
ACID durability
• write ahead logging

• buffer management

• steal, no-force strategies

• checkpoints

• media recovery
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crash recovery: write ahead logging 1 
• A log has a log buffer in main memory and a stable log on 

persistent storage.

• Semantics of a system crash: At an arbitrary point in time, 
database buffer as well as log buffer are lost.

• Recovery must be based on stable log and stable database 
alone.

• A transaction is conceived as committed only after the 
commit entry of this transaction is written to the persistent 
and reliable log file storage: write ahead logging (WAL).

• Main policy/semantics of database crash recovery: The 
stable log is authoritative.
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Crash recovery: log is authoritative
• The stable log decides about the correct status of 

transactions:

∘ Committed transactions have a commit record in the 
stable log because of write ahead logging. They are 
winners and considered committed: crash-durability.

∘ Those that are not committed are losers and considered 
aborted.
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Goal of crash recovery: clean stable database
• The stable database is clean iff the stable database is 

consistent with the winner/loser decision of the stable log.

• All writes of the winners, and only the writes of the winners 
are reflected in the stable database.

• The log entries of uncommitted transactions must be 
without effect.

• Task of crash recovery: The stable database must be made 
clean based on the stable log.
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Remark: Media Recovery
• Addresses a much more severe failure situation, but is 

semantically much easier:

• Addresses the situation that the stable database is lost by 
media failure, i.e. Hard disk crash, catastrophies.

• Important semantic specification: The clean stable 
database can be reconstructed from the complete stable 
log at any point in time: Redo all transactions!

• Likewise, the current clean stable database can be 
reconstructed from a historic clean stable database copy 
and the stable log from that point in time: media recovery.

• Ergo:  Backups are important !!
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structure of the database
• Database buffer and stable database 

content is partitioned into pages. 

• Every buffer page has exactly one 
image page on the stable database.

• Pages are read from and written to the 
stable database on disk as a whole.

∘ must be read when not yet in buffer.

• buffer is fast, stable database is vast.

• Remember difference in access time: 
RAM: 1ns, stable Database 1ms; ratio?

78x 54z

87y

database 
pages 

value object name 
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database buffer management
• The buffer is a write cache: Changes to the data in the 

buffer are not immediately written to the stable database. 

• Database buffer management: 

∘ if a cache miss occurs, load requested pages. This 
means, old pages must be replaced.

∘ Pages with changes need to be written back.

∘ We have to distinguish committed changes and 
uncommitted changes.
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Easy crash recovery 
• Database buffer management can be aligned in different 

ways to transactions. 

• Easiest situation: Stable database is always clean. 
Unfortunately this will turn out to be not practical.

• Alternative, more complex situation:

∘ The stable database can contain pages with the 
following problems:

∙ writes by uncommitted transactions

∙ Old data not reflecting writes by committed transactions

∘ Both kinds of problems can appear on the same page.
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Requirement of easy crash recovery
• If we want to always maintain a clean stable 

database, we need pagewise write locks: only 
one transaction can write a page at a time. 

• Proof by contradiction: Consider a page 
written by TA1 and TA2. (Not using 
pagewise write lock).

• Now TA1 commits while TA2 does not 
commit. What to do:

• Write back? Steal page.

• Not write back? Outdated page.

• Database is not clean in either case.

78x 54z

87y

43 23
TA1 TA2
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buffer management policy alternatives 
• Policies for buffer pages with committed write.

∘ force: At commit, such pages have to be written to the 
stable database.  Leads to performance bottlenecks.

∘ no-force: drops this requirement. Leads to redo.

• Policies for buffer pages with uncommitted write 

∘ no-steal: Such pages must not be written to stable 
database. Can lead to buffer bottlenecks.

∘ steal: drops this requirement. Leads to undo.

• Force, no-steal is easy crash recovery, ensures the stable 
database is always clean: not practical enough.
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buffer management: no-force, steal policy
• Algorithms for Recovery and Isolation Exploiting Semantics

(ARIES) [Mohan et al. 1992]

• Today’s preferred solution: no alignment between buffer 
page swapping and transactions: no-force, steal policy.

• Buffer pages are swapped according to demand.

• Avoids more bottlenecks, more difficult to implement.

• no-force:, some committed writes are not in the stable 
database yet. Makes redo after crash necessary.

• steal: some uncommitted writes are in the stable database: 
undo also after crash.
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write ahead logging 2
• enabling crash recovery for steal policy: 

• stable database pages are changed by loser transactions.

• the information to undo the loser transactions must be in 
the log.

• Therefore, 

∘ before a buffer page is written back to the stable 
database:

∘ all log entries for that page have to be written back to 
the stable log.

• This is another application of write ahead logging.
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recovery example, the scenario 
• Situation at the time of the crash.

