
In: Encyclopedia of Electrical and Electronics Engineering (John G. Webster, ed.), John Wiley & Sons Inc., New
York, (to appear approx. 1999).

- 1 -

Visual Programming

Margaret M. Burnett, Oregon State University

Visual programming is programming in which more than one dimension is used to convey
semantics. Examples of such additional dimensions are the use of multi-dimensional objects, the
use of spatial relationships, or the use of the time dimension to specify “before-after” semantic
relationships. Each potentially-significant multi-dimensional object or relationship is a token (just
as in traditional textual programming languages each word is a token) and the collection of one or
more such tokens is a visual expression. Examples of visual expressions used in visual
programming include diagrams, free-hand sketches, icons, or demonstrations of actions performed
by graphical objects. When a programming language’s (semantically-significant) syntax includes
visual expressions, the programming language is a visual programming language (VPL).

Although traditional textual programming languages often incorporate two-dimensional syntax
devices in a limited way--an x-dimension to convey a legal linear string in the language, and a y-
dimension allowing optional line spacing as a documentation device or for limited semantics (such
as “continued from previous line”)--only one of these dimensions conveys semantics, and the
second dimension has been limited to a teletype notion of spatial relationships so as to be
expressible in a one-dimensional string grammar. Thus, multidimensionality is the essential
difference between VPLs and strictly textual languages.

When visual expressions are used in a programming environment as an editing shortcut to generate
code that may or may not have a different syntax from that used to edit in the code, the
environment is called a visual programming environment (VPE). Visual programming
environments for traditional textual languages provide a middle ground between VPLs and the
widely-known textual languages. In contrast to just a few years ago, when strictly textual,
command-line programming environments were the norm, today VPEs for traditional textual
languages are the predominant kind of commercial programming environment. Commercial VPEs
for traditional languages are aimed at professional programmers; these programmers use the textual
languages they already know, but are supported by the graphical user interface techniques and
accessibility to information that visual approaches can add. VPEs for traditional languages serve as
a conduit for transferring VPL research advances into practice by applying these new ideas to
traditional languages already familiar to programmers, thus affording a gradual migration from
textual programming techniques to more visual ones. VPLs are usually integrated in their own
custom environments, so for the remainder of this article, we will follow convention, using the
term VPEs to mean VPEs for traditional languages.

History

The earliest work in visual programming was in two directions: visual approaches to traditional
programming languages (such as executable flowcharts), and new visual approaches to
programming that deviated significantly from traditional approaches (such as programming by
demonstrating the desired actions on the screen). Many of these early systems had advantages that
seemed exciting and intuitive when demonstrated with “toy” programs, but ran into difficult
problems when attempts were made to extend them to more realistically-sized programs. These
problems led to an early disenchantment with visual programming, causing many to believe that
visual programming was inherently unsuited to “real” work--that it was just an academic exercise.

- 2 -

To overcome these problems, visual programming researchers began to develop ways to use visual
programming for only selected parts of software development, thereby increasing the number of
projects in which visual programming could help. In this approach, straightforward visual
techniques were widely incorporated into programming environments that support textual
programming languages, to replace cumbersome textual specification of GUI layout, to support
electronic forms of software engineering diagrams for creating and/or visualizing relationships
among data structures, and to visually combine textually-programmed units to build new
programs. Successful commercial VPEs soon followed; among the early examples were
Microsoft’s Visual Basic (for Basic) and ParcPlace Systems’ VisualWorks (for Smalltalk).
Another group of commercial VPEs, focused primarily on large-grained programming, are the
Computer-Aided Software Engineering (CASE) tools that support visual specification (for
example, using diagrams) of relationships among program modules, culminating in automatic code
generation of composition code.

