
SE/CS 351 Gerald Weber's Slide Set 8 1

Utilizing ACID atomicity/durability: queues
Queues:

• Transaction chopping

• Local queues

• Transactional queue patterns

• Locking mechanisms for queues

• Distributed queues

Queues in databases

• A generic application of the ACID properties atomicity (and
also durability.

• One technology that helps with many different problems:

∘ Making transactions work in spite of aborts

∘ Load buffering

∘ Chopping complicated transactions

∘ Secure messaging
∙ The better Service Oriented Architecture (SOA)

∘ Business process management

∘ Stable user interaction with a transactional system.

SE/CS 351 Gerald Weber's Slide Set 8 2

SE/CS 351 Gerald Weber's Slide Set 8 3

Transaction chopping
• Is the technique of splitting one transaction into several

ones. Consequences:

∘ no ACID properties across the transaction boundary.

• Motivation: transactions should be only as long as
necessary.

SE/CS 351 Gerald Weber's Slide Set 8 4

Chopping a business transaction
• Chopping one writing transaction into two writing

transactions is nontrivial.

• Business transaction (adapted from OASIS terms) : A
consistent state change in the system. We want to
realize it through a series of ACID transactions

• In general it requires communication between the
individual ACID transactions with message queues.

• After some (but not all) ACID transactions have
terminated, we have a provisional effect.

• Compensating ACID transactions are necessary if the
business transaction cannot complete.

SE/CS 351 Gerald Weber's Slide Set 8 5

Example of a business transaction
• In a transfer business transaction:

i.) withdraw $x from account y

ii.) put $x on account z

• Assume, a client program issues two transactions:

∘ Transaction TA1: step i,

∘ Transaction TA2: step ii,

• But what happens, if client program crashes after TA1?

• Solution:

∘ TA1 leaves a note in a message queue and

∘ Transactional queue access patterns

SE/CS 351 Gerald Weber's Slide Set 8 6

Example message queue
• In the transfer example:

∘ Message queue is a table with scheme:

∘ TransferOngoing(id, fromAccount, toAccount, amount)

∘ TA1 leaves a row (id, y, z, x) in this queue

∘ TA2 dequeues a row and does the appropriate action.

• Important: We will not and can not require strict first-in first-
out (FIFO) processing of messages in a message queue.

• Processsing of messages in a best effort manner:

∘ If possible, process older messages first.

∘ Possible obstacles: aborts, concurrent access to
message queue

SE/CS 351 Gerald Weber's Slide Set 8 7

Local message queues
• conceptual precursor to persistent message queues in

distributed systems.

• A local message queue may be a table.

∘ The rows are conceived as messages.

• Message producers: place messages in queue.

• Message consumers: they dequeue the messages, that
means: remove messages from the queue.

• Dequeuing can be seen as an action on the level of the
business logic: the message is not pending any more. The
implementation could use at least two strategies: either
deleting the message or marking it as processed (the
consumer processes have to use the option chosen)

SE/CS 351 Gerald Weber's Slide Set 8 8

Queues

workerB

Database

workerA

Architecture with queue
• The messages in the queues

must be processed by
database clients, the dequeue
workers.

• These clients dequeue the
message, process the
message.

• They might optionally enqueue
subsequent messages for
further processing.

SE/CS 351 Gerald Weber's Slide Set 8 9

Messages as commands
• Typical usage of message queues:

• Consumers (dequeue workers) are activated by messages:

∘ A message demands action. If the action is taken, the
message is dequeued.

• Messages are paired with appropriate actions, equivalent
to pairing of method header and method body.

• In the simplest case one action is a subprogram that issues
one ACID transaction to dequeue and process a message.
We want to call this subprogram a dequeue worker.

• The dequeue worker gets activated by a different program,
today often called container.

SE/CS 351 Gerald Weber's Slide Set 8 10

Transactional dequeue
• A common pattern of dequeueing access to a queue:

transactional dequeue pattern:

• Performed by a dequeue worker, database client.

• A transactional dequeue for a local queue is a single local
transaction that does two operations:

∘ dequeue message from queue table

∘ execute appropriate action

• Atomicity: Message is dequeued if and only if appropriate
action succeeds.

• Transactional dequeue enables sophisticated transaction
chopping, subsequent ACID transactions can communicate
through the message queue in a safe manner.

SE/CS 351 Gerald Weber's Slide Set 8 11

Transaction chaining in business transactions
• Transactions in a business transaction dequeue and

enqueue messages.

• A transactional dequeue in the midst of a business
transaction may work on two message queues:

∘ dequeue message from incoming queue 1

∘ execute appropriate action

∘ enqueue message in outgoing queue 2

• Atomicity: Message is dequeued if and only if
appropriate action succeeds: This includes enqueuing
of new messages.

• Typically there is one queue at the very start of the
business transaction.

q1

q2

q

SE/CS 351 Gerald Weber's Slide Set 8 12

conditional response and declining
• In the example, TA1 might be withdrawal after check.

• The action is a conditional action, and has one outcome
that is superficially equivalent to a rollback:

∘ If insufficient funds are available, then the withdrawal is
declined.

• Such an outcome is however a successful processing of
the message:

∘ The declining is the appropriate action.

