
CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 1 of 11

CompSci 372 S1 C 2005
Computer Graphics

Mid Term Test – Friday, 29th April 2005, Sample Solution

Surname (Family Name):

First Name(s):

ID Number:
Login Name (UPI):

Instructions:

1. Attempt ALL questions.
2. The test is for one (1) hour.
3. This is a closed book test.
4. Calculators are NOT permitted.
5. Write your answers in the spaces provided. There is space at the back for

answers that overflow the allotted space.
6. Questions total 50 Marks.
7. This test is worth 10% of your final marks for CompSci372 S1 C

Section Marks Maximum
Marks

Q.1 8

Q.2 9

Q.3 9

Q.4 14

Q.5 10

Total 50

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 2 of 11

Question 1 – Short answer test [8 marks]

Complete each of the following statements by filling in the underlined blank spaces. Each blank
space is worth 1 mark.
 [8 marks]

(a) The frame buffer is a region of memory sufficiently large to hold all pixels of the

display. The OpenGL command glClear(GL_COLOR_BUFFER_BIT)clears a region

in it which corresponds to the current display window.

(b) Given are
0
2

1

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

u and
0
3
2

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

v .

 (i) The dot product of the two vectors is u.v = 0*0+(-2)*3+1*2 = -4 .

 (ii) The vector product of the two vectors is u×v =
(2)*2 1*3 7

1*0 2*0 0
0*3 (2)*0 0

− − −⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

v .

(c) Given are two 3D orthogonal vectors a and b which both have a length of 3 units.

 Then ⎢a×b ⎢= 9 (your answer must be a number and not a formula).

(d) Given two spheres with the centres c1 and c2 and the radii r1 and r2. Then the distance d

between the two spheres is d= ⎢c1- c2 ⎢- r1 - r2 .

(e) Assumed an object is transformed by the matrix M. Then the surface normals of this
object must be transformed by the matrix ()1 T−M .

(f) Specify a 3×3 rotation matrix R which rotates the x-axis into the y-axis.

 R=
0 1 0
1 0 0
0 0 1

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (the solution is just a 90 degree rotation around the z-axis. We can obtain

the solution easily from the 2D rotation matrix
0 0

0 0

cos90 sin 90
sin 90 cos90

⎛ ⎞−
⎜ ⎟
⎝ ⎠

)

(g) Describe in one sentence what the command glPushMatrix() is doing. Answer: It makes a

copy of the currently active matrix stack and pushes it on top of the stack.

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 3 of 11

Question 2 – OpenGL [9 marks]

In this question you must write code that draws the
2D object shown on the right. The vertices are
stored in a global 2D float array v in the order
indicated in the figure on the right. For each answer
use the most efficient representation.

If you want to save yourself some writing you may
assume that the following function is defined:

void p(int i){
 glVertex2fv(v[i]);
}

A. Complete the display function shown below so that it draws the above shape using the
GL_QUADS mode and the glVertex2fv command (or the function p) [3 marks].

void display(void)
{
 // clear all pixels in frame buffer
 glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.1, 0.2); // reddish colour
 glBegin(GL_QUADS);

 glVertex2fv(v[1]); // or p(1);
 glVertex2fv(v[2]); // or p(2);
 glVertex2fv(v[3]); // etc.
 glVertex2fv(v[0]);
 glVertex2fv(v[2]);
 glVertex2fv(v[3]);
 glVertex2fv(v[4]);
 glVertex2fv(v[5]);

glEnd();

 glFlush();
}

QUESTION 2 CONTINUES

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 4 of 11

B. Complete the display function shown below so that it draws the above shape using the

GL_QUAD_STRIP mode and the glVertex2fv command (or the function p) [3 marks].