Other visual programming researchers took a different approach--they worked to increase the kinds
of projects suitable for visual programming through the development of domain-specific visual
programming systems. Under this strategy, the addition of each new supported domain increased
the number of projects that could be programming visually. An added benefit that followed was
improved accessibility--end-users were sometimes able to use these new systems. The developers
of domain-specific VPLs and VPEs found that providing ways to write programs for one particular
problem domain eliminated many of the disadvantages found in the earliest approaches, because
they supported working directly in the communication style of the particular problem domain--
using visual artifacts (e.g., icons and menus) reflecting the particular needs, problem-solving
diagrams, and vocabulary specific to that domain--and never forced users to abandon that
communication style. This approach quickly produced a number of successes both in research and
in the marketplace. Today there are commercial VPLs and VPEs available in many domains;
examples include programming laboratory data acquisition (National Instruments’ LabVIEW),
programming scientific visualizations (Advanced Visual Systems’ AVS), programming telephone
and voice-mail behavior (Cypress Research’s PhonePro), and programming graphical simulations
and games (Stagecoach Software’s Cocoa). A number of software-agent generators are starting to
become embedded in personal computing software as well, allowing macros that assist with
repetitive tasks to be inferred from end-user manipulations (as in Chimera, for example, which is
discussed in the next section).

The original challenge--to devise VPLs with enough power and generality to address an ever-
expanding variety of programming problems--is an ongoing area of research. One goal of this
research is to continue to improve the ways visual programming can be used. Another goal is to
provide the same kinds of improvements in general software development as are already available
for programming in some domain-specific areas. But although this work is still primarily in the
research stage, commercial VPLs with the characteristics needed for general-purpose programming
have emerged and are being used to produce commercial software packages; one example is
Pictorius International’s Prograph CPX.

Strategies in Visual Programming

Because VPEs employ visual ways of communicating about programs, the visual communication
devices employed by a VPE can be viewed as a (limited) VPL. Hence, the strategies used by
VPEs are a subset of those possible for VPLs. Because of this subset relationship, much of the
remaining discussion of visual programming will focus primarily on VPLs.

VPL Strategies

A common misunderstanding is that the goal of visual programming research in general and VPLs
in particular is to eliminate text. This is a fallacy--in fact, most VPLs include text to at least some
extent, in a multidimensional context. Rather, the overall goal of VPLs is to strive for

- 3 -

improvements in programming language design. The opportunity to achieve this comes from the
simple fact that VPLs have fewer syntactic restrictions on the way a program can be expressed (by
the computer or by the human), and this affords a freedom to explore programming mechanisms
that have not previously been tried because they have not been possible in the past.

The most common specific goals sought with VPL research have been (1) to make programming
more accessible to some particular audience, (2) to improve the correctness with which people
perform programming tasks, and/or (3) to improve the speed with which people perform
programming tasks.

To achieve these goals, there are four common strategies used in VPLs:

Concreteness: Concreteness is the opposite of abstractness, and means expressing some aspect
of a program using particular instances. One example is allowing a programmer to specify
some aspect of semantics on a specific object or value, and another example is having the
system automatically display the effects of some portion of a program on a specific object
or value.

Directness: Directness in the context of direct manipulation is usually described as “the feeling
that one is directly manipulating the object” [19]. From a cognitive perspective, directness
in computing means a small distance between a goal and the actions required of the user to
achieve the goal [11, 13, 17]. Given concreteness in a VPL, an example of directness
would be allowing the programmer to manipulate a specific object or value directly to
specify semantics rather than describing these semantics textually.

Explicitness: Some aspect of semantics is explicit in the environment if it is directly stated
(textually or visually), without the requirement that the programmer infer it. An example of
explicitness in a VPL would be for the system to explicitly depict dataflow relationships
(program slice information) by drawing directed edges among related variables.

Immediate Visual Feedback: In the context of visual programming, immediate visual feedback
refers to automatic display of effects of program edits. Tanimoto has coined the term
liveness, which categorizes the immediacy of semantic feedback that is automatically
provided during the process of editing a program [21]. Tanimoto described four levels of
liveness. At level 1 no semantics are implied to the computer, and hence no feedback about
a program is provided to the programmer. An example of level 1 is an entity-relationship
diagram for documentation. At level 2 the programmer can obtain semantic feedback about
a portion of a program, but it is not provided automatically. Compilers support level 2
liveness minimally, and interpreters do more so because they are not restricted to final
output values. At level 3, incremental semantic feedback is automatically provided
whenever the programmer performs an incremental program edit, and all affected onscreen
values are automatically redisplayed. This ensures the consistency of display state and
system state if the only trigger for system state changes is programmer editing. The
automatic recalculation feature of spreadsheets supports level 3 liveness. At level 4, the
system responds to program edits as in level 3, and to other events as well such as system
clock ticks and mouse clicks over time, ensuring that all data on display accurately reflects
the current state of the system as computations continue to evolve.

