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First: Recap
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• Distributed Version control
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Distributed
V rsi n C ntr l
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Version Control
All developers have their own local repository
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3/ (a.k.a. “decentralized version control”)

1. Developers work on their working copy
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2. Developers commit changes of the working copy to 
their own local repository first
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3. Changes can be exchanged between repositories 
(“pushed” and “pulled”)
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Push and Pull
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Push
• Once developers have committed versions on their

l l it  th   h th  t  th  

 7
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3/ local repository, they can push them to another repo

• Versions are pushed from local branches 
into corresponding remote branches
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p g
• Like “commit” from one repo to another
Pull
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• Latest versions are pulled from remote branches
and put into the corresponding local branches

• Like “update” from one repo to another
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Distributed
V rsi n C ntr l
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Version Control
• Local and remote repositories are technologically 
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3/ identical.

• Chaining of repositories is possible.
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• Several personal repositories can be used:
• Good for testing of new commits:
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• one repo for development,  one for staging
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Mercurial
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2 • Open-source project, started around 2005
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j
• Used for many open-source projects
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• Every developer has a repository, which is a folder
• Repo folder contains working copy, 

ea
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p g py,
and a subfolder .hg which contains the version data

• Versions are identified locally by natural numbers 
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and globally by hash values,
e.g. 5c240805ac2d9530b780cbd514574af398c0cdd6
G d l  (T i H )
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k • Good tool support (TortoiseHg)
• Fairly easy to use
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Working with Hg
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1. Start by cloning existing repo, or creating new one
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y g g p , g
– New repo has only “default branch” (like trunk)
– After cloning you have local copies of all branches 
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f g y p f
of parent repo

2. Modify working copy and commit to create new 
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versions in your local repo

3. Pull to load new versions from parent repo into local 
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repo
– Does not change working
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k copy
– Pulled versions are 

put in separate branch 
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Most important tool: Tortoise 
xpl r r
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explorer
• Integrated
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control GUI
for mercurial
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tasks you are asked 
to explore the
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to explore the
functions a bit on 
your own and figure 
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things work!
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• After all, every GUI 
is intuitive, right?
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commit
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2 • Creates a new version on 

h  l l 
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• Best practices:
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I • Always review your 
changes!
M k   t  dd 

ea
la

nd

• Make sure to add new
(a.k.a. untracked)
files
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e files.
• One commit should 

be only one logical
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k be only one logical
change.

• Never break the build!
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Hg Pull
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Pull regularly to stay up to date.
H   itt d l l i  

 7
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08
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3/ Have you committed local versions 

on some branch?
1 If no  you can update to the latest 
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I 1. If no, you can update to the latest 
pulled version
– Changes in working copy are 

ea
la

nd

– Changes in working copy are 
merged with pulled version

– Unless you choose to 
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e Unless you choose to 
“discard local changes”

2. If you have committed local versions 
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k f y
on some branch, they should be 
merged with pulled versions on 
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Lab Setup
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• Create one repo: repo1
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p p
• Create one file in the working copy of repo1
• Add it to version control, can you figure out how?
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, y f g
• Commit it.
• Clone the repo: repo2
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la

nd

Clone the repo  repo2
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Lab Task 1
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• Change a file in the working copy of repo1
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g g py p
• Commit to repo1.
• What is on repo2?
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p
• Pull on repo 2. What do you see?
• Update on repo 2
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Update on repo 2
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Hg Push
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Push regularly to integrate your changes.
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Have others committed versions on a remote branch 

that you have committed to locally?
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1. If no, push will succeed and the local 
versions will be in the remote repo
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2. If yes, i.e. others have committed 
versions on a branch you have 

itt d t  l ll
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e committed to locally:
– You need to merge your versions 

with their versions
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k with their versions
– When local branches and corresp. 

remote branches are merged  
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Lab Task 2
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• Change something in the working copy of repo2.
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• Commit to repo2
• What is on repo1?
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p
• Push in repo 2 to repo1. What do you see?
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Lab Task 3
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• Change a file in the working copy of repo1
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g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.
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g ff f g py f p
• Commit to repo2
• Pull on repo 2. What do you see?

ea
la

nd

Pull on repo 2. What do you see?
• Push in repo 2 to repo1. What happens?

kl
an

d 
| N

ew
 Z

e
ve

rs
ity

 o
f A

uc
k

Th
e 

U
ni

v

15



Lab Task 4
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• Reproduce the conflict from Lab task 3:
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• Use “merge” on repo2, applying it to the two latest 

commits. Can you figure out how to do that?
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• Push in repo 2 to repo1. What happens?
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Lab Task 5
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• Change a file in the working copy of repo1

 7
32

08
/0
3/

g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.
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g ff f g py f p
• Pull on repo 2. What do you see?
• Update, using “merge local changes”

ea
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nd

Update, using merge local changes
• Now commit on repo2.
• Push in repo 2 to repo1  What happens?
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e Push in repo 2 to repo1. What happens?
• What is the difference in the version space to lab 

task 4?
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Lab Task 6
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• Change a file in the working copy of repo1
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g g py p
• Commit to repo1.
• Change a different file in the working copy of repo2.
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g ff f g py f p
• Commit to repo2 under a named branch tryout
• Pull on repo 2. What do you see?

ea
la

nd

Pull on repo 2. What do you see?
• Push in repo 2 to repo1. What happens?
• What is the difference to before?
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e What is the difference to before?
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Lab Task 7
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• Reproduce the final situation of Lab Task 6:
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p
• Use merge on repo2,  on default branch and tryout 

branch
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• Push in repo 2 to repo1. What happens?
• Compare with Lab Task 4
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Extensions Tab
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Extensions
/2
01
2 • Transplant: Moving a commit from one branch to 

another
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3/ another

• Strip: deleting one or several commits on a local 
repository
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I repository.
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Lab Task E1
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• Reproduce the conflict from Lab task 3:
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• Strip one head. Can you figure out how to do that?
• Push in repo 2 to repo1. What happens?
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p p pp
• Stripping changes is NOT the standard way to deal 

with conflicts, the standard way is merging.
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y g g
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Lab Task E2
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• Reproduce the conflict from Lab task 3:
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• Transplant one head to the other branch. Can you 

figure out how to do that?
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• Strip one head, which one makes sense?
• Push in repo 2 to repo1.
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p p
• Compare with merging.
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Work routine for committing
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• If you think you are ready to commit
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y y y
1. Run tests. If they fail, do not commit
2. Pull commits
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mm
3. If there are changes, update to the latest commit, 

back to 1.
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4. Check all files that need to be committed.
5. Commit
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6. Push (this is crucial, commit alone doesnt make it 
available for others.
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Version Control
Best Practices

/2
01
2

Best Practices
1. Complete one change at a time and commit it

 7
32

08
/0
3/ – If you committing several changes together you cannot 

undo/redo them individually
– If you don’t commit and your hard disk crashes

C
O

M
P

S
C

I – If you don t commit and your hard disk crashes…
– Continuous integration (see XP)

2. Only commit changes that preserve system integrity

ea
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y g p y g y
– No “breaking changes” that make compilation or tests fail

3. Commit only source files (e.g. not .class files)
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4. Write a log entry for each change
– What has been changed and why

5 Communicate with the other developers
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k 5. Communicate with the other developers
– See who else is working on a part before changing it
– Discuss and agree on a design
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g g
– Follow the project guidelines & specifications


