COMPSCI 715Advanced Computer Graphics

Course Outline

Burkhard Wuensche

- Originally from München, Germany
- My research interests:
 Computer Graphics, Computer Vision,
 Game Technology, Healthinformatics, HCI
- Contact details:

burkhard@cs.auckland.ac.nz

Phone: 373-7599 83705

Office: 303-529

 Office hour: Open door policy, but better ring me or email me first in order to make sure I am around

Chia-Yen Chen

- From Taiwan
- My research interests:
 Computer vision, 3D reconstruction and modelling,
 visual odometry, augmented reality and other related
 3D applications
- Contact details:

yen@cs.auckland.ac.nz

Phone: 373-7599 89604

Office: 303-528

Personal Support for Students

Who would like to be class rep?

- Approachable
- Collect feedback and relay to lecturer
- Student / staff meetings

- 1. What is the course about?
- 2. How is it assessed?
- 3. What kind of project would you like to do and who could be in your team?

Learning Outcomes

This is a project-based course. The (possible) project topics require the following concepts: Virtual Reality/Augmented Reality, 3D model analysis, skeletonisation, animation, 3D modelling, texture completion, texture mapping

After the course you will be able to:

- Describe the fundamental concepts of the project topics
- Explain the motivations (and underlying psychological processes)
- Apply 3D technologies to develop a creative solution
- Critically analyze and refine a solution
- Use scientific methods to evaluate a solution
- Write a scientific paper about your solution
- Present your solution to a scientific audience

Schedule 1st Half

IN

Week	Activities	Assignments
1	Mon: Course outline, Tue: Project topics, Thu: Project topics	Register teams
2	Mon: "Teddy algorithm" Tue: "Image and model analysis" Thu: Academic writing overview, abstracts	Abstract (2.5%)
3	Mon + Tue: Project related lectures, Thu: Introduction write-up	Introduction (4%)
4	Mon: Project related lecture, Tue: Project discussion, Thu: Related work write-up	Related work (5%)
5	Team meetings, Thu: Design & implement.	1st prototype (0%)
6	Team meetings, Tue + Thu: Demos (4%)	

Mid-semester break. So far 15.5% of individual assignments.

Schedule 2nd Half

Week	Activities	Assignments	
7	Team meetings, Tue+Thu: Evaluation methods	2nd prototype (0%)	
8	Team meetings, Thu: Evaluation write-up	Design & impl. (5%)	
9	Team meetings		
10	Team meetings	Evaluation (5%)	
11	Team meetings	Final report (7%) Slides for presentation	
12	Mon+Tue+Thu: Final demos (6%) Exam prep / learning tips	Team project Repo freeze (20%) Video (1.5%)	

- Teamwork: be a part of an awesome team
- Workload: 10h per week ...not more, not less.
- It's a postgraduate course (see also postgrad profile)
 - Creativity: you create & "own" your project
 - Independent problem solving: find own solutions
 - o Critical thinking / analyzing: see the difference
 - Academic literacy: hone your reading & writing skills
 - o Communication: inspire others with your work
- Use the university resources to improve your skills,
 e.g. postgrad workshops at library
 http://www.library.auckland.ac.nz/services/student-learning/postgraduate

Lectorials & Meetings

Lectorial = combined lecture / tutorial

- Interactive
 - Ask questions anytime
 - Practical exercises during lectorial
 - Give feedback after the class
- Teamwork encouraged (help your peers!)
- Encouraged to bring laptops (1 per group)

Meetings in your project teams

- "Personal training" for you to become researchers
- To deliver and discuss prototypes (see assignments)
- To get feedback & advice

Attendance & Catching Up on Missed Material

Lectorials / Demos / Guest lectures (?)

- It would be great if you could attend all the sessions :-)
 But we understand that this is not always possible :-(
- To help you catch up, there might be lecture recordings on Canvas (if our lecture rooms allow recordings)
- Lectorials about methodology (usually Thursday)
 (they are useful for your project, the assignments etc.)

Team Meetings

- We arrange a time that suits all team members
- Expected that you attend the meetings
- If you cannot come, please let Yen and Burkhard know so we can work around it

Assessment

When?	What?	How much?	Where?
Every week (see schedule)	Writing assignments	28.5% in total	Assignment Dropbox
Week 6 + 11/12	Demos (2x) + Video	4% + 6% + 1.5%	Lectures, YouTube
Week 10	Source code	20%	GitHub
TBA	Exam	40%	TBA

All marks are individual. See schedule for rough deadlines. Exact deadlines might vary depending on project progress.

Writing Assignments (28.5%)

- Submitted individually through the assignment dropbox: https://adb.auckland.ac.nz/
- Should adhere to scientific standards as taught in the lectorials
 - Must use LaTeX (ACM or IEEE style), e.g. <u>http://overleaf.com</u>
 - Must not be plagiarized from someone else
- Aligned with your project will help you!
 - O Assignments break down full report into parts: 2.5% + 4% + 5% + 5% + 5% = 21.5%
 - By final report deadline mostly already complete,
 opportunity to improve the parts from feedback (7%)
 - Possibility of publishing at scientific conference

Demos & Video (11.5%)

- Week 6: Interim Demo (4%)
 - Present to your peers what you have achieved
 - Get feedback
 - Team members should present equally long
 - Main part: life prototype demonstration (slides possible, but only after prototype)
 - Slots are first come first served
- Weeks 11/12: Final demo (6%) others may be present
- Week 12: Video (1.5%)
 - Screencast of your project with voiceover / music / captions, e.g.

https://www.youtube.com/playlist?list=PLjnTE4jWQKxf-V8BsJ-uP1MWf2zhyLXWi

Source code (20%)

Coding Assignments (0%)


- Code/project review in team meetings
- Looking at your current prototype
- You explain your prototype and the code

Project (20%)

- Repo freeze (week 12) then marking starts
- Version control commit log:
 Individual marks based on recorded contributions
- Mandatory penalty if not:
 - Usable, complete project folder with runnable project
 - o readme.txt with working test instructions
 - Source code comments

Exam (40%)

- 2 hours, closed book
- Essay-style text questions about the projects
 - Covering the different topics
 - Know a little bit about every project
 - Questions most likely based on selected key papers for each project
 - Might also contain some short answer questions,
 e.g. related to key algorithms
- Prepare yourself by participating in the lectorials, team meetings, labs and your project
- Attend other teams' presentations
- Read some of the other team's reports & related works

Cite, then summarize, paraphrase or quote

- Always cite sources (it's scientific and impresses your readers)
 - Same with copying images/figures: cite the source
 - Use an accepted citation standard and ideally bibliography management software (e.g. BibTex, EndNote)
- Summarizing cited content helps yourself and your readers
- Paraphrase if you cannot summarize (write it in your own words)
- Quote text as a last resort (always use quotation marks)

When copying code:

- Using small snippets of code from the web is OK
- Longer portions copied/used, e.g. libraries:
 - o Check license, is it legal?
 - Cite source in report and source code

When in doubt, ask your lecturer :-)