
ACID durability
• write ahead logging

• buffer management

• steal, no-force strategies

• checkpoints

• media recovery

SE/CS 351 Gerald Weber's Slide Set 6 1

SE/CS 351 Gerald Weber's Slide Set 6 2

crash recovery: write ahead logging 1
• A log has a log buffer in main memory and a stable log on

persistent storage.

• Semantics of a system crash: At an arbitrary point in time,
database buffer as well as log buffer are lost.

• Recovery must be based on stable log and stable database
alone.

• A transaction is conceived as committed only after the
commit entry of this transaction is written to the persistent
and reliable log file storage: write ahead logging (WAL).

• Main policy/semantics of database crash recovery: The
stable log is authoritative.

SE/CS 351 Gerald Weber's Slide Set 6 3

Crash recovery: log is authoritative
• The stable log decides about the correct status of

transactions:

∘ Committed transactions have a commit record in the
stable log because of write ahead logging. They are
winners and considered committed: crash-durability.

∘ Those that are not committed are losers and considered
aborted.

SE/CS 351 Gerald Weber's Slide Set 6 4

Goal of crash recovery: clean stable database
• The stable database is clean iff the stable database is

consistent with the winner/loser decision of the stable log.

• All writes of the winners, and only the writes of the winners
are reflected in the stable database.

• The log entries of uncommitted transactions must be
without effect.

• Task of crash recovery: The stable database must be made
clean based on the stable log.

SE/CS 351 Gerald Weber's Slide Set 6 5

Remark: Media Recovery
• Addresses a much more severe failure situation, but is

semantically much easier:

• Addresses the situation that the stable database is lost by
media failure, i.e. Hard disk crash, catastrophies.

• Important semantic specification: The clean stable
database can be reconstructed from the complete stable
log at any point in time: Redo all transactions!

• Likewise, the current clean stable database can be
reconstructed from a historic clean stable database copy
and the stable log from that point in time: media recovery.

• Ergo: Backups are important !!

SE/CS 351 Gerald Weber's Slide Set 6 6

structure of the database
• Database buffer and stable database

content is partitioned into pages.

• Every buffer page has exactly one
image page on the stable database.

• Pages are read from and written to the
stable database on disk as a whole.

∘ must be read when not yet in buffer.

• buffer is fast, stable database is vast.

• Remember difference in access time:
RAM: 1ns, stable Database 1ms; ratio?

78x 54z

87y

database
pages

value object name

SE/CS 351 Gerald Weber's Slide Set 6 7

database buffer management
• The buffer is a write cache: Changes to the data in the

buffer are not immediately written to the stable database.

• Database buffer management:

∘ if a cache miss occurs, load requested pages. This
means, old pages must be replaced.

∘ Pages with changes need to be written back.

∘ We have to distinguish committed changes and
uncommitted changes.

SE/CS 351 Gerald Weber's Slide Set 6 8

Easy crash recovery
• Database buffer management can be aligned in different

ways to transactions.

• Easiest situation: Stable database is always clean.
Unfortunately this will turn out to be not practical.

• Alternative, more complex situation:

∘ The stable database can contain pages with the
following problems:

∙ writes by uncommitted transactions

∙ Old data not reflecting writes by committed transactions

∘ Both kinds of problems can appear on the same page.

SE/CS 351 Gerald Weber's Slide Set 6 9

Requirement of easy crash recovery
• If we want to always maintain a clean stable

database, we need pagewise write locks: only
one transaction can write a page at a time.

• Proof by contradiction: Consider a page
written by TA1 and TA2. (Not using
pagewise write lock).

• Now TA1 commits while TA2 does not
commit. What to do:

• Write back? Steal page.

• Not write back? Outdated page.

• Database is not clean in either case.

78x 54z

87y

43 23
TA1 TA2

SE/CS 351 Gerald Weber's Slide Set 6 10

buffer management policy alternatives
• Policies for buffer pages with committed write.

∘ force: At commit, such pages have to be written to the
stable database. Leads to performance bottlenecks.

∘ no-force: drops this requirement. Leads to redo.

• Policies for buffer pages with uncommitted write

∘ no-steal: Such pages must not be written to stable
database. Can lead to buffer bottlenecks.

∘ steal: drops this requirement. Leads to undo.

• Force, no-steal is easy crash recovery, ensures the stable
database is always clean: not practical enough.

SE/CS 351 Gerald Weber's Slide Set 6 11

buffer management: no-force, steal policy
• Algorithms for Recovery and Isolation Exploiting Semantics

(ARIES) [Mohan et al. 1992]

• Today’s preferred solution: no alignment between buffer
page swapping and transactions: no-force, steal policy.

• Buffer pages are swapped according to demand.

• Avoids more bottlenecks, more difficult to implement.

• no-force:, some committed writes are not in the stable
database yet. Makes redo after crash necessary.

• steal: some uncommitted writes are in the stable database:
undo also after crash.

SE/CS 351 Gerald Weber's Slide Set 6 12

write ahead logging 2
• enabling crash recovery for steal policy:

• stable database pages are changed by loser transactions.

• the information to undo the loser transactions must be in
the log.

• Therefore,

∘ before a buffer page is written back to the stable
database:

∘ all log entries for that page have to be written back to
the stable log.

• This is another application of write ahead logging.

SE/CS 351 Gerald Weber's Slide Set 6 13

recovery example, the scenario
• Situation at the time of the crash.

• Database buffer is then lost.

• Writes are shown on top of old
values.

