ACID durabillity

« write ahead logging

* buffer management

steal, no-force strategies

checkpoints

media recovery

SE/CS 351 Gerald Weber's Slide Set 6

crash recovery: write ahead logging 1
* Alog has a log buffer in main memory and a stable log on
persistent storage.

e Semantics of a system crash: At an arbitrary point in time,
database buffer as well as log buffer are lost.

 Recovery must be based on stable log and stable database
alone.

« A transaction is conceived as committed only after the
commit entry of this transaction is written to the persistent
and reliable log file storage: write ahead logging (WAL).

e Main policy/semantics of database crash recovery: The
stable log is authoritative.

SE/CS 351 Gerald Weber's Slide Set 6 2

Crash recovery: log is authoritative
* The stable log decides about the correct status of
transactions:

o Committed transactions have a commit record in the
stable log because of write ahead logging. They are
winners and considered committed: crash-durabillity.

o Those that are not committed are losers and considered
aborted.

SE/CS 351 Gerald Weber's Slide Set 6

Goal of crash recovery: clean stable database
« The stable database is clean iff the stable database is
consistent with the winner/loser decision of the stable log.

 All writes of the winners, and only the writes of the winners
are reflected in the stable database.

e The log entries of uncommitted transactions must be
without effect.

o Task of crash recovery: The stable database must be made
clean based on the stable log.

SE/CS 351 Gerald Weber's Slide Set 6 4

Remark: Media Recovery

 Addresses a much more severe failure situation, but is
semantically much easier:

e Addresses the situation that the stable database is lost by
media failure, i.e. Hard disk crash, catastrophies.

e Important semantic specification: The clean stable
database can be reconstructed from the complete stable
log at any point in time: Redo all transactions!

» Likewise, the current clean stable database can be
reconstructed from a historic clean stable database copy
and the stable log from that point in time: media recovery.

e Ergo: Backups are important !!

SE/CS 351 Gerald Weber's Slide Set 6

structure of the database

Database buffer and stable database database

content is partitioned into pages. Y,

Every buffer page has exactly one
Image page on the stable database.

Pages are read from and written to the
stable database on disk as a whole.

o must be read when not yet in buffer.

buffer is fast, stable database is vast. y | 87

Remember difference in access time:
RAM: 1ns, stable Database 1ms; ratio? |/ \ .

object name value

SE/CS 351 Gerald Weber's Slide Set 6 6

database buffer management

* The buffer is a write cache: Changes to the data in the
buffer are not immediately written to the stable database.

e Database buffer management:

o |f a cache miss occurs, load requested pages. This
means, old pages must be replaced.

o Pages with changes need to be written back.

o \WWe have to distinguish committed changes and
uncommitted changes.

SE/CS 351 Gerald Weber's Slide Set 6

Easy crash recovery

« Database buffer management can be aligned in different
ways to transactions.

e Easiest situation: Stable database Is always clean.
Unfortunately this will turn out to be not practical.
« Alternative, more complex situation:

o The stable database can contain pages with the
following problems:
« writes by uncommitted transactions
« Old data not reflecting writes by committed transactions

o Both kinds of problems can appear on the same page.

SE/CS 351 Gerald Weber's Slide Set 6

Requirement of easy crash recovery

If we want to always maintain a clean stable
database, we need pagewise write locks: only
one transaction can write a page at a time.

Proof by contradiction: Consider a page | ;-
written by TA1 and TA2. (Not using TA1 TA2 |
pagewise write lock). 43 23

Now TA1 commits while TA2 does not X 78] z[54

commit. What to do:

Write back? Steal page.

Not write back? Outdated page.

Database is not clean In either case.

SE/CS 351 Gerald Weber's Slide Set 6 9

buffer management policy alternatives

» Policies for buffer pages with committed write.

o force: At commit, such pages have to be written to the
stable database. Leads to performance bottlenecks.

o no-force: drops this requirement. Leads to redo.
» Policies for buffer pages with uncommitted write

o no-steal: Such pages must not be written to stable
database. Can lead to buffer bottlenecks.

o steal: drops this requirement. Leads to undo.

* Force, no-steal is easy crash recovery, ensures the stable

database is always clean: not practical enough.
SE/CS 351 Gerald Weber's Slide Set 6

10

buffer management: no-force, steal policy

 Algorithms for Recovery and Isolation Exploiting Semantics
(ARIES) [Mohan et al. 1992]

 Today’s preferred solution: no alignment between buffer
page swapping and transactions: no-force, steal policy.

» Buffer pages are swapped according to demand.
« Avoids more bottlenecks, more difficult to implement.

 no-force:, some committed writes are not in the stable
database yet. Makes redo after crash necessary.

e steal: some uncommitted writes are in the stable database:
undo also after crash.

SE/CS 351 Gerald Weber's Slide Set 6 11

write ahead logging 2

e enabling crash recovery for steal policy:

stable database pages are changed by loser transactions.

the information to undo the loser transactions must be In
the log.

Therefore,

o pefore a buffer page is written back to the stable
database:

o all log entries for that page have to be written back to
the stable log.

This is another application of write ahead logging.

SE/CS 351 Gerald Weber's Slide Set 6 12

recovery example, the scenario

e Situation at the time of the crash.

 Database buffer is then lost.

* Writes are shown on top of old

values.

nr: 110, ta: 22, obj: x, b: 91, a: 78]
nr: 111, ta: 23, obj: z, b: 23, a: 54]
nr: 112, ta: 22, obj: x, b: 78, a: 53]

nr: 113, ta: 22, obj: y, b: 87, a: 64]
nr: 114, ta: 22, commit]

nr: 115, ta: 23, obj: y, b: 64, a: 85]

SE/CS 351 Gerald Weber's Slide Set 6

-_—

Stable database

13

crash recovery for no-force, steal policy

* has to redo winners and undo losers.
* has to go through the log:
 for redo in positive time direction
o |dentify, whether the write (or its TA) iIs committed.
o write for each committed operation the after-image.
 for undo in negative time direction
o |dentify whether write (or its TA) is not committed

o write for each uncommitted operation the before-image.