VPL Examples

In this section, we discuss four example VPLs to demonstrate several ways in which the strategies
of the previous section have been employed.

Imperative Visual Programming by Demonstration

Chimera [14] is an example of the most common way imperative programming is supported in

- 4 -

VPLs, namely by having the programmer demonstrate the desired actions. In the case of Chimera,
the “programmer” is an end user: hence, Chimera an example of a VPL aimed at improving
accessibility of programming certain kinds of tasks.

The domain of Chimera is graphical editing. As an end user works on a graphical scene, he or she
may find that repetitive editing tasks arise, and can indicate that a sequence of manipulations just
performed on a scene should be generalized and treated as a macro. This is possible because the
history of the user’s actions is depicted using a comic strip metaphor (see Figure 1), and the user
can select panels from the history, indicate which of the objects should be viewed as example
“parameters,” (graphically) edit the actions depicted in any of the panels if desired, and finally save
the sequence of edited panels as a macro. Chimera uses inference in determining the generalized
version of the macro; use of inference is common in by-demonstration languages, and its success
depends on limited problem domains such as Chimera’s. However, there are also a number of by-
demonstration languages that do not use inference, one example of which is Cocoa (discussed later
in this article).

Chimera is at liveness level 3; that is, it provides immediate visual feedback about the effects of
program edits. Since these effects are rendered in terms of their effects on the actual objects in the
program, this is an example of concreteness. Directness in Chimera is used in that the way
program semantics are specified is by directly manipulating objects to demonstrate the desired
results. Similar combinations of immediate visual feedback, concreteness, and directness are
present in most by-demonstration VPLs.

Figure 1: Programming by demonstration in Chimera. In this example, the user has drawn a box with an arrow
pointing to it (as in a graph diagram), and this demonstration is depicted after-the-fact in a series of intelligently-
filtered panels. This set of demonstrations can be generalized into a macro for use in creating the other nodes in the
graph semi-automatically.

Form/Spreadsheet Based Visual Programming

Forms/3 [3] is an example of a VPL that follows the form-based paradigm. In this paradigm, a
programmer programs by creating a form and specifying its contents. This paradigm is most
commonly seen in commercial spreadsheets, in which the form is grid-shaped, and the contents are
specified by the cells’ formulas.

Forms/3 programs include forms (spreadsheets) with cells, but the cells are not locked into a grid.

- 5 -

A Forms/3 programmer creates a program by using direct manipulation to place cells on forms, and
defines a formula for each cell using a flexible combination of pointing, typing, and gesturing. See
Figure 2. A program’s calculations are entirely determined by these formulas. The formulas
combine into a network of (one-way) constraints, and the system continuously ensures that all
values displayed on the screen satisfy these constraints.

Forms/3 is a Turing-complete language. The aim is to enhance the use of ordinary spreadsheet
concepts to support the advanced functionality needed for full-featured programming. Thus it
supports such features as graphics, animation, and recursion, but without resorting to state-
modifying macros or links to traditional programming languages. For example, Forms/3 supports
a rich and extensible collection of types by allowing attributes of a type to be defined by formulas,
and an instance of a type to be the value of a cell, which can be referenced just like any cell. In
Figure 2, an instance of type “box” is being specified by graphically sketching it; this specification
can be changed if necessary by stretching the box by direct manipulation. Immediate visual
feedback at liveness level 4 is provided in either case. Concreteness is present in the fact that the
resulting box is immediately seen when enough formulas have been provided to make this
possible; directness is present in the direct-manipulation mechanism for specifying a box because
one demonstrates the specification directly on the box.

