CompSci 372 S1 C 2003 Computer Graphics

Mid Term Test $2^{\text {nd }}$ May 2003, 6.30 pm - 7.30 pm

Surname (Family Name):

\square

First Name(s): \square
ID Number: \square

Login Name (UPI):

\square

Instructions:

1. Attempt ALL questions.
2. The test is for one (1) hour.
3. This is a closed book test.
4. Calculators are NOT permitted.
5. Write your answers in the spaces provided. There is space at the back for answers that overflow the allotted space.
6. Questions total $\mathbf{5 0}$ Marks.
7. This test is worth 10% of your final marks for CompSci372 S1 C

Section	Marks	Maximum Marks
Q.1		11
Q.2		10
Q.3		11
Q.4		12
Q.5		6
Total		50

Question 1 - Short answer test [11 marks]

Complete each of the following statements by filling in the underlined blank spaces. Each blank space is worth 1 mark.
[11 marks]
(a) Modern PC graphics card have a large memory called the VRAM / frame buffer which is constantly scanned by the CRT controller / video controller to get a video signal.
(b) Currently there are two popular APIs used for hardware supported 3D graphics:

DirectX/Direct3D is heavily promoted by Microsoft but OpenGL is an open API which exists for all major platforms.
(c) If $\mathbf{v}=(1,-1,4)$ and $\mathbf{u}=(-2,3,3)$ then the dot product is $\mathbf{v} \cdot \mathbf{u}=\underline{\mathbf{- 2} \mathbf{- 3 + 1 2}=7}$.
(d) Let α be a real number. Then $\cos ^{2} \alpha+\sin ^{2} \alpha=\underline{\mathbf{1}}$.
(e) Given a parametric surface $\mathbf{p}(\mathrm{s}, \mathrm{t})$ with $0 \leq \mathrm{s}, \mathrm{t} \leq 1$ the tangent in s-direction is $\frac{\partial \mathbf{p}}{\partial s}$.
(f) The parametric equation for a line segment from point \mathbf{p}_{0} to \mathbf{p}_{1} is $\mathbf{p}(\mathrm{t})=\mathbf{p}_{0}+\mathrm{t}\left(\mathbf{p}_{1}-\mathbf{- p}_{0}\right)$ where $t \in[\mathbf{0 , 1]}$.

The command glMatrixMode(GL_MODELVIEW) selects a matrix stack which handles both modelling operations and view transformations.

Question 2 - OpenGL [10 marks]

In this question you have to draw the 2D

A. Complete the code fragment below so that it defines a global array containing the six 2D vertices of the above shape [2 marks]:
const int numVertices $=6$;
const float v [numVertices][2] $=$
$\{\{50,50\},\{150,50\},\{300,100\},\{150,200\}$, \{200, 230\}, \{300,200\}\};
B. Complete the display function below so that it draws the shape defined by these six vertices using the GL_QUADS mode and the glVertex2fv command. The vertex numbers in the resulting image (shown above) have been inserted afterwards for clarity and you don't have to draw them. [3 marks]

```
void display(void)
{
    // clear all pixels in frame buffer
    glClear(GL_COLOR_BUFFER_BIT);
    glColor3f(1.0, 0.1, 0.2); // reddish colour
    glBegin(GL_QUADS);
```

 glVertex2fv(v[0]);
 glVertex2fv(v[1]);
glVertex2fv(v[2]);
gIVertex2fv(v[3]);
gIVertex2fv(v[3]);
glVertex2fv(v[2]);
glVertex2fv(v[5]);
glVertex2fv(v[4]);
glEnd();
glFlush();
\}
C. Complete the display function below so that it draws the shape defined by these six vertices using the GL_QUAD_STRIP mode and the glVertex2fv command [3 marks].

```
void display(void)
{
    // clear all pixels in frame buffer
    glClear(GL_COLOR_BUFFER_BIT);
    glColor3f(1.0, 0.1, 0.2); // reddish colour
    gIBegin(GL_QUAD_STRIP);
```

 glVertex2fv(v[0]);
 glVertex2fv(v[3]);
gIVertex2fv(v[1]);
glVertex2fv(v[4]);
glVertex2fv(v[2]);
glVertex2fv(v[5]);
glEnd();
glFlush();
\}
D. Complete the display function below so that it draws the shape defined by these six vertices using the GL_TRIANGLE_FAN mode and the glVertex2fv command [2 marks].

```
void display(void)
{
    // clear all pixels in frame buffer
    glClear(GL_COLOR_BUFFER_BIT);
    glColor3f(1.0, 0.1, 0.2); // reddish colour
    gIBegin(GL_TRIANGLE_FAN);
```

 glVertex2fv(v[0]);
 glVertex2fv(v[1]);
 glVertex2fv(v[2]);
 glVertex2fv(v[5]);
 glVertex2fv(v[4]);
 glVertex2fv(v[3]);
 glEnd();
 gIFIush();
 \}

