Multiversion Concurrency

 Motivation:

o Replication

Snapshots

Write sets and read sets

Conflict detection:

o Snapshot Isolation

o Optimistic strategies

Phenomenon: Write skew

SE/CS 351 Gerald Weber's slides - Set 7

In-place Update vs. Multiversion

So far we considered transaction management technigues
where only a single copy of each data object exists.

This approach gave rise to lock-based schedulers.

There Is an alternative approach that allows multiple
versions of a data object to be active during concurrent
open transactions: multiversion concurrency.

This approach arises naturally in several designs for data
Intensive systems.

We focus on one motivation in which the semantics of
multiversion concurrency is easy to understand:

A specific database replication protocol

SE/CS 351 Gerald Weber's slides - Set 7

Motivation: Replication with Master copy
>
Working Master copy]
copy <] Working
copy
N
\—/ ~N

A master copy of a database is replicated in several working
copies. A.k.a. database caching.

Clients work on working copies

Motivation: faster read access

Work (writes) shall be consolidated in the master copy.

All databases together should behave as a single database.

ACID properties for all clients.

SE/CS 351 Gerald Weber's slides - Set 7 3

In-place Update vs. Multiversion

In-place update strategies motivate lock-based schedulers.

In lock-based schedulers, transactions are delayed in case
of conflict.

Multiversion concurrency will not use locks, so transactions
will not be delayed.

Instead transactions compete.
If they come into conflict, one transaction will be aborted.
Several strategies:

o First committer wins. Will fit well to our simple model of
multiversion concurrency as replication protocol.

o Qther strategies are possible: first writer wins etc.

SE/CS 351 Gerald Weber's slides - Set 7

Replication

« Master copy is authoritative; transactions must be

committed at master copy.

master copy.

|ldea: coordination necessary only on commit.
Clients do a local transaction on their working copy.
They do that through a replication middleware.

Replication middleware does the coordination with the

Replication
middleware

TN
]

Working
copy

N

SE/CS 351 Gerald Weber's slides - Set 7

-

e
S

Master copy

Replication Middleware

* The replication middleware logs all the commands of the
client. In the basic transaction model, it will create read sets
and write sets.

e During the open transaction, the replication middleware is
just eavesdropping.

e at commit, the replication middleware interferes and
communicates.

' Y R
Replication — ~_
middleware — | Working <j Master copy
copy
N
~N

SE/CS 351 Gerald Weber's slides - Set 7 6

State of the working copy as a timestamp

For the moment we can assume the following:

Each working copy is only used for a single transaction, no
concurrency at the working copy.

At the start of a local transaction, a fresh copy of the master
copy Is made. (Later we can make this more efficient).

This is a copy of a recent clean state of the master copy.

This clean state is dated with the commit timestamp of the
latest committed transaction.

This commit timestamp is therefore also saying how up-to-
date the working copy is.

SE/CS 351 Gerald Weber's slides - Set 7 7

Local transactions work on a snapshot

e If the working copy is at timestamp s and local transaction
TA1l is starting, then the working copy will not be updated
with more data from the master copy, until TA1 commits.

 Hence the local transaction works on a single snapshot of
the database: the state at timestamp s.

« We should consider the snapshot as a tiny moment e later
than the commit timestamp s, but before any other commit.

e Therefore we call s+e the snapshot of TAL.

 This way it is clear that the snapshot s+e sees the clean
state after s.

]]] |
I 1 I I

s1 si1+e s2 s2+e time

v

SE/CS 351 Gerald Weber's slides - Set 7

Commit as re-stamping

The snapshot s+e is the state that transaction TA1 has

| |

»
I ® I | »

Seen. s ste TA2commits TA1 commits time
Let's assume, TA1 requests commit at time s+e+d. Other
transactions might have committed meanwhile on the
master copy (interlopers). They are durable. What now?

ACID Durability (for interlopers) requires:

TA1 can only commit, if the master copy is still in the same
state as it was at time s+e for everything concerning TA1.

We can say the transaction TAL must be re-stamped with
timestamp s+e+d.

The new timestamp is how the commit timestamp.

SE/CS 351 Gerald Weber's slides - Set 7

Conditions for re-stamping

TA1 can only commit, if the database is still in the same
state as it was at time s+e for everything concerning TAL.

Simple cases: dejavu. If TA1 and each interloper TAx are:

o data disjoint: no problem possible.

o write disjoint: no problem possible.
For other cases: two differently strict criteria will be needed.
They all will guarantee ACID durability: no lost update.
They will differ with respect to ACID isolation.

The more generous criterion will lead to a new, interesting,
relaxed isolation level: snapshot isolation.

SE/CS 351 Gerald Weber's slides - Set 7 10

Commit through replication middleware

e at commit, the replication middleware interferes and
communicates with the master copy:

e |t will use the recorded information about the local
transaction and work on the master copy.