The intended audience for Forms/3 is “future” programmers--those whose job will be to create
applications, but whose training has not emphasized today’s traditional programming languages.
A goal of Forms/3 has been to reduce the number and complexity of the mechanisms required to do
application programming, with the hope that greater ease of use by programmers will result than
has been characteristic of traditional languages, with an accompanying increase in correctness
and/or speed of programming. In empirical studies, programmers have demonstrated greater
correctness and speed in both program creation and program debugging using Forms/3’s
techniques than when using a variety of alternative techniques [3, 7, 18].

Figure 2: Defining the area of a square using spreadsheet-like cells and formulas in Forms/3. Graphical types are
supported as first-class values, and the programmer can enter cell square’s formula either by sketching a square box or
by typing textual specifications (e.g., “box 30 30”).

Dataflow Visual Programming

Prograph [9] is a dataflow VPL aimed at professional programmers. The dataflow paradigm is
currently the approach to visual programming used most widely in industry. Prograph exemplifies
its use for programming at all levels, from low-level details that can be grouped into procedures
and objects (see Figure 3), to compositions of procedures and objects. The dataflow paradigm is

- 6 -

also commonly used by domain-specific VPEs for composition of low-level components that have
been written some other way; for example, scientific visualization systems and simulation systems
often make heavy use of visual dataflow programming.

Prograph provides strong debugging support by making extensive use of dynamic visualization
techniques. The liveness level is 2 for the data values themselves--the programmer explicitly
requests display of a value each time he/she wants to see it. However, the runtime stack activity
and the order in which nodes fire can be viewed throughout execution, and if the programmer
changes a bit of data or source code mid-execution, the stack window and related views
automatically adjust to proceed from that point on under the new version, and this aspect is
liveness level 3.

One way in which the dataflow paradigm distinguishes itself from many other paradigms is
through its explicitness (through the explicit rendering of the edges in the graph) about the dataflow
relationships in the program. Since many dataflow languages govern even control flow by
dataflow, these edges are also sufficient to reflect control flow explicitly in a purely dataflow
language.

Figure 3: Dataflow programming in Prograph. Here the programmer is using the low-level (primitive) operations to
find the hypotenuse of a right triangle. Prograph allows the programmer to name and compose such low-level
graphs into higher-level graphs that can then be composed into even higher-level graphs, and so on.

Rule-Based Visual Programming

Cocoa [20] (formerly known as KidSim) is a rule-based VPL in which the programmer specifies
the rules by demonstrating a postcondition on a precondition. See Figure 4. The intended
“programmers” are children, and the problem domain is specification of graphical simulations and
games. Cocoa is a Turing-complete language, but its features have not been designed to make
general-purpose programming convenient; rather, it has been designed to make accessible to
children the ability to program their own simulations.

The way concreteness and directness are seen in Cocoa is quite similar to Chimera, since both use
by-demonstration as the way semantics are specified. The liveness level is different though; in
Cocoa, liveness is between level 2 and level 3. It is not level 3 for some kinds of program changes
(e.g., addition of new rules) that do not affect the current display of variables until the child
requests that the program resume running, but for other kinds of program changes (e.g., changing
the appearance of an object), the changes are automatically propagated into the display
immediately.

In listing the properties common to rule-based systems, Hayes-Roth includes the ability to explain

- 7 -

their behavior [12]. In Cocoa, a child can open (by selecting and double-clicking) any character
participating in the simulation, and a window containing the rules governing that character’s
behavior is displayed, as in the figure. In each execution cycle, each character’s rules are
considered top-down in the character’s list. The indicators next to each rule are “off” (gray) prior
to a rule being considered. Then, if the rule-matching fails, the indicator next to the rule turns red;
if the pattern-matching succeeds, the rule fires, the indicator next to it turns green. Once a rule has
fired for a character, that character’s “turn” if over, and no more rules for that character are checked
until the next cycle.

Figure 4: A Cocoa wall-climber (The Wall Climber: Main window) is following the rules (Mascot 1 window) that
have been demonstrated for it. Each rule is shown with the graphical precondition on the left of the arrow and the
graphical postcondition on the right of the arrow. The wall climber has just finished following rule 2, which places
it in a position suitable for following rule 1 next.

