
Multiversion Concurrency
∙ Motivation:

∘ Replication

∙ Snapshots

∙ Write sets and read sets

∙ Conflict detection:

∘ Snapshot Isolation

∘ Optimistic strategies

∙ Phenomenon: Write skew

SE/CS 351 Gerald Weber's slides - Set 7 1

In-place Update vs. Multiversion
∙ So far we considered transaction management techniques

where only a single copy of each data object exists.

∙ This approach gave rise to lock-based schedulers.

∙ There is an alternative approach that allows multiple
versions of a data object to be active during concurrent
open transactions: multiversion concurrency.

∙ This approach arises naturally in several designs for data
intensive systems.

∙ We focus on one motivation in which the semantics of
multiversion concurrency is easy to understand:

∙ A specific database replication protocol

SE/CS 351 Gerald Weber's slides - Set 7 2

Motivation: Replication with Master copy

∙ A master copy of a database is replicated in several working
copies. A.k.a. database caching.

∙ Clients work on working copies

∙ Motivation: faster read access

∙ Work (writes) shall be consolidated in the master copy.

∙ All databases together should behave as a single database.

∙ ACID properties for all clients.

SE/CS 351 Gerald Weber's slides - Set 7 3

Master copyWorking
copy Working

copy

In-place Update vs. Multiversion
∙ In-place update strategies motivate lock-based schedulers.

∙ In lock-based schedulers, transactions are delayed in case
of conflict.

∙ Multiversion concurrency will not use locks, so transactions
will not be delayed.

∙ Instead transactions compete.

∙ If they come into conflict, one transaction will be aborted.

∙ Several strategies:

∘ First committer wins. Will fit well to our simple model of
multiversion concurrency as replication protocol.

∘ Other strategies are possible: first writer wins etc.
SE/CS 351 Gerald Weber's slides - Set 7 4

Replication
∙ Master copy is authoritative; transactions must be

committed at master copy.

∙ Idea: coordination necessary only on commit.

∙ Clients do a local transaction on their working copy.

∙ They do that through a replication middleware.

∙ Replication middleware does the coordination with the
master copy.

SE/CS 351 Gerald Weber's slides - Set 7 5

Master copyWorking
copy

Replication
middleware

Client

Replication Middleware
∙ The replication middleware logs all the commands of the

client. In the basic transaction model, it will create read sets
and write sets.

∙ During the open transaction, the replication middleware is
just eavesdropping.

∙ at commit, the replication middleware interferes and
communicates.

SE/CS 351 Gerald Weber's slides - Set 7 6

Master copyWorking
copy

Replication
middleware

Client

State of the working copy as a timestamp
∙ For the moment we can assume the following:

∙ Each working copy is only used for a single transaction, no
concurrency at the working copy.

∙ At the start of a local transaction, a fresh copy of the master
copy is made. (Later we can make this more efficient).

∙ This is a copy of a recent clean state of the master copy.

∙ This clean state is dated with the commit timestamp of the
latest committed transaction.

∙ This commit timestamp is therefore also saying how up-to-
date the working copy is.

SE/CS 351 Gerald Weber's slides - Set 7 7

Local transactions work on a snapshot
∙ If the working copy is at timestamp s and local transaction

TA1 is starting, then the working copy will not be updated
with more data from the master copy, until TA1 commits.

∙ Hence the local transaction works on a single snapshot of
the database: the state at timestamp s.

∙ We should consider the snapshot as a tiny moment e later
than the commit timestamp s, but before any other commit.

∙ Therefore we call s+e the snapshot of TA1.

∙ This way it is clear that the snapshot s+e sees the clean
state after s.

SE/CS 351 Gerald Weber's slides - Set 7 8

s1 s1+e s2 s2+e time

Commit as re-stamping
∙ The snapshot s+e is the state that transaction TA1 has

seen.

∙ Let’s assume, TA1 requests commit at time s+e+d. Other
transactions might have committed meanwhile on the
master copy (interlopers). They are durable. What now?

∙ ACID Durability (for interlopers) requires:

∙ TA1 can only commit, if the master copy is still in the same
state as it was at time s+e for everything concerning TA1.

∙ We can say the transaction TA1 must be re-stamped with
timestamp s+e+d.

∙ The new timestamp is now the commit timestamp.

SE/CS 351 Gerald Weber's slides - Set 7 9

s s+e TA2 commits timeTA1 commits

Conditions for re-stamping
∙ TA1 can only commit, if the database is still in the same

state as it was at time s+e for everything concerning TA1.

∙ Simple cases: dejavu. If TA1 and each interloper TAx are:

∘ data disjoint: no problem possible.

∘ write disjoint: no problem possible.

∙ For other cases: two differently strict criteria will be needed.

∙ They all will guarantee ACID durability: no lost update.

∙ They will differ with respect to ACID isolation.

∙ The more generous criterion will lead to a new, interesting,
relaxed isolation level: snapshot isolation.

SE/CS 351 Gerald Weber's slides - Set 7 10

Commit through replication middleware
∙ at commit, the replication middleware interferes and

communicates with the master copy:

∙ It will use the recorded information about the local
transaction and work on the master copy.

