

Texture Segmentation

- Texture is a spatial property that characterises groups of pixels
- A local measure of texture is computed over a pixel neighbourhood

7/03/2011 COMSPCI 773S1C 53

Variance as a Texture Feature

• The simplest statistical measure is the *variance* σ^2 of grey levels in a square $n \times n$ neighbourhood centred on a pixel:

$$\sigma^{2} = \frac{1}{n^{2}} \sum_{\xi = -n/2}^{n/2} \sum_{\eta = -n/2}^{n/2} (f(x + \xi, y + \eta) - \mu)^{2}; \quad \mu = \frac{1}{n^{2}} \sum_{\xi = -n/2}^{n/2} \sum_{\eta = -n/2}^{n/2} f(x + \xi, y + \eta)$$

- "Variance" image: scaled standard deviations σ for each pixel Bright regions in the variance image: high local variance of grey levels
- For most of simple statistical measures are of little use
- If two textures of interest are periodic, they might be separated in the frequency domain by comparing the spectra of small samples taken from the two patterns

7/03/2011 COMSPCI 773S1C 54

Colour Segmentation

- Region-of-interest in a training image look-up table of skin colours
 - Drawback: incorrect classification of skin pixels absent in the training sample and background pixels
- Edge-based segmentation regions with closed boundaries formed by edge strokes

7/03/2011 COMSPCI 773S1C 57

Colour Predicate

- The use of many training images
- Automatic segmentation of each training image into skin and background regions
- Can use any colour space (RGB, rgb, YCrCb, HSI, YCM)
- RGB non discriminative for skin
- Look at Hue images
 - Thresholding the hue images

7/03/2011

COMSPCI 773S1C

8

Logarithmic hue

- CCD micro-camera
 - poor results with angular transform (classic HIS)
- Logarithmic hue difference between Green and Red
 - independence from lighting conditions
 - Logarithmic hue values: R G components only because red prevails in skin; the ratio G/R is robust to intensity changes:

H = 256 G/R if G < R and H = 255 if $G \ge R$

Intensity I

Hue **H**

Fundamental Operation: Erosion

- **Erosion** $f \ominus s$ of a binary image f by a structuring element s produces a new binary image $g = f \ominus s$
 - The eroded image has ones in all locations (x,y) of an origin of the structuring element s at which s fits the input image f
 - For all pixel coordinates (x,y), g(x,y) = 1 if s fits f and 0 otherwise

From: http://www.inf.u-szeged.hu/~ssip/1996/morpho/morphology.html

6

Fundamental Operation: Dilation

- **Dilation** $f_{\oplus}s$ of a binary image f by a structuring element s produces a new binary image $g = f_{\oplus}s$
 - The dilated image has ones in all locations (x,y) of an origin of the structuring element s at which s hits the input image f
 - For all pixel coordinates (x,y), g(x,y) = 1 if s hits f and 0 otherwise

From: http://www.inf.u-szeged.hu/~ssip/1996/morpho/morphology.html

COMSPCI 773S1C

the middle (median) pixel value.

7/03/2011

8

66