Advanced Issues

Visual Programming and Abstraction

One of the challenges in visual programming research is scaling up to the support of ever-larger
programs. This is a greater issue for VPLs than for traditional textual languages (although it
certainly can be said to exist in both) for reasons relating to representation, language design and
implementation, and relative youth of the area. For example, some of the visual mechanisms used
to achieve characteristics such as explicitness can occupy a great deal of space, making it harder to
maintain context. Also, it is hard to apply in a straightforward way techniques developed for
traditional languages, because doing so often results in a reintroduction of the very complexities
VPLs have tried to remove or simplify.

Recent developments in the area of abstraction have been particularly important to the scalability of
VPLs. The two most widely-supported types of abstraction, both in visual and textual languages,
are procedural abstraction and data abstraction. In particular, procedural abstraction has shown
itself to be supportable by a variety of VPLs. A key attribute to supporting procedural abstraction
in a VPL has been consistency with the rest of programming in the same VPL. Representative
solutions include allowing the programmer to select, name, and iconify a section of a dataflow
graph (recall Figure 3), which adds a node representing the subgraph to a library of function nodes
in a dataflow language; setting up separate spreadsheets (recall Figure 2), which can be

- 8 -

automatically generalized to allow user-defined “functions” in a form-based language; and
recording and generalizing a sequence of direct manipulations (recall Figure 1) in a by-
demonstration language.

Data abstraction has been slower in coming to VPLs, largely because it is sometimes difficult to
find a way to maintain characteristics such as concreteness or feedback, while adding support for
ideas central to data abstraction such as generality and information hiding. Still, support for data
abstraction has emerged for a number of VPLs. For example, in Forms/3, a new data type is
defined via a spreadsheet, with ordinary cells defining operations or methods, and with two
distinguished cells that allow composition of complex objects from simpler ones and definition of
how an object should appear on the screen. In Cocoa, each character’s appearance is painted using
a graphical editor, and each demonstration of a new rule “belongs” to the character type being
manipulated, providing roughly the functionality of an operation or method. Both Forms/3 and
Cocoa also support limited forms of inheritance.

Visual Programming Language Specification

The one-dimensionality of traditional textual languages means that there is only one relationship
possible between symbols of a sentence, “next to”. Thus, in describing a textual language in
BNF, it is necessary to specify only the symbols in the language, not the relationship “next to”
(which is implied when one symbol is written next to another in a grammar). However, the
multidimensionality of VPLs means many relationships are possible, such as “overlaps,”
“touches,” and “to the left of,” and there is no universally-agreed-upon definition of exactly when
such relationships hold, or even how many of them may hold simultaneously between the same
symbols. Hence, relationships among symbols cannot be left implicit, and traditional mechanisms
such as BNF for specifying textual languages cannot be used without modification for specifying
VPLs.

Many different formalisms for the specification of visual languages have been investigated.
Grammar-like formalisms range from early approaches like web and array grammars and shape
grammars to recent formalisms like positional grammars, relation grammars, unification grammars,
attributed multiset grammars, and several types of graph grammars. There are also some non
grammar-like formalisms. One grammar approach is constraint multiset grammars (CMGs) [15].
An example of a CMG production taken from the specification of state diagrams is:

TR:transition ::= A:arrow, T:text
where exists R:state, S:state where
T.midpoint close_to A.midpoint,
R.radius = distance(A.startpoint, R.midpoint),
S.radius = distance(A.endpoint, S.midpoint)
and TR.from=R.name, TR.to=S.name, TR.label=T.string.

In general, in CMGs, each production has the form:

x ::= X1, ..., Xn where exists X1',...,Xm' where C then v→=E

meaning that the non-terminal x can be rewritten to the multiset X1, ..., Xn if the sentence contains
symbols X1',...,Xm' (the context) such that the attributes of these symbols satisfy the constraint
C. v→ denotes the vector of attributes of x whose values are defined by the vector expression E over
attributes of other objects in the production. In the above example, v→ = (TR.from, TR.to,
TR.label) and E = (R.name, S.name, T.string).

Marriott and Meyer have used the CMG approach to derive a Chomsky-like taxonomy for VPLs
[15]. To show that the generality of the taxonomy is not dependent on its roots in CMGs, they
also showed how several of the other formalisms can be mapped to CMGs.