∘ However, in this application example the whole transfer
must be declined. Again, this is the correct response.

Concurrent access to queues
• Jim Gray 95:

• Queues are an interesting database concept with
interesting concurrency control.

• Persistent queue systems need DBMS functionality.

• Queues are a powerful, interesting technology that
motivate innovations in lock management.

• Desired operation: read past: go to the next unlocked item.

• Problem: It is tricky to look for the next unlocked object. If
one looks at an object that is locked, usually the transaction
gets blocked.

SE/CS 351 Gerald Weber's Slide Set 8 13

Simulating Read Past
• Queue Management and keeping track of unprocessed

messages is done in a separate component, the
dispatcher.

• Dispatcher uses isolation level “READ UNCOMMITTED”

• Dispatcher calls dequeue workers that do the transactional
dequeue.

∘ They receive the id of the message that they should
work on as a parameter.

∘ They only work on that message.

• This avoids the read-past problems.

SE/CS 351 Gerald Weber's Slide Set 8 14

SE/CS 351 Gerald Weber's Slide Set 8 15

transactions, how it all began: flight reservation
• American Airlines and IBM

started SABRE development
1960 – it is still a leading flight
reservation system

• CICS: Classical computerized
online transaction processing
system

• 50,000 connected travel
agencies

• Multi-tier architecture

• Today: Value of sold products:
US$80 Billion

Transaction Monitor

Databases

Presentation
Server

Clients

Message Queue

Dequeue Worker

SE/CS 351 Gerald Weber's Slide Set 8 16

the old design prevails
• If used for fully developed TP

heavy applications, modern
enterprise platforms are used in
the same way.

• Same design, different
implementation.

• Todays enterprise application
frameworks focus on
component structure.

• But driving force may be change
of underlying hardware platform.

JSP
EJB

Databases

Web
Application
framework

Browser

PHP

e.g. Enterprise
Service Bus/Broker

Transactional EJB container

ESB

Message driven EJB

Distributed messaging scenario
• Two databases, DB1 and DB2.

• Applications want to send messages from DB1 to DB2.

• Messages need to be processed on DB2.

• One queue on each DB:

∘ on DB1: outbox1(messageID, status, message)

∘ on DB2: inbox2(messageID, status, message)

• On outbox, only one worker W should work. It does not
process the message, just moves it to inbox2.

• The inbox2 on DB2 has workers that process the message.

• W is a message consumer for outbox, and a message
producer for inbox2.

SE/CS 351 Gerald Weber's Slide Set 8 17

DB2DB1

Distributed messaging, secure delivery
• W has two independent database connections, one to DB1

and one to DB2. W does two ACID transactions.

• Only for outbox1 on DB1 it is a message consumer.

• W does a transactional dequeue of a message in DB1:

1. enqueues (writes) message in inbox2 on DB2.

2. commits this write on DB2.

3. commits the dequeue on DB1.

• If everything works, then the message is now in inbox2.

• What if W crashes after 2 and before 3 ?

• Dequeue on outbox is not committed.

• W will redo it, don’t we end up with multiple copies in DB2?
SE/CS 351 Gerald Weber's Slide Set 8 18

Idempotent operation of the worker
• An operation g is idempotent, if applying g twice has the

same effect as applying g once.

• The enqueue of the message to inbox2 (step 1 and 2)
should be an idempotent enqueue attempt:

∘ If a message with the same message id is already in
inbox2, skip the enqueue.

• This procedure is possible, because the operation of
providing a piece of information is inherently idempotent.

• E.g. incrementing a counter would not be idempotent.

SE/CS 351 Gerald Weber's Slide Set 8 19

Idempotence is crucial point of this protocol
• Because of the idempotence of the enqueue, it is possible to

do reach distributed ACID properties with two ACID
transactions:

• The two databases do not need to know that they are part of
a distributed, transactional communication.

• General distributed ACID transactions are MUCH more
complicated and heavyweight.

∘ Require a special voting protocol (Two-phase commit,
not to be confused with 2Phase locking)

∘ Require special infrastructure, are risky.

• Distributed messaging are much more lightweight

SE/CS 351 Gerald Weber's Slide Set 8 20

Connection to Service Oriented Architecture
• Service Oriented Architecture(SOA): A system architecture

where the system is built from components communicating
over service interfaces (web services are just one example).

• This makes the components reusable, since the service
interfaces can be connected in new topographies.

• Service interfaces often have a messaging flavor.

• Important requirement for service interfaces: idempotence.

• If a message is sent twice, it should have the same effect as
if it is sent only once.

• Often equivalent to using an id: Two messages with the
same id should be identical, are treated as single message.

SE/CS 351 Gerald Weber's Slide Set 8 21

SE/CS 351 Gerald Weber's Slide Set 8 22

Message queues as load buffer
• Message queues are placed at the boundary of a high-

performance computing zone.

• Outside world (User) places requests to the transaction
service into the message queue:

∘ Once queued, the message will be processed.

∘ Reliability for the user.

• Purpose of the application server: continuously processes
pending requests (= messages) in the queue.

• In high load times, the application server is 100% utilized.

• Several application servers can work on the same queue.

