
/2
01
2

 7
32

08
/0
3/

C
O

M
P

S
C

I

Lab:
M i l

ea
la

nd

Mercurial

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

1

First: Recap
/2
01
2

p

• Distributed Version control

 7
32

08
/0
3/

C
O

M
P

S
C

I
ea

la
nd

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

2

Distributed
V rsi n C ntr l

/2
01
2

Version Control
All developers have their own local repository

 7
32

08
/0
3/ (a.k.a. “decentralized version control”)

1. Developers work on their working copy

C
O

M
P

S
C

I

2. Developers commit changes of the working copy to
their own local repository first

ea
la

nd

3. Changes can be exchanged between repositories
(“pushed” and “pulled”)

kl
an

d
| N

ew
 Z

e

Local
Repository

NetworkWorking
CopyA

ve
rs

ity
 o

f A
uc

k

LocalWorking
C “Central”B

Th
e

U
ni

v Local
RepositoryCopy Central

Repository
B

Push and Pull
/2
01
2

Push
• Once developers have committed versions on their

l l it th h th t th

 7
32

08
/0
3/ local repository, they can push them to another repo

• Versions are pushed from local branches
into corresponding remote branches

C
O

M
P

S
C

I

p g
• Like “commit” from one repo to another
Pull

ea
la

nd

• Latest versions are pulled from remote branches
and put into the corresponding local branches

• Like “update” from one repo to another

kl
an

d
| N

ew
 Z

e Like update from one repo to another

Local
Repository

NetworkWorking
CopyA

ve
rs

ity
 o

f A
uc

k Repository

L l

py

Working “C t l”

Th
e

U
ni

v Local
Repository

g
Copy “Central”

Repository
B

Distributed
V rsi n C ntr l

/2
01
2

Version Control
• Local and remote repositories are technologically

 7
32

08
/0
3/ identical.

• Chaining of repositories is possible.

C
O

M
P

S
C

I

• Several personal repositories can be used:
• Good for testing of new commits:

ea
la

nd

• one repo for development, one for staging

kl
an

d
| N

ew
 Z

e

Local
Repository

NetworkWorking
CopyA

ve
rs

ity
 o

f A
uc

k

LocalWorking
C “Central”

Th
e

U
ni

v Local
RepositoryCopy Central

Repository

Mercurial
/2
01
2 • Open-source project, started around 2005

 7
32

08
/0
3/

j
• Used for many open-source projects

C
O

M
P

S
C

I

• Every developer has a repository, which is a folder
• Repo folder contains working copy,

ea
la

nd

p g py,
and a subfolder .hg which contains the version data

• Versions are identified locally by natural numbers

kl
an

d
| N

ew
 Z

e

and globally by hash values,
e.g. 5c240805ac2d9530b780cbd514574af398c0cdd6
G d l (T i H)

ve
rs

ity
 o

f A
uc

k • Good tool support (TortoiseHg)
• Fairly easy to use

Th
e

U
ni

v

6

Working with Hg
/2
01
2

g g

1. Start by cloning existing repo, or creating new one

 7
32

08
/0
3/

y g g p , g
– New repo has only “default branch” (like trunk)
– After cloning you have local copies of all branches

C
O

M
P

S
C

I

f g y p f
of parent repo

2. Modify working copy and commit to create new

ea
la

nd

y g py
versions in your local repo

3. Pull to load new versions from parent repo into local

kl
an

d
| N

ew
 Z

e

repo
– Does not change working

ve
rs

ity
 o

f A
uc

k copy
– Pulled versions are

put in separate branch

Th
e

U
ni

v put in separate branch
from your local versions 7

Most important tool: Tortoise
xpl r r

/2
01
2

explorer
• Integrated

 7
32

08
/0
3/

g
control GUI
for mercurial

C
O

M
P

S
C

I • In some of the lab
tasks you are asked
to explore the

ea
la

nd

to explore the
functions a bit on
your own and figure

kl
an

d
| N

ew
 Z

e your own and figure
out how certain
things work!

ve
rs

ity
 o

f A
uc

k

• After all, every GUI
is intuitive, right?

Th
e

U
ni

v

8

commit
/2
01
2 • Creates a new version on

h l l

 7
32

08
/0
3/ the local repository.

• Best practices:

C
O

M
P

S
C

I • Always review your
changes!
M k t dd

ea
la

nd

• Make sure to add new
(a.k.a. untracked)
files

kl
an

d
| N

ew
 Z

e files.
• One commit should

be only one logical

ve
rs

ity
 o

f A
uc

k be only one logical
change.

• Never break the build!

Th
e

U
ni

v

• Never break the tests. 9

Hg Pull
/2
01
2

g
Pull regularly to stay up to date.
H itt d l l i

 7
32

08
/0
3/ Have you committed local versions

on some branch?
1 If no you can update to the latest

C
O

M
P

S
C

I 1. If no, you can update to the latest
pulled version
– Changes in working copy are

ea
la

nd

– Changes in working copy are
merged with pulled version

– Unless you choose to

kl
an

d
| N

ew
 Z

e Unless you choose to
“discard local changes”

2. If you have committed local versions

ve
rs

ity
 o

f A
uc

k f y
on some branch, they should be
merged with pulled versions on

 b h

Th
e

U
ni

v same branch
10

Lab Setup
/2
01
2

p

• Create one repo: repo1

 7
32

08
/0
3/

p p
• Create one file in the working copy of repo1
• Add it to version control, can you figure out how?

C
O

M
P

S
C

I

, y f g
• Commit it.
• Clone the repo: repo2

ea
la

nd

Clone the repo repo2

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

11

Lab Task 1
/2
01
2

• Change a file in the working copy of repo1

 7
32

08
/0
3/

g g py p
• Commit to repo1.
• What is on repo2?

