COMPSCI 773S1C – 2012 2D / 3D Geometry and 2D Edge Representation by Lines

Homogeneous coordinates of a 1D point

- In inhomogeneous 1D (cartesian) coordinates, a point is represented by a single value (for example, x=1).
- In homogeneous coordinates, a 1D point is represented by a 2D vector $\begin{pmatrix} x' \\ y' \end{pmatrix}$ or $\begin{pmatrix} \frac{x'}{y'} \\ 1 \end{pmatrix}$, which defines a ray:

2D Homogeneous coordinates

In inhomogeneous 2D (cartesian) coordinates, a point is represented by a 2D vector $(x, y)^T$. In homogeneous coordinates, it is viewed as a 3D

vector
$$\begin{pmatrix} x'\\y'\\z' \end{pmatrix}$$
 or multiple of the vector $\begin{pmatrix} \frac{x'}{z'}\\\frac{y'}{z'}\\1 \end{pmatrix}$.

2D inhomogeneous coordinates: (x,y) [⊤] 2D homogeneous coordinates: (x',y',z')[⊤]

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \delta_x \\ 0 & 1 & \delta_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$$

Translation of a 3D point

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \delta_x \\ 0 & 1 & 0 & \delta_y \\ 0 & 0 & 1 & \delta_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{pmatrix}$$

Rotation of a 2D point around the origin

 θ – a rotation angle; R_{θ} – a rotation matrix

$$x_2 = x_1 \cos \theta - y_1 \sin \theta$$
$$y_2 = x_2 \sin \theta + y_2 \cos \theta$$

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0. \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$$

Rotation of a 2D point around a given center

from point.pdf from point.pdf from point.pdf from point.pdf from point.pdf

 θ – a rotation angle; R_{θ} – a rotation matrix

$$x_{2} = x_{0} + (x_{1} - x_{0}) \cos \theta - (y_{1} - y_{0}) \sin \theta$$
$$y_{2} = y_{0} + (x_{1} - x_{0}) \sin \theta + (y_{1} - y_{0}) \cos \theta$$

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta & [x_0(1 - \cos\theta) \\ & +y_0\sin\theta] \\ \sin\theta & \cos\theta & [-x_0\sin\theta \\ & +y_0(1 - \cos\theta)] \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$$

Rotation of a 3D point around the origin

$\mathbf{R}_{z} =$	$\begin{vmatrix} \cos \kappa & -\sin \kappa & 0 \\ \sin \kappa & \cos \kappa & 0 \\ 0 & 0 & 1 \end{vmatrix}$	Rotation (<i>swing</i>) matrix : rotation around <i>z</i> -axis
$\mathbf{R}_{y} =$	$ \begin{vmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{vmatrix} $	Rotation (<i>pan</i>) matrix : rotation around y-axis
R _x =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Rotation (<i>tilt</i>) matrix : rotation around <i>x</i> -axis

- Three axes (x, y, z) to rotate about, so three different matrices
- Let C = $\cos \theta$ and S = $\sin \theta$, then the matrices for positive (right handed) rotation are: (1 0 0 0) Note on 3 × 3 rotation

fianced) focation are.		(1)	0	0	0)	Note on 3 × 3 rotation
Rotation about x-axis:	$\mathbf{R}_x =$	0	C	-S	0	matrices:
		0	S	C	0	Row and column corresponding
		0	0	0	1)	to axis of rotation are as for
		(C	0	S	0)	identity I
		0	1	0	0	Other elements are C on
Rotation about y-axis:	$\mathbf{R}_{y} =$	-S	0	C	0	diagonal, $\pm S$ off diagonal, so that P = I if $\theta = 0$
		0	0	0	1)	$\operatorname{that} \mathbf{K} = \mathbf{I} \text{if } 0 = 0.$
		C	- <u>S</u>	0	0	Sign of S can be inferred from the fact that rotation around x y z
Detetion about a ovie:	_	S	C	0	0	by $\theta = 90^{\circ}$ transforms $y \rightarrow z = z \rightarrow y$
Rotation about 2-axis.	$\mathbf{R}_{z} =$	0	0	1	0	$x \rightarrow y$, respectively.
		0	0	0	1)	13

3D rotation in homogeneous coordinates

In the general case, the 3D rotation is decomposed to three rotations around the coordinate axes x, y, z. The rotation matrix

$$\mathbf{R}_{\kappa,\phi,\omega} = \mathbf{R}_z(\kappa)\mathbf{R}_y(\phi)\mathbf{R}_x(\omega)$$

and in homogeneous coordinates the rotation is as follows:

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} = \left\| \begin{array}{ccc} \mathbf{R}_{\kappa,\phi,\omega} & \mathbf{0} \\ \mathbf{R}_{\kappa,\phi,\omega} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{array} \right\| \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{pmatrix}$$

The resulting matrix $\mathbf{R}_{\kappa,\phi,\omega}$:

$\cos\phi\cos\kappa$	$\sin\omega\sin\phi\cos\kappa -$	$\cos\omega\sin\phi\cos\kappa+$
	$\cos\omega\sin\kappa$	$\sin\omega\sin\kappa$
$\cos\phi\sin\kappa$	$\sin \omega \sin \phi \sin \kappa +$	$\cos\omega\sin\phi\sin\kappa-$
	COS ω COS κ	$\sin\omega\cos\kappa$
$-\sin\phi$	$\sin\omega\cos\phi$	$\cos\omega\cos\phi$

Scaling of a 2D point

 $\mathbf{S} = \begin{bmatrix} \mathbf{S}_{x} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{y} \end{bmatrix} - \mathbf{a} \text{ scaling matrix}$

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix}$$

Scaling of a 3D point

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{pmatrix}$$

Representation of 2D lines and straight-line segments

- Interior line points: 0 < t < 1
- End points: t = 0 and t = 1
- **Exterior** line points: t < 0 and t > 1

- Interior line points: 0 < t < 1
- **End** points: t = 0 and t = 1
- **Exterior** line points: t < 0 and t > 1

Distance to a 2D or 3D segment

in 3D case. The projection onto the segment $\overline{\mathbf{p}_1\mathbf{p}_2}$:

$$\mathbf{p}_{\mathrm{b,\,pr}} = \left\{ \begin{array}{ll} \mathbf{p}_{1} & \text{if } t_{\mathrm{b}} < 0 \\ \mathbf{p}_{1} + t_{\mathrm{b}} \left(\mathbf{p}_{2} - \mathbf{p}_{1} \right) & \text{if } 0 < t_{\mathrm{b}} < 1 \\ \mathbf{p}_{2} & \text{if } t_{\mathrm{b}} > 1 \end{array} \right.$$

Intersection of two 2D lines

The intersection exists if the matrix is not singular

Interior and exterior intersections of straight-line segments

Intersection of two 3D lines

Exercise: derive the explicit formulae for t_{12} and t_{34} for the closest intersection point.