- 9 -

Visual Programming and Cognitive Theory

Since the goals of VPLs have to do with improving humans’ ability to program, it is important to
consider what is known about cognitive issues relevant to programming. Much of this information
has been gleaned in the field of cognitive psychology, and psychologist Thomas Green and his
colleagues have made many of these findings available to non-psychologists through cognitive
dimensions [11], a set of terms describing the structure of a programming language’s components
as they relate to cognitive issues in programming.

Table 1 lists the dimensions, along with a thumb-nail description of each. The relation of each
dimension to a number of empirical studies and psychological principles is given in [11], but the
authors also carefully point out the gaps in this body of underlying evidence. In their words, “The
framework of cognitive dimensions consists of a small number of terms which have been chosen
to be easy for non-specialists to comprehend, while yet capturing a significant amount of the
psychology and HCI of programming.”

Abstraction gradient What are the minimum and maximum levels of abstraction? Can fragments be
encapsulated?

Closeness of mapping What ‘programming games’ need to be learned?
Consistency When some of the language has been learnt, how much of the rest can be inferred?
Diffuseness How many symbols or graphic entities are required to express a meaning?
Error-proneness Does the design of the notation induce ‘careless mistakes’?
Hard mental operations Are there places where the user needs to resort to fingers or penciled annotation to keep

track of what’s happening?
Hidden dependencies Is every dependency overtly indicated in both directions? Is the indication perceptual or

only symbolic?
Premature commitment Do programmers have to make decisions before they have the information they need?
Progressive evaluation Can a partially-complete program be executed to obtain feedback on “How am I doing”?
Role-expressiveness Can the reader see how each component of a program relates to the whole?
Secondary notation Can programmers use layout, color, or other cues to convey extra meaning, above and

beyond the ‘official’ semantics of the language?
Viscosity How much effort is required to perform a single change?
Visibility Is every part of the code simultaneously visible (assuming a large enough display), or is

it at least possible to compare any two parts side-by-side at will? If the code is
dispersed, is it at least possible to know in what order to read it?

Table 1: The cognitive dimensions.

A concrete application of the cognitive dimensions is representation design benchmarks [24], a set
of quantifiable measurements that can be made on a VPL’s static representation. The benchmarks
are of three sorts: (1) binary (yes/no) measurements reflecting the presence (denoted Sp) of the
elements of a static representation S, (2) measurements of the extent of characteristics (denoted Sc)
in a VPL’s static representation, or (3) number of user navigational actions (denoted NI) required
to navigate to an element of the static representation if it is not already on the screen. The
benchmarks are given in Table 2.

- 10 -

Benchmark
Name

Sc Sp NI Aspect of the
Representation

Computation

D1 x
Visibility of

(Sources of dependencies explicitly depicted) /
(Sources of dependencies in system)

D2 x dependencies The worst case number of steps required to navigate to
the display of dependency information

PS1 x
Visibility of

Does the representation explicitly show how the parts of
the program logically fit together? Yes/No

PS2 x program structure The worst case number of steps required to navigate to
the display of the program structure

L1 x
Visibility of

Does the representation explicitly show how an element
is computed? Yes/No

L2 x program logic The worst case number of steps required to make all the
program logic visible

L3 x The number of sources of misrepresentations of
generality

R1 x Display of
results with

Is it possible to see results displayed statically with the
program source code? Yes/No

R2 x program logic The worst case number of steps required to display the
results with the source code.

SN1 x
Secondary
notation:
non-semantic
devices

SNdevices / 4
where SNdevices = the number of the following
secondary notational devices that are available:
optional naming, layout devices with no semantic
impact, textual annotations and comments, and static
graphical annotations.

SN2 x The worst case number of steps to access secondary
notations

AG1 x

Abstraction
gradient

AGsources / 4
where AGsources = the number of the following
sources of details that can be abstracted away: data
details, operation details, details of other fine-grained
portions of the programs, and details of NI devices.