∙ It will check if restamping is possible.

∙ If yes, then it will enact the changes of the local transaction
at the master copy.

SE/CS 351 Gerald Weber's slides - Set 7 11

Master copyWorking
copy

Replication
middleware

Client

read-only
set

read-write
set

read set

write set

Read sets and write sets
∙ The commands executed by the local transaction are

logged by the replication middleware in read sets and write
sets. The sets are object sets, but values are attached.

∙ Since the transaction is alone on the snapshot, we have to
record for each object at most one original read value
(before-image) per object and at most one final write result
(after-image).

∙ Object: y z k l m n

∙ read: 12 54 31 43 32

∙ final write: 32 45 13

SE/CS 351 Gerald Weber's slides - Set 7 12

Two strategies to check for changes
∙ At commit, the replication middleware will check on the

master copy if the data affected by the transaction has
been changed since the snapshot was taken.

∙ Based on the read sets and write sets we can see if the
transaction and each interloper (pairwise) are write disjoint.

∙ Two ways to check:

∘ Snapshot isolation: less strict, lower isolation

∘ Optimistic locking: stricter, delivers full serializability

∙ Consequences of positive/negative outcome come later.

SE/CS 351 Gerald Weber's slides - Set 7 13

Check for write conflicts
∙ Snapshot isolation:

∘ Check only read-write set

∘ For each object: Is the read value still the current value
in the master copy?

∙ Optimistic locking:

∘ Check the whole read set (superset of read-write set)

∘ For each object: Is the read value still the current value
in the master copy?

∙ If yes: test passed, transaction is allowed to write,

∙ If not: test failed, transaction is aborted.

SE/CS 351 Gerald Weber's slides - Set 7 14

Replication middleware executes transaction
∙ If the test has passed:

∙ replication middleware executes the write set of the local
transaction on the master copy.

∙ The master copy must be transactional: might be a
conventional database, or might offer simpler mechanisms.

∙ The check and the writes happen in a single transaction on
the master copy.

∙ This transaction on the master copy will be fast

∘ since everything is prepared.

∘ Transactions have all the same simple structure.

SE/CS 351 Gerald Weber's slides - Set 7 15

Expressing multiversion as linear schedules
∙ Concurrent multiversion transactions can be translated into

the linear schedules we had so far by inserting all reads at
their snapshot time and all writes at their commit timestamp.

∙ Example:
s: r4[x], r4[y], w3[x], c3, r5[x], r5[y], w4[x], c4, w5[y], c5

∙ Time: s2+e s3 s3+e s4 s4+e s5

∙ The schedule can violate lock-based scheduling rules, but
may still be unproblematic.

∙ Problems should show as a (bad) phenomenon.

SE/CS 351 Gerald Weber's slides - Set 7 16

Write Skew
∙ Snapshot isolation allows a phenomenon: write skew

∘ Two transactions “getting wires crossed”.

∘ A “double almost-lost-update on different objects.”

∙ Can be expressed as a schedule:

∙ s: r1[x], r1[y], r2[x], r2[y], w1[x], c1, w2[y], c2

∙ We can see that the snapshot isolation test will succeed
since the read/write sets are disjoint.

∙ Nevertheless violates serializability.

∙ Can be a problem

∙ Is rare and considered “mostly harmless”.

SE/CS 351 Gerald Weber's slides - Set 7 17

Write Skew business logic example
∙ An example where a write skew could appear:

∙ Bank grants overdraft based on general liquidity.

∙ Customer has two accounts, x and y.

∙ Bank allows any one account to go into negative if overall
balance stays positive. e.g consider debiting account x:

∙ s: r1[x], r1[y], (compute overall bal.) w1[x], c1

∙ The write brings account x into negative (withdrawal).

∙ Now the customer does two such transaction in parallel:

∙ s: r1[x], r1[y], r2[x], r2[y], w1[x], c1, w2[y], c2

∙ write skew! Both accounts are now negative.

SE/CS 351 Gerald Weber's slides - Set 7 18

Write skew in numbers
∙ Account x = $1000

∙ Account y = $800.

∙ Planned TA1: withdraw $1100 from x; ok since overall
balance remains $700.

∙ Planned TA2: withdraw $900 from y; ok since overall
balance remains $900.

∙ With snapshot isolation, if both transactions are executed
concurrently, they might go through!

∙ New balance: ? Proposals please...

∙ Balance will be unwanted (bad),

∘ but is less dramatic than lost update
SE/CS 351 Gerald Weber's slides - Set 7 19

Replication: keeping local copies up-to-date
∙ It is good to know that not a complete copy of the whole

database has to be done at the start of a new transaction.

∙ Local copies can be kept up-to-date with incremental
changes. The write sets can be used.

∙ There is an instance of the replication middleware for each
client; these instances can communicate the write sets.

SE/CS 351 Gerald Weber's slides - Set 7 20

Master copyWorking
copy

Replication
middleware

Client

Working
copy

Replication
middlewareClient