void display(void)
{
 // clear all pixels in frame buffer
 glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 0.1, 0.2); // reddish colour
glBegin(GL_QUAD_STRIP);

 glVertex2fv(v[1]);
 glVertex2fv(v[0]);
 glVertex2fv(v[2]);
 glVertex2fv(v[3]);
 glVertex2fv(v[5]);
 glVertex2fv(v[4]);

 glEnd();
 glFlush();
}

C. Complete the display function shown below so that it draws the above shape using the

GL_TRIANGLE_STRIP mode and the glVertex2fv command (or the function p)
 [3 marks].

void display(void)
{

 // clear all pixels in frame buffer
 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0, 0.1, 0.2); // reddish colour
 glBegin(GL_TRIANGLE_STRIP);

 glVertex2fv(v[1]);
 glVertex2fv(v[0]);
 glVertex2fv(v[2]);
 glVertex2fv(v[3]);
 glVertex2fv(v[5]);
 glVertex2fv(v[4]);

 glEnd();
 glFlush();
 }

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 5 of 11

Question 3 – 3D Geometry [9 marks]

A. Given is a line
1 1

() 2 0
0 2

t t
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

p which is parallel to the plane
2
2 =2
1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−⎝ ⎠

pi . Compute the

distance between the line and the plane.
 [3 marks]

Since the line is parallel to the plane the distance between the two objects is given by the
distance of any point on the line to the plane, e.g.

()

2 1
2 2 2

0 1 0 6 2 4distance
3 32

2
1

d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ −
⎜ ⎟ ⎜ ⎟

− − −⎝ ⎠ ⎝ ⎠= = = =
⎛ ⎞
⎜ ⎟
⎜ ⎟
−⎝ ⎠

n p
n

i
i

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 6 of 11

B. Given is a sphere with the centre
2
0
0

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

c and the radius 2r = . A spherical object

flying with the direction
1
2

0

−⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

v hits the sphere at the point
3
1
0

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

p and is reflected on

it. Compute the direction of the object after reflection. Clearly explain the different steps
of your computation. [6 marks]

 In order to compute the direction after reflection we have to compute first the normal
 n of the sphere at the hit point:

1
23 2 1

1ˆ1 0 1 and after normalisation
20 0 0 0

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = − = = ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎝ ⎠

n p c n

 Using the reflection formula we get:

1/ 2 1/ 2 1/ 21 1 1 2

ˆ ˆ2() 2 2 1/ 2 2 1/ 2 2 +6/ 2 1/ 2 1
0 0 0 0 0 0 0

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = − − − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

r v v n ni i

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 7 of 11

Question 4 – Transformations [14 marks]

A. Given is a function
 drawCube()

 which draws an axis-aligned unit cube with side length 1 centred at the origin, and the
 function
 drawTorus(float innerRadius, float outerRadius)

 which draws a torus with the given inner and outer radius and which is centred at the
 origin and has a centre axis aligned with the z-axis.

Use these functions to complete the display method on the next page so that it draws the
object shown in the images below. The object consists of cuboids with a length of 2 units
and a base of 0.4×0.4 units and torii with an inner radius of 0.2 units and an outer radius
of 0.5 units. The whole object consists of n cubes and torii which are evenly distributed
in a circular fashion around the z-axis as shown in the images below. The centre of the
bottom surfaces of the cuboids is the origin [7 marks].

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 8 of 11

#include <math.h>

void display(void)
{
 glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
 glLoadIdentity(); // ... to identity.
 gluLookAt(0,0,20, 0,1.25,0, 0,1,0); // camera is on the z-axis
 trackball.tbMatrix(); // rotate the scene using the trackball ...

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glEnable(GL_NORMALIZE);

// Draw the scene

 int n=10; // your code should work for any value n≥1

 for(int i=0;i<n;i++)
 {
 glPushMatrix();
 glRotatef(360.0*i/n,0,0,1);
 glPushMatrix();
 glScalef(2, 0.4, 0.4);
 glTranslatef(0.5,0,0);
 drawCube();
 glPopMatrix();
 glTranslatef(2,0,0);
 glRotatef(90,0,1,0);
 drawTorus(0.2, 0.5);
 glPopMatrix();
 }

 glDisable(GL_NORMALIZE);
 glFlush ();
 glutSwapBuffers();
}

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 9 of 11

B. Given is local coordinate system with the
origin P=(px,py)T and the basis vectors
u=(ux, uy)T and v=(vx, vy)T, which are
orthogonal and have a length of one.