AG2 x The worst case number of steps to abstract away the
details

RI1 x Accessibility of
related

Is it possible to display all related information side by
side? Yes/No

RI2 x information The worst case number of steps required to navigate to
the display of related information.

SRE1 x
Use of screen

The maximum number of program elements that can be
displayed on a physical screen.

SRE2 x real estate The number of non-semantic intersections on the
physical screen present when obtaining the SRE1 score

AS1,
AS2,
AS3

x
x
x

Closeness to a
specific audience’s
background

ASyes’s / ASquestions
where ASyes’s = the number of “yes” answers, and
ASquestions = the number of itemized questions of
the general form: “Does the <representation element>
look like the <object/operation/ composition
mechanism> in the intended audience’s prerequisite
background?”

Table 2: Summary of the representation design benchmarks. Sc denotes measures of the characteristics of elements
of S. Sp denotes measures of the presence of potential elements of S. Each Sp measure has a corresponding NI
measure.

- 11 -

Empirical Findings

Work toward using visual programming techniques to improve correctness and/or speed in
programming tasks has focused primarily on three areas: program comprehension, program
creation, and program debugging. Of these three areas, the most empirical studies have been done
on VPLs’ effects on program comprehension. See [22] for a survey of this work. The results of
these studies have been mixed, reporting findings for some kinds of programs or audiences in
which VPLs and/or visual notations are linked with greater comprehension, and others in which
strictly textual languages and/or notations have been linked with greater comprehension.

There have been fewer empirical studies on program creation thusfar, but these studies have
produced far more consistent results than the studies on comprehension. Most have reported
visual approaches outperforming traditional textual approaches for this task [1, 3, 16, 18].

Finally, the effects of visual programming are the least studied of all in debugging (and in fact this
is also true of classical debuggers, which feature the precursors of the ideas of liveness as now
found in VPLs). These studies have not found statistically significant improvements for all the
aspects studied, but for the aspects in which statistical significance was found, visual approaches
including immediate feedback were found to be superior to the static, non-feedback-oriented
approaches in most cases [7, 11].

Summary

Visual programming is found in both VPLs and VPEs. Commercially, visual programming is
most commonly found in VPEs, which serve as an effective conduit for some of the gains made
from research in VPLs to be quickly transferred into industrial practice. The goal of visual
programming in general is to programming easier for humans, and the goal of VPLs in particular is
better programming language design. Such a goal is timely because today’s supporting hardware
and software places fewer restrictions on what elements may be part of the vocabulary of a
programming language. Opportunities that arise from this reduction of restrictions that have
received the most attention so far in VPL design are concreteness, directness, explicitness, and
immediate visual feedback. However, exploiting these areas can mean radical departures from
tradition, and this in turn requires reinvention of building blocks such as abstraction mechanisms,
which are important in designing scalable VPLs. The multidimensionality inherent in VPLs also
leads to language theoretic issues. Finally, the fact that VPLs are intended to make programming
easier for humans leads to a need for more research about how human cognitive abilities are best
served by innovations in programming language design.

Acknowledgments and Bibliographic Notes

The sources of information used for this article, other than those specifically referenced above, as
well as additional sources of information, are as follows. The material for the introductory section
is derived from [4]. See [5] for a detailed treatment of the scaling-up problem for visual
programming languages. The four VPL examples were drawn from an IEEE tutorial presented
jointly by Burnett and Rebecca Walpole Djang in 1997 in Capri, Italy. The discussion of VPL
specification presented here is summarized from [15]; other approaches to formal syntax issues and
also to formal semantics issues can be found in [2, 6, 8, 10, 23]. The discussions of cognitive
dimensions and of representation design benchmarks are due to [24]. The summary of empirical
studies is derived from [3] and from [22].

References

1. E. Baroth and C. Hartsough, Visual programming in the real world. In M. Burnett, A.
Goldberg, T. Lewis (eds.),Visual Object-Oriented Programming: Concepts and

- 12 -

Environments, Prentice-Hall, Englewood Cliffs, NJ; Manning Publications, Greenwich,
Connecticut; and IEEE, Los Alamitos, California, 1995.