91x 23z

87y

......
[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]

78x 54z

87y

Stable database

Database buffer

64 85

78
53

54

SE/CS 351 Gerald Weber's Slide Set 6 14

crash recovery for no-force, steal policy
• has to redo winners and undo losers.

• has to go through the log:

• for redo in positive time direction

∘ Identify, whether the write (or its TA) is committed.

∘ write for each committed operation the after-image.

• for undo in negative time direction

∘ Identify whether write (or its TA) is not committed

∘ write for each uncommitted operation the before-image.

SE/CS 351 Gerald Weber's Slide Set 6 15

recovery example, continued
• First redo, then undo.

......
[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]

78x 54z

87y

Stable database

53 23

64

SE/CS 351 Gerald Weber's Slide Set 6 16

log truncation
• Without further precautions, the recovery algorithm would

have to redo all entries in the stable log since creation of the
database, and would not make use of the stable database.

• Goal is to redo/undo only a reasonable section (suffix) of the
stable log, using the stable database.

• for this purpose, pages have to be written to the stable
database.

• Observation:

∘ Redo has to start from the earliest write on the database
buffer not yet written to the stable database.

∘ Undo can stop with the earliest write currently not
committed.

SE/CS 351 Gerald Weber's Slide Set 6 17

write-behind daemon and checkpoints
• Enabling log truncation:

• A write-behind daemon goes through the buffer pages and
writes them out.

• If the write-behind demon starts at time t and has gone once
through all pages in the buffer at time t+s, then all writes
committed before t are written out at time t+s.

• Instead of time we use log sequence numbers.

• We remember L, the last lsn on the stable log at time t.

• At time t+s we have written out all committed writes before L.

• The database writes a new kind of log entry: a checkpoint,
containing the last safe lsn L.

• If we find a checkpoint entry, we only have to redo from L+1.

2 points in time are important for Checkpoints
• The write behind demon takes some time (on purpose, is a

low priority activity

Demon starts Demon Finished

SE/CS 351 Gerald Weber's Slide Set 6 18

SE/CS 351 Gerald Weber's Slide Set 6 19

Optimizations and caring about undo.
• We want to write out only pages where it is necessary.

∘ Buffer pages remember the earliest unsaved committed
write: RedoLSN.

∘ The write-behind daemon only writes out pages with
RedoLSN < L.

• Instead of L, we write to the checkpoint entry the oldest
(smallest) RedoLSN that we encounter; likely > L.

• So far, the checkpoint only addresses redo, but we also
have to truncate undo.

• We remember the first LSN of the earliest uncommitted
transaction as the UndoLSN.

• The checkpoint record also contains the UndoLSN.

SE/CS 351 Gerald Weber's Slide Set 6 20

log truncation and checkpoints
• A checkpoint record in the log allows us to limit the number

of log entries that we have to go backwards.

• We can however, not stop at the checkpoint entry; we have
to go back further:

• The checkpoint entry tells us how far to go back:

∘ The RedoLSN in the checkpoint entry tells us how far to
go backwards with the redo,

∘ the UndoLSN tells us how far to go backwards with the
undo.

• Earlier parts of the log can be truncated: Must not be
thrown away, but must be stored in archival data storage
for media recovery.

Situation at a crash
• Demon starts Demon Finished Crash

[nr: 110, ta: 22, obj: x, b: 91, a: 78]
[nr: 111, ta: 23, obj: z, b: 23, a: 54]
[nr: 112, ta: 22, obj: x, b: 78, a: 53]
[nr: 113, ta: 22, obj: y, b: 87, a: 64]
[nr: 114, checkpt: redo: 110, undo: 111]
[nr: 114, ta: 22, commit]
[nr: 115, ta: 23, obj: y, b: 64, a: 85]

SE/CS 351 Gerald Weber's Slide Set 6 21

Advanced aspects: Multiple system crashes
• The crash recovery must also work in times of high

instability:

• The system might crash again during the crash recovery
process.

• Incremental progress must be made.

• Simple way to represent incremental progress:

• The crash recovery algorithm writes further checkpoints
that require less and less log to be redone/undone.

• Crash recovery is complete with a checkpoint that contains
its own lsn as RedoLsn and UndoLsn.

SE/CS 351 Gerald Weber's Slide Set 6 22

SE/CS 351 Gerald Weber's Slide Set 6 23

media recovery contd.
• Media recovery: takes place, if stable database is lost.

∙ Remark: Loss of the log cannot be repaired

∙ highly reliable store is used for log.

• Requires proper archiving:

∘ Log is never discarded, even after truncation.

∘ All log entries are stored in a log archive.

∘ From time to time, database backups are made from the
stable database.

Summary
• ACID Atomicity and ACID Durability can achieved with

strategies working with an undo/redo log.

• The stable log and the stable database reside on tertiary
memory (often still disks).

• System crash: main memory content is lost.

• write-ahead logging: the stable log is authoritative, can be
used to reconstruct a clean stable database.

• Different managements of the database buffer are possible,
with the alternatives force/no-force, steal/no-steal.

• In the steal, no-force strategy, we have to redo winners and
undo loser transactions.

SE/CS 351 Gerald Weber's Slide Set 6 24

SE/CS 351 Gerald Weber's Slide Set 4 25

Info on deadlocks in lab and exercise
• If a deadlock has been reached, often one of the involved

transactions has to be aborted.

• Different victim selection strategies, for example:

∘ random

∘ reducing rollback overhead: youngest, minimum locks,
minimum work.

∘ other: last blocked, most cycles, most waiting edges.

• Strategies should also prevent starvation.
Starvation means: transactions from one client are
repeatedly aborted.