Question 3 - 3D Geometry [11 marks]

A. Find the equation $\mathbf{n} \bullet \mathbf{p}=d$ of the plane defined by the three points

$$
\mathbf{p}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{p}_{2}=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right), \quad \mathbf{p}_{3}=\left(\begin{array}{c}
1 \\
4 \\
-1
\end{array}\right)
$$

$\mathbf{n}=\left(\mathbf{p}_{2}-\mathbf{p}_{1}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)=\left(\begin{array}{l}3 \\ 0 \\ 4\end{array}\right) \times\left(\begin{array}{l}0 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{l}0 * 0-4 * 2 \\ 4 * 0-0 * 3 \\ 3 * 2-0 * 0\end{array}\right)=\left(\begin{array}{c}-8 \\ 0 \\ 6\end{array}\right)$
$d=\mathbf{n} \bullet \mathbf{p}_{1}=\left(\begin{array}{c}-8 \\ 0 \\ 6\end{array}\right) \cdot\left(\begin{array}{c}1 \\ 2 \\ -1\end{array}\right)=-14$
Plane equation is: $\left(\begin{array}{c}-8 \\ 0 \\ 6\end{array}\right) \cdot \mathbf{p}=-14$
B. Derive an equation for the distance d of a 3D line $\mathbf{p}(\mathrm{t})=\mathbf{p}_{0}+\mathrm{tv}$ from the origin.
[Hint: The distance of the line from the origin is the minimum distance of all points on the line to the origin. The vector from the origin to the point on the line closest to it is orthogonal to the line.]

Solution 1:

$$
\begin{aligned}
& \mathbf{e}=\frac{\mathbf{p}_{0} \cdot \mathbf{V}}{\mathbf{V} \cdot \mathbf{V}} \mathbf{v} \\
& \mathbf{m}=\mathbf{p}_{0}-\mathbf{e} \\
& d=|\mathbf{m}|=\left|\mathbf{p}_{0}-\frac{\mathbf{p}_{0} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{V}}\right|
\end{aligned}
$$

Solution 2: \quad Find \hat{t} such that $\mathbf{p}(\hat{t})=\mathbf{m}$

$$
\begin{aligned}
& \mathbf{p}(\hat{t}) \perp \mathbf{v} \Leftrightarrow \mathbf{p}(\hat{t}) \cdot \mathbf{v}=0 \\
& \Leftrightarrow\left(p_{0}+\hat{t} \mathbf{v}\right) \cdot \mathbf{v}=0 \\
& \Leftrightarrow p_{0} \cdot \mathbf{v}+\hat{t} \mathbf{v} \cdot \mathbf{v}=0 \\
& \Leftrightarrow \hat{t}=-\frac{p_{0} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \\
& d=|\mathbf{m}|=\left|p_{0}-\frac{p_{0} \cdot \mathbf{v}}{\mathbf{v} \bullet \mathbf{v}} \mathbf{v}\right|
\end{aligned}
$$

Solution 3: Find \hat{t} such that $|\mathbf{p}(\hat{t})|$ is minimal

$$
\begin{aligned}
& \qquad \begin{array}{l}
|\mathbf{p}(\hat{t})|=\sqrt{\mathbf{p}(\hat{t}) \bullet \mathbf{p}(\hat{t})} \text { is minimal if } f(\hat{t})=\mathbf{p}(\hat{t}) \cdot \mathbf{p}(\hat{t}) \text { is minmal } \\
f(\hat{t})=\left(p_{0}+\hat{t} \mathbf{v}\right) \cdot\left(p_{0}+\hat{t} \mathbf{v}\right)=p_{0} \bullet p_{0}+2 \hat{t} p_{0} \bullet v+\hat{t}^{2} \mathbf{v} \cdot \mathbf{v} \\
\frac{d f}{d \hat{t}}=2 p_{0} \bullet v+2 \hat{t} \mathbf{v} \cdot \mathbf{v}=0 \Leftrightarrow \hat{t}=\frac{-p_{0} \bullet v}{\mathbf{v} \bullet \mathbf{v}} \\
d=|\mathbf{p}(\hat{t})|=\left|p_{0}-\frac{p_{0} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}\right| \quad \\
\text { Solution 4: (by comparing Triangle areas) } \quad d=\frac{\left|\left(\mathbf{v}+\mathbf{p}_{0}\right) \times \mathbf{p}_{0}\right|}{|\mathbf{v}|}
\end{array} \text { } l
\end{aligned}
$$