C
O

M
P

S
C

I

p
• Pull on repo 2. What do you see?
• Update on repo 2

ea
la

nd

Update on repo 2

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

12

Hg Push
/2
01
2

g

Push regularly to integrate your changes.

 7
32

08
/0
3/

g y g y g
Have others committed versions on a remote branch

that you have committed to locally?

C
O

M
P

S
C

I

1. If no, push will succeed and the local
versions will be in the remote repo

ea
la

nd

2. If yes, i.e. others have committed
versions on a branch you have

itt d t l ll

kl
an

d
| N

ew
 Z

e committed to locally:
– You need to merge your versions

with their versions

ve
rs

ity
 o

f A
uc

k with their versions
– When local branches and corresp.

remote branches are merged

Th
e

U
ni

v remote branches are merged,
push succeeds 13

Lab Task 2
/2
01
2

• Change something in the working copy of repo2.

 7
32

08
/0
3/

g g g py p
• Commit to repo2
• What is on repo1?

C
O

M
P

S
C

I

p
• Push in repo 2 to repo1. What do you see?

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

14

Lab Task 3
/2
01
2

• Change a file in the working copy of repo1

 7
32

08
/0
3/

g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.

C
O

M
P

S
C

I

g ff f g py f p
• Commit to repo2
• Pull on repo 2. What do you see?

ea
la

nd

Pull on repo 2. What do you see?
• Push in repo 2 to repo1. What happens?

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

15

Lab Task 4
/2
01
2

• Reproduce the conflict from Lab task 3:

 7
32

08
/0
3/

p
• Use “merge” on repo2, applying it to the two latest

commits. Can you figure out how to do that?

C
O

M
P

S
C

I

• Push in repo 2 to repo1. What happens?

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

16

Lab Task 5
/2
01
2

• Change a file in the working copy of repo1

 7
32

08
/0
3/

g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.

C
O

M
P

S
C

I

g ff f g py f p
• Pull on repo 2. What do you see?
• Update, using “merge local changes”

ea
la

nd

Update, using merge local changes
• Now commit on repo2.
• Push in repo 2 to repo1 What happens?

kl
an

d
| N

ew
 Z

e Push in repo 2 to repo1. What happens?
• What is the difference in the version space to lab

task 4?

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

17

Lab Task 6
/2
01
2

• Change a file in the working copy of repo1

 7
32

08
/0
3/

g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.

C
O

M
P

S
C

I

g ff f g py f p
• Commit to repo2 under a named branch tryout
• Pull on repo 2. What do you see?

ea
la

nd

Pull on repo 2. What do you see?
• Push in repo 2 to repo1. What happens?
• What is the difference to before?

kl
an

d
| N

ew
 Z

e What is the difference to before?

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

18

Lab Task 7
/2
01
2

• Reproduce the final situation of Lab Task 6:

 7
32

08
/0
3/

p
• Use merge on repo2, on default branch and tryout

branch

C
O

M
P

S
C

I

• Push in repo 2 to repo1. What happens?
• Compare with Lab Task 4

ea
la

nd

p

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

19

Extensions Tab
/2
01
2

 7
32

08
/0
3/

C
O

M
P

S
C

I
ea

la
nd

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

20

Extensions
/2
01
2 • Transplant: Moving a commit from one branch to

another

 7
32

08
/0
3/ another

• Strip: deleting one or several commits on a local
repository

C
O

M
P

S
C

I repository.

ea
la

nd
kl

an
d

| N
ew

 Z
e

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

21

Lab Task E1
/2
01
2

• Reproduce the conflict from Lab task 3:

 7
32

08
/0
3/

p
• Strip one head. Can you figure out how to do that?
• Push in repo 2 to repo1. What happens?

C
O

M
P

S
C

I

p p pp
• Stripping changes is NOT the standard way to deal

with conflicts, the standard way is merging.

ea
la

nd

y g g

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

22

Lab Task E2
/2
01
2

• Reproduce the conflict from Lab task 3:

 7
32

08
/0
3/

p
• Transplant one head to the other branch. Can you

figure out how to do that?

C
O

M
P

S
C

I

• Strip one head, which one makes sense?
• Push in repo 2 to repo1.

ea
la

nd

p p
• Compare with merging.

kl
an

d
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e

U
ni

v

23

Work routine for committing
/2
01
2

g

• If you think you are ready to commit

 7
32

08
/0
3/

y y y
1. Run tests. If they fail, do not commit
2. Pull commits

C
O

M
P

S
C

I

mm
3. If there are changes, update to the latest commit,

back to 1.

ea
la

nd

4. Check all files that need to be committed.
5. Commit

kl
an

d
| N

ew
 Z

e

6. Push (this is crucial, commit alone doesnt make it
available for others.

ve
rs

ity
 o

f A
uc

k
Th

e
U

ni
v

24

Version Control
Best Practices

/2
01
2

Best Practices
1. Complete one change at a time and commit it

 7
32

08
/0
3/ – If you committing several changes together you cannot

undo/redo them individually
– If you don’t commit and your hard disk crashes

C
O

M
P

S
C

I – If you don t commit and your hard disk crashes…
– Continuous integration (see XP)

2. Only commit changes that preserve system integrity

ea
la

nd

y g p y g y
– No “breaking changes” that make compilation or tests fail

3. Commit only source files (e.g. not .class files)

kl
an

d
| N

ew
 Z

e

4. Write a log entry for each change
– What has been changed and why

5 Communicate with the other developers

ve
rs

ity
 o

f A
uc

k 5. Communicate with the other developers
– See who else is working on a part before changing it
– Discuss and agree on a design

Th
e

U
ni

v

25

g g
– Follow the project guidelines & specifications

