O. (70) + sr I1  

There are two solutions for (70): or 
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The above implies that whenever (71b) is valid, (71a) and 
(71b) are identical, meaning  that  (71b)  is either invalid or not 
needed. 

Case 11: A Whole Row or Column of C Vanish 
The derivation is the same no matter which  row or column 

vanishes. Suppose r,' and r2/ vanish. Then 

0 

Since the first row has norm unity, r3 = k 1. Again, since the 
third  column  has  norm unity, r6 = r9 = 0. Then, 

Since the second row has unity norm, we  have 

or 

(77) 

In general, for Case 11, 

I Ty I = ( r / 2  + rI2)-II2 

where r; , rj' are the elements in the row or column of C that 
do not vanish. 

Case I1 actually rarely happens, since from (76)  the 
transformation between (x, y ,  z )  and (xw,  y w ,  z,) entails a 
swap of x and z axes, and since the x, and yw axes are always 
set parallel to the plane containing the calibration points for 
convenience, this means the camera is viewing in a direction 
tangent to the calibration plane, which is unlikely to happen. 

APPENDIX V 

PROOF FOR LEMMA 2 FOR THE COMPUTATION OF R 
Lemma 2: Given 2 X 2 submatrix of a 3 X 3 orthonormal 

matrix, there are exactly two possible solutions for the 
orthonormal matrix. They are given in (14a) and (14b). 

Proof: Let the signs of r;, i = 3 ,6 ,7 ,8 ,9 ,  be defined as 
s;. From the fact that the norm of the first and second rows are 
1, we have 

[ r7 rs r9 1 rl r2 s3(l - r f - r2 )1 /2  
R= r4 r j   ~ ~ ( l - r : - r Z ) ~ / ~  

where r7,  rs, r9 are determined from the first two rows using 
the orthonormal property and the fact the det ( R )  = 1 once s3 
and s6 are fixed. There are two, cases to be discussed. 

I )  s3 = 1: From the orthogonality between the first two 
rows, we have 

rlr4+r2rj+s6(1 -r f -r;) l l2( l  -r:-r:)1/2=0. (78) 

Since ( 1  - r: - ri)II2 and ( 1  - r: - rt)Il2 are positive, we 

'have 

s6= -sgn (rlr4+r2r5).  (79) 

Note  that  in case when r? + ri  = 1, then r3 = 0 ,  which  means 
that s3 need  not  be considered. In this case, s6 can be + 1 or - 
1. Taking s6 to be (79) is convenient since s6 for the other 
solution of R will be complementary to (78) (i.e., s6 = sgn 
(rlr4 + r2r4)). Therefore, (14a)  is one solution. 

2) s3 = - 1: In this case, (78) becomes 

r l r 4 + r 2 r 5 - s 6 ( l - r f - r ~ ) 1 / 2 ( 1 - r ~ r ~ ) ' / 2 = 0  

giving 

s6=sgn (rlr4+r2r5).  

From the orthogonality between first column  and third column 
of R,  it is  seen  that changing the signs of r3 and r6 from case 1 
to case 2 causes the product of the signs of r7 and r9 to be 
reversed. Similarly, from the orthogonality between the 
second  column and third column or R, changing the signs of r3 
and r6 causes sg's9 to be reversed in sign. Since rl,  r2,  r4, rj are 
fixed, from the orthogonality of the first column and  second 
column  of R,  s7 'sg is reversed in sign. In summary, changing 
from case 1 to case 2 causes the following to happen: 

s7 * S9-t -s7 s9 

sg * s9+ -sg s9. (80) 

There are only  two possibilities when changing from case 1 to 
case 2 as a result of (80): 

s 9  -+ s 9  s7+ -s7 sg-* -ss. 

It  is  easy to show  that a) causes det ( R )  to be reversed, while 
b) maintains det ( R )  to be + 1. Thus only  b)  is valid. Thus 
(14b) is the solution for case 2. 
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NOTE ADDED IN PROOF 
It has been a common practice in the computer vision area to 

choose the center of the image frame buffer as the image 
origin. This is always fine for analysis of 2D patterns. For 3D 
vision, the proper choice of the image center can  be critical. 
We reported in this paper that altering the image center by as 
much as ten pels does not significantly influence the accuracy 
of  3D measurement using the calibrated camera. After the 
author submitted the paper, we began investigating this image 
center issue more seriously and  found some interesting results. 
We derived several new methods for estimating image centers 
efficiently and accurately, and performing real experiments to 
test them. We also derived some formulae on  how the image 
center error influences the accuracy of actual 3D measure- 
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