Solution 5: (projection of p_{0} onto a vector \mathbf{n} which is orthogonal to the line and pointing to the origin)

Solution 6: (minimizing $|p(t)|^{\wedge} 2$ algebraically)

$$
d=\sqrt{\left(\mathbf{p}_{0} \cdot \mathbf{p}_{0}\right)-\frac{\left(\mathbf{v} \cdot \mathbf{p}_{0}\right)^{2}}{(\mathbf{v} \cdot \mathbf{v})}}
$$

Question 4 - Transformations [12 marks]

A. Given is a function $\operatorname{drawCube}()$ which draws an axis-aligned unit cube with side length 1 centred at the origin.
Use this function to complete the display method on the next page so that it draws the ishaped object shown in the image below. The bottom part of the object has a height of two units and a unit square base centred at the origin. The top part is a unit cube rotated by 45 degrees. [6 marks].

\#include < math.h>

```
void display(void)
{
    glMatrixMode( GL_MODELVIEW ); // Set the view matrix ...
    glLoadIdentity(); // ... to identity.
    gluLookAt(0,0,8, 0,1.2,0, 0,1,0); // camera is on the z-axis
    trackball.tbMatrix(); // rotate the object using the trackball ...
    glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    // set material properties
    glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
    glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, mat_ambient_and_diffuse);
    glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
```

 // Draw the scene
 gIPushMatrix();
gIScalef(1,2,1); // scale in y-direction
gITranslatef($0,0.5 \mathrm{f}, 0)$; // first translate so that base of cube on ground plane
drawCube();
gIPopMatrix();
gITranslatef(0,2+sqrt(2)/2,0); // length of bottom shape plus
// half the length of diagonal of cube
gIRotatef($\mathbf{4 5 , 1 , 0 , 0) ; \quad / / ~ r o t a t e ~ u n i t ~ c u b e ~}$
drawCube();
gIFlush ();
glutSwapBuffers();
\}
B. Given is a world coordinate system with the origin $\mathrm{O}=(0,0,0)$ and a second coordinate system with the origin $\mathrm{P}=\left(\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}\right)$ in world coordinates. The basis vectors \mathbf{u}, \mathbf{v} and \mathbf{n} of the second coordinate system are normalised and orthogonal to each other.
Find the homogenous matrix \mathbf{M} which converts the $u v n$-coordinate system into the world coordinate system. Write down all components of the matrix M. [6 marks]

1. Translate origin of uvn-system into origin of the world-coordinate system
2. Rotate uvn-axes into xyz-axes.
$\mathbf{M}=\mathbf{R}_{u v n}^{-1} \mathbf{T}_{-p}=\left(\begin{array}{cccc}u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\left(\begin{array}{cccc}1 & 0 & 0 & -p_{x} \\ 0 & 1 & 0 & -p_{y} \\ 0 & 0 & 1 & -p_{z} \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}u_{x} & u_{y} & u_{z} & -\mathbf{p} \cdot \mathbf{u} \\ v_{x} & v_{y} & v_{z} & -\mathbf{p} \cdot \mathbf{v} \\ n_{x} & n_{y} & n_{z} & -\mathbf{p} \cdot \mathbf{n} \\ 0 & 0 & 0 & 1\end{array}\right)$

Question 5 - Modelling and texture mapping [6 marks]

A. Determine the parametric equation of the surface of revolution $\mathbf{p}(s, t)=(x(s, t), y(s, \mathrm{t}), z(s, t))$ formed by rotating a line segment $\mathbf{c}(\mathrm{t})=(x(t), y(t), 0)$ around the x -axis [2 mark].

$$
p(s, t)=\left(\begin{array}{c}
x(t) \\
y(t) \cos s \\
y(t) \sin s
\end{array}\right) \quad \text { where } s \in[0,2 \pi]
$$

B. Given is the texture shown in the image below on the left and four polygons shown in the image below in the middle. Assume the following texture parameters are set:

```
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
```

If the vertex A has the texture coordinates $(0,0)$ which texture coordinates do you have to define for the vertices B and C in order to get the image shown below on the right? [4 marks].

[^0]
[^0]: Texture coordinate for \mathbf{C} is $(2,2)$
 Texture coordinate for A is $(\mathbf{0 . 8}, 0.4)$