• Database buffer is then lost.

• Writes are shown on top of old 
values.

91x 23z

87y

......
[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]

78x 54z

87y

Stable database 

Database buffer 

64 85

78
53

54
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crash recovery for no-force, steal policy
• has to redo winners and undo losers.

• has to go through the log:

• for redo in positive time direction

∘ Identify, whether the write (or its TA) is committed.

∘ write for each committed operation the after-image.

• for undo in negative time direction

∘ Identify whether write (or its TA) is not committed

∘ write for each uncommitted operation the before-image.
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recovery example, continued
• First redo, then undo.

......
[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]

78x 54z

87y

Stable database 

53 23

64
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log truncation
• Without further precautions, the recovery algorithm would 

have to redo all entries in the stable log since creation of the 
database, and would not make use of the stable database.

• Goal is to redo/undo only a reasonable section (suffix) of the 
stable log, using the stable database.

• for this purpose, pages have to be written to the stable 
database.

• Observation: 

∘ Redo has to start from the earliest write on the database 
buffer not yet written to the stable database.

∘ Undo can stop with the earliest write currently not 
committed.
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write-behind daemon and checkpoints
• Enabling log truncation:

• A write-behind daemon goes through the buffer pages and 
writes them out.

• If the write-behind demon starts at time t and has gone once 
through all pages in the buffer at time t+s, then all writes 
committed before t are written out at time t+s.

• Instead of time we use log sequence numbers. 

• We remember L, the last lsn on the stable log at time t.

• At time t+s we have written out all committed writes before L.

• The database writes a new kind of log entry: a checkpoint, 
containing the last safe lsn L.

• If we find a checkpoint entry, we only have to redo from L+1.



2 points in time are important for Checkpoints
• The write behind demon takes some time (on purpose, is a 

low priority activity

Demon starts         Demon Finished
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Optimizations and caring about undo.
• We want to write out only pages where it is necessary.

∘ Buffer pages remember the earliest unsaved committed 
write: RedoLSN.

∘ The write-behind daemon only writes out pages with 
RedoLSN < L.

• Instead of L, we write to the checkpoint entry the oldest 
(smallest) RedoLSN that we encounter; likely > L.

• So far, the checkpoint only addresses redo, but we also 
have to truncate undo. 

• We remember the first LSN of the earliest uncommitted 
transaction as the UndoLSN.

• The checkpoint record also contains the UndoLSN.
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log truncation and checkpoints
• A checkpoint record in the log allows us to limit  the number 

of log entries that we have to go backwards.

• We can however, not stop at the checkpoint entry; we have 
to go back further:

• The checkpoint entry tells us how far to go back:

∘ The RedoLSN in the checkpoint entry tells us how far to 
go backwards with the redo,

∘ the UndoLSN tells us how far to go backwards with the 
undo.

• Earlier parts of the log can be truncated: Must not be 
thrown away, but must be stored in archival data storage 
for media recovery.



Situation at a crash
• Demon starts         Demon Finished               Crash

[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, checkpt: redo: 110, undo: 111]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]
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Advanced aspects: Multiple system crashes
• The crash recovery must also work in times of high 

instability: 

• The system might crash again during the crash recovery 
process.

• Incremental progress must be made.

• Simple way to represent incremental progress:

• The crash recovery algorithm writes further checkpoints 
that require less and less log to be redone/undone.

• Crash recovery is complete with a checkpoint that contains 
its own lsn as RedoLsn and UndoLsn.
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media recovery contd.
• Media recovery: takes place, if stable database is lost.

∙ Remark: Loss of the log cannot be repaired

∙ highly reliable store is used for log. 

• Requires proper archiving:

∘ Log is never discarded, even after truncation. 

∘ All log entries are stored in a log archive.

∘ From time to time, database backups are made from the 
stable database.



Summary
• ACID Atomicity and ACID Durability can achieved with 

strategies working with an undo/redo log.

• The stable log and the stable database reside on tertiary 
memory (often still disks).

• System crash: main memory content is lost.

• write-ahead logging: the stable log is authoritative, can be 
used to reconstruct a clean stable database.

• Different managements of the database buffer are possible, 
with the alternatives force/no-force, steal/no-steal.

• In the steal, no-force strategy, we have to redo winners and 
undo loser transactions.
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Info on deadlocks in lab and exercise
• If a deadlock has been reached, often one of the involved 

transactions has to be aborted.

• Different victim selection strategies, for example:

∘ random

∘ reducing rollback overhead: youngest, minimum locks, 
minimum work.

∘ other: last blocked, most cycles, most waiting edges.

• Strategies should also prevent starvation. 
Starvation means: transactions from one client are 
repeatedly aborted.