SE/CS 351 Gerald Weber's Slide Set 6 14

recovery example, continued

» First redo, then undo.

nr: 110, ta: 22, obj: x, b: 91, a: 78]
nr: 111, ta: 23, obj: z, b: 23, a: 54]
nr: 112, ta: 22, obj: x, b: 78, a: 53]
nr: 113, ta: 22, obj: y, b: 87, a: 64]
nr: 114, ta: 22, commit]

nr: 115, ta: 23, obj: y, b: 64, a: 85]

SE/CS 351 Gerald Weber's Slide Set 6

Stable database

15

log truncation

« Without further precautions, the recovery algorithm would
have to redo all entries in the stable log since creation of the
database, and would not make use of the stable database.

e Goalis to redo/undo only a reasonable section (suffix) of the
stable log, using the stable database.

o for this purpose, pages have to be written to the stable
database.

e Observation:

o Redo has to start from the earliest write on the database
buffer not yet written to the stable database.

o Undo can stop with the earliest write currently not
committed.

SE/CS 351 Gerald Weber's Slide Set 6 16

write-behind daemon and checkpoints

« Enabling log truncation:

* A write-behind daemon goes through the buffer pages and
writes them out.

o |If the write-behind demon starts at time t and has gone once
through all pages in the buffer at time t+s, then all writes
committed before t are written out at time t+s.

 Instead of time we use log sequence numbers.
 We remember L, the last Isn on the stable log at time t.
« At time t+s we have written out all committed writes before L.

 The database writes a new kind of log entry: a checkpoint,
containing the last safe Isn L.

 If we find a checkpoint entry, we only have to redo from L+1.

SE/CS 351 Gerald Weber's Slide Set 6 17

2 points in time are important for Checkpoints

* The write behind demon takes some time (on purpose, is a
low priority activity

Demon starts Demon Finished

4 U
]

SE/CS 351 Gerald Weber's Slide Set 6 18

Optimizations and caring about undo.

* We want to write out only pages where it Is hecessary.

o Buffer pages remember the earliest unsaved committed
write: RedoLSN.

o The write-behind daemon only writes out pages with
RedolLSN < L.

 Instead of L, we write to the checkpoint entry the oldest
(smallest) RedoLSN that we encounter; likely > L.

» So far, the checkpoint only addresses redo, but we also
have to truncate undo.

e We remember the first LSN of the earliest uncommitted
transaction as the UndoLSN.

e The checkpoint record also contains the UndoLSN.

SE/CS 351 Gerald Weber's Slide Set 6 19

log truncation and checkpoints

* A checkpoint record in the log allows us to limit the number
of log entries that we have to go backwards.

 We can however, not stop at the checkpoint entry; we have
to go back further:

 The checkpoint entry tells us how far to go back:

o The RedoLSN in the checkpoint entry tells us how far to
go backwards with the redo,

o the UndoLSN tells us how far to go backwards with the
undo.

 Earlier parts of the log can be truncated: Must not be
thrown away, but must be stored in archival data storage
for media recovery.

SE/CS 351 Gerald Weber's Slide Set 6 20

Situation at a crash

Crash

Demon starts Demon Finished

nr:
nr:
nr:
nr:
nr:
nr:
nr:

110, ta: 22, obj: x, b: 91, a: 78]
111, ta: 23, obj: z, b: 23, a: 54
112, ta: 22, obj: x, b: 78, a: 53]
113, ta: 22, obj: y, b: 87, a: 64]
114, checkpt: redo: 110, undo: 111]
114, ta: 22, commit]

115, ta: 23, obj. y, b: 64, a: 85]

SE/CS 351 Gerald Weber's Slide Set 6

21

Advanced aspects: Multiple system crashes

The crash recovery must also work in times of high
Instability:

The system might crash again during the crash recovery
process.

Incremental progress must be made.
Simple way to represent incremental progress:

The crash recovery algorithm writes further checkpoints
that require less and less log to be redone/undone.

Crash recovery is complete with a checkpoint that contains
its own Isn as RedoLsn and UndoLsn.

SE/CS 351 Gerald Weber's Slide Set 6 22

media recovery contd.

 Media recovery: takes place, if stable database Is lost.

 Remark: Loss of the log cannot be repaired

 highly reliable store is used for log.
e Requires proper archiving:
o Log Is never discarded, even after truncation.
o All log entries are stored in a log archive.

o From time to time, database backups are made from the
stable database.

SE/CS 351 Gerald Weber's Slide Set 6 23

Summary

ACID Atomicity and ACID Durability can achieved with
strategies working with an undo/redo log.

The stable log and the stable database reside on tertiary
memory (often still disks).

System crash: main memory content is lost.

write-ahead logging: the stable log is authoritative, can be
used to reconstruct a clean stable database.

Different managements of the database buffer are possible,
with the alternatives force/no-force, steal/no-steal.

In the steal, no-force strategy, we have to redo winners and
undo loser transactions.

SE/CS 351 Gerald Weber's Slide Set 6 24

Info on deadlocks in lab and exercise
 If a deadlock has been reached, often one of the involved
transactions has to be aborted.
 Different victim selection strategies, for example:
o random

o reducing rollback overhead: youngest, minimum locks,
minimum work.

o other: last blocked, most cycles, most waiting edges.

« Strategies should also prevent starvation.
Starvation means: transactions from one client are
repeatedly aborted.

SE/CS 351 Gerald Weber's Slide Set 4 25