2. P. Bottoni, M. Costabile, S. Levialdi, and P. Mussio, Visual conditional attributed rewriting
systems in visual language specification. IEEE Symposium on Visual Languages, Boulder,
Colorado: 156-163, September 3-6, 1996.

3. M. Burnett and H. Gottfried, Graphical definitions: expanding spreadsheet languages through
direct manipulation and gestures. ACM Transactions on Computer-Human Interaction 5(1),
March 1998.

4. M. Burnett and D. McIntyre, Visual programming. Computer 28(3): 14-16, March 1995.
5. M. Burnett, M. Baker, C. Bohus, P. Carlson, S. Yang, and P. van Zee, Scaling up visual

programming languages. Computer 28(3): 45-54, March 1995.
6. S. Chang, G. Tortora, B. Yu, A. Guercio, Icon purity - towards a formal definition of icons.

International Journal of Pattern Recognition and Artificial Intelligence 1: 377-392, 1987.
7. C. Cook, M. Burnett, and D. Boom, A bug’s eye view of immediate visual feedback in direct-

manipulation programming systems. Empirical Studies of Programmers: Seventh Workshop,
Alexandria, Virginia: 20-41, Oct. 24-26, 1997.

8. G. Costagliola, S. Orefice, G. Polese, G. Tortora, and M. Tucci, Automatic parser generation
for pictorial languages. IEEE Symposium on Visual Languages, Bergen, Norway: 306-313,
August 24-27, 1993.

9. Cox, P., F. Giles, T. Pietrzykowski, Prograph: a step towards liberating programming from
textual conditioning. 1989 IEEE Workshop on Visual Languages, Rome, Italy, Oct. 4-6,
1989.

10. M. Erwig, Semantics of visual languages. IEEE Symposium on Visual Languages, Capri,
Italy: 300-307, September 23-26, 1997.

11. T. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive
dimensions’ framework. Journal of Visual Languages and Computing 7(2): 131-174, June
1996.

12. F. Hayes-Roth, Rule-based systems. Communications of the ACM 28(9): 921-932,
September 1985.

13. E. Hutchins, J. Hollan, and D. Norman, Direct manipulation interfaces. In D. Norman and S.
Draper (eds.),User Centered System Design: New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Assoc., Hillsdale, NJ: 87-124, 1986.

14. D. Kurlander, Chimera: example-based graphical editing. In A. Cypher (ed.),Watch What I
Do: Programming by Demonstration, MIT Press, Cambridge, Mass, 1993.

15. K. Marriott and B. Meyer, On the classification of visual languages by grammar hierarchies.
Journal of Visual Languages and Computing 8(4): 375-402, August 1997.

16. F. Modugno, A. Corbett, and B. Myers, Evaluating program representation in a
demonstrational visual shell. Empirical Studies of Programmers: Sixth Workshop,
Alexandria, Virginia: 131-146, January 1996.

17. B. Nardi, A Small Matter of Programming: Perspectives on End User Computing, MIT Press,
Cambridge, Mass., 1993.

18. R. Pandey and M. Burnett, Is it easier to write matrix manipulation programs visually or
textually? An empirical study. IEEE Symposium on Visual Languages, Bergen, Norway: 344-
351, August 24-27, 1993.

19. B. Shneiderman, Direct manipulation: a step beyond programming languages. Computer
16(8): 57-69, August 1983.

20. D. Smith, A. Cypher, and J. Spohrer, Kidsim: programming agents without a programming
language. Communications of the ACM 37(7): 54-67, July 1994.

21. Tanimoto, S., VIVA: a visual language for image processing. Journal of Visual Languages
Computing 2(2): 127-139, June 1990.

22. K. Whitley, Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages and Computing 8(1), February 1997, 109-142.

23. K. Wittenburg and L. Weitzmann, Visual grammars and incremental parsing for interface
languages. IEEE Workstop on Visual Languages, Skokie, Illinois: 111-118, October 4-6,

- 13 -

1990.
24. S. Yang, M. Burnett, E. DeKoven, and M. Zloof, Representation design benchmarks: a

design-time aid for VPL navigable static representations. Journal of Visual Languages and
Computing 8(5/6): 563-599, October/December 1997.