« It will check if restamping is possible.

e If yes, then it will enact the changes of the local transaction
at the master copy.

Replication
middleware

SE/CS 351

TN
e

Working
copy

N

Gerald Weber's slides - Set 7

-

TN
S

Master copy

11

Read sets and write sets

« The commands executed by the local transaction are

logged by the replication middleware in read sets and write
sets. The sets are object sets, but values are attached.

e Since the transaction is alone on the snapshot, we have to

record for each object at most one original read value

(before-image) per object and at most one final write result

(after-image).

1

e Object: y z k | m n

- _ = ‘ \read-only
* read: 12 54 31 43 32 readset set
. final write: | 32 45 13 write set

"

J

SE/CS 351

read-write
set

Gerald Weber's slides - Set 7

12

Two strategies to check for changes

« At commit, the replication middleware will check on the
master copy if the data affected by the transaction has
been changed since the snapshot was taken.

 Based on the read sets and write sets we can see If the
transaction and each interloper (pairwise) are write disjoint.

e Two ways to check:
o Snapshot isolation: less strict, lower isolation

o Qptimistic locking: stricter, delivers full serializability

e Conseqguences of positive/negative outcome come later.

SE/CS 351 Gerald Weber's slides - Set 7 13

Check for write conflicts

e Snapshot isolation:
o Check only read-write set

o For each object: Is the read value still the current value
In the master copy?

e Optimistic locking:
o Check the whole read set (superset of read-write set)

o For each object: Is the read value still the current value
In the master copy?

e If yes: test passed, transaction is allowed to write,

e If not; test failed, transaction is aborted.

SE/CS 351 Gerald Weber's slides - Set 7

14

Replication middleware executes transaction

If the test has passed.:

replication middleware executes the write set of the local
transaction on the master copy.

The master copy must be transactional: might be a
conventional database, or might offer simpler mechanisms.

The check and the writes happen in a single transaction on
the master copy.

This transaction on the master copy will be fast
o since everything is prepared.

o Transactions have all the same simple structure.

SE/CS 351 Gerald Weber's slides - Set 7 15

Expressing multiversion as linear schedules

e Concurrent multiversion transactions can be translated into
the linear schedules we had so far by inserting all reads at
their snapshot time and all writes at their commit timestamp.

« Example:
st nX], ralyl, wslX], €5, rs[X] rslyl, wulX], c4 wsly], Cs
e Time: s2+e s3 s3+e s4 s4+e S5

 The schedule can violate lock-based scheduling rules, but
may still be unproblematic.

e Problems should show as a (bad) phenomenon.

SE/CS 351 Gerald Weber's slides - Set 7 16

Write Skew

Snapshot isolation allows a phenomenon: write skew

o Two transactions “getting wires crossed”.

o A “double almost-lost-update on different objects.”

Can be expressed as a schedule:

s: ry[X], rilyls ralX], ralyl, wilx], ¢4, wolyl, ¢,
* \We can see that the snapshot isolation test will succeed
since the read/write sets are disjoint.

Nevertheless violates serializability.

Can be a problem

Is rare and considered “mostly harmless”.

SE/CS 351 Gerald Weber's slides - Set 7

17

Write Skew business logic example

« An example where a write skew could appear:

Bank grants overdraft based on general liquidity.

Customer has two accounts, x and y.

Bank allows any one account to go into negative if overall
balance stays positive. e.g consider debiting account Xx:

s: r,[x], r,[yl, (compute overall bal.) w,[x], c,

The write brings account x into negative (withdrawal).

Now the customer does two such transaction in parallel:

S: ry[X], rilyls rolX], ralyl, wylX], €4, Wolyl, €,

write skew! Both accounts are now negative.

SE/CS 351 Gerald Weber's slides - Set 7

18

Write skew In numbers

e Account x = $1000
e Accounty = $800.

 Planned TAL1: withdraw $1100 from x; ok since overall
balance remains $700.

e Planned TA2: withdraw $900 from y; ok since overall
balance remains $900.

« With snapshot isolation, if both transactions are executed
concurrently, they might go through!

 New balance: ? Proposals please...
e Balance will be unwanted (bad),

o put is less dramatic than lost update

SE/CS 351 Gerald Weber's slides - Set 7 19

Replication: keeping local copies up-to-date
e It is good to know that not a complete copy of the whole

database has to be done at the start of a new transaction.

e Local copies can be kept up-to-date with incremental
changes. The write sets can be used.

e There is an instance of the replication middleware for each
client; these instances can communicate the write sets.

Client Replication) ~
. Working
middleware Master copy
copy

1rC

— >
: Replication : ~
/ middleware \é\cl)cp))r;mg

SE/CS 351 Gerald Weber's slides - Set 7 20