 An animated object is defined with the
 center C=(cu,cv)T and the direction
 a=(au, av)T which are both given in uv-
 coordinates.

 (i) Write down the homogeneous 2D transformation matrix M, which transforms the

 centre point C from uv-coordinates into xy-coordinates. You are allowed to write the
 transformation matrix as a product of simpler matrices (i.e. you are not required to
 multiply the matrices)

[4 marks]

 This case is just the opposite from the “wall coordinate transformation” in assignment
 2. We have the uv-coordinates and we want to determine the world coordinates. This is
 equivalent with transforming the xy-coordinate system into the uv-coordinate system
 which is achieved by first rotating it and then translating it by p. Hence

 _ _

1 0 0
0 1 0
0 0 1 0 0 1

x x x

P xy to uv y y y

p u v
p u v

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

M T R

 (ii) Write down the homogeneous 2D transformation matrix N, which transforms the

 direction vector a from uv-coordinates into xy-coordinates. You are allowed to
 write the transformation matrix as a product of simpler matrices (i.e. you are not
 required to multiply the matrices).

[3 marks]

 A direction vector is independent of its position; hence we only have to apply the
 rotation shown above.

 _ _

0
0

0 0 1

x x

xy to uv y y

u v
u v
⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎝ ⎠

N R

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 10 of 11

Question 5 – Modelling (Curves and Surfaces) [10 marks]

A. Determine the parametric equation

c(t)=(x(t),y(t),z(t)) of the spiral curve shown
in the image on the right. The spiral has 3
revolutions, it starts at the point (1,0,0)T and
its radius increases linearly from 1 to 4. The
spiral lies in the xz-plane and it is centred at
the origin.

 [3 marks]

 The parametric equation of the spiral is obtained by starting with the equation of a
 circle (with 3 revolutions) and then using a radius a function which increases linearly
 from 1 to 4. Hence we get:

()

()

(1)cos 2
() 0 , [0,3]

(1)sin 2

t t
t t

t t

π

π

⎛ ⎞+
⎜ ⎟= ∈⎜ ⎟
⎜ ⎟+⎝ ⎠

c

B. Given is the function

float* curve(float t)

which implements the curve c(t) (0≤t≤1)
from part (A) of this question. The function
returns an array of three float values.

Complete the code below which draws the
“fruit roll” like surface shown in the image
on the right. The “fruit roll” has a height of
10 units and its cross section is the curve
from part (A).
Note that you are allowed to approximate
the normal at a point p by the normal of the
cylinder having the same distance as p to
the y-axis. [7 marks]

CompSci 372 S1 C 2005 Mid Term Test – Sample Solution

 Page 11 of 11

const float Pi = 3.14159265358979323846264338327f;

void display(void)
{
 glMatrixMode(GL_MODELVIEW); // Set the view matrix ...
 glLoadIdentity(); // ... to identity.
 gluLookAt(0,10,40, 0,5,0, 0,1,0); // camera is on the z-axis
 trackball.tbMatrix(); // rotate the cylinder using the trackball ...

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mat_ambient_and_diffuse);

 // Draw the "fruit roll"
 float height=10.0;

 int nSteps=50;
 float *c;
 float t,length;
 glBegin(GL_QUAD_STRIP);
 for(int i=0;i<nSteps;i++)
 {
 t=(float) i/(nSteps-1);
 c=curve(t);
 length=sqrt(c[0]*c[0]+c[1]*c[1]+c[2]*c[2]);
 glNormal3f(c[0]/length, 0, c[2]/length);
 glVertex3f(c[0],height,c[2]);
 glVertex3f(c[0],0,c[2]);
 }
 glEnd();

 glFlush ();
 glutSwapBuffers();

}

