
SE/CS 351 Gerald Weber's Slide Set 4 1

Relaxed Isolation, Isolation levels
• ANSI Isolation Levels

• Phenomena

• Preventing lost updates



SE/CS 351 Gerald Weber's Slide Set 4 2

transaction tuning, relaxed isolation
• Scheduling ensures serializability, but reduces throughput, 

the number of transactions per time unit (as measured for 
example in the TPC-C benchmark).

• Methods of increasing transaction thoughput: 

• reduce isolation (reduce locking):

∘ Reduced transaction isolation levels

∘ Tables with lower isolation

∘ Transaction chopping

∘ Optimistic locking



SE/CS 351 Gerald Weber's Slide Set 4 3

ANSI/ISO transaction isolation levels
• Isolation levels are defined with respect to three different 

phenomena (results of reduced isolation):

∘ Dirty read: reading an uncommitted value for x.

∘ Fuzzy read: reading different, committed values for x

∘ Phantom: reading a new committed inserted row.

• ANSI/ISO SQL-92 defines four isolation levels: 
Isolation Level Dirty read Fuzzy read Phantom

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not Possible Possible Possible

REPEATABLE READ Not Possible Not Possible Possible

SERIALIZABLE Not Possible Not Possible Not Possible



SE/CS 351 Gerald Weber's Slide Set 4 4

Dirty read (recap)
• Transaction TA2  performs a dirty read if it reads an 

uncommitted write result of TA1

∘ scheduling example:  ........ w1[x], r2[x], 

• Dirty reads can happen, if transaction TA2 does not react to 
a write-lock on x. 

• Dirty reads might be no problem for: 

∘ transactions that gather overview data

∘ transactions that investigate options for later transactions

• But they are dangerous for other transactions

∘ might lead to inconsistent results.

• Isolation level READ UNCOMMITTED allows dirty reads, but 
the transactions have to be read-only.

dirty read 



SE/CS 351 Gerald Weber's Slide Set 4 5

Fuzzy read
• Transaction TA1  encounters a fuzzy read phenomenon if it 

reads two or more different committed values for x.

∘ scheduling example:   r1[x], w2[x], c2, r1[x]

• Fuzzy reads can happen, if transactions do 

∘ not observe the read-lock of transaction TA1.

• Note, that fuzzy reads require two read operations by TA1, 
while dirty reads can happen with a single read.

• Fuzzy read situations can lead to lost updates in a rather 
counterfactual way:

∘ If the second read does not happen or is not acted 
upon: (next slide)

fuzzy read 



SE/CS 351 Gerald Weber's Slide Set 4 6

Fuzzy read continued: lost updates
• a serious consequence of not using REPEATABLE READ: 

a committed transaction might miss an update: lost update

r1[x], r2[x], w2[x], c2,             w1[x], c1

∘ example: 
∙ a123 is $99.

∙ TA1 withdraws $17,  TA2 withdraws $23 

∘ r1[x]   : d1 := 99

∘ r2[x]  : d2 := 99

∘ w2[x] : a123 := 76 ( == d2-23)

∘ w1[x] : a123 := 82  (== d1-17)

here is the fuzzy read 
“zone”

r1[x], 

lost update



SE/CS 351 Gerald Weber's Slide Set 4 7

phantom
• A phantom (row) is a phenomenon that is possible in the 

relational data model, but goes beyond the basic read/write 
model.

• Are caused by inserts, not by updates.

• The following situation describes a phantom row:

∘ TA1 performs: SELECT * FROM mytabl 
∙ gets a result set res1.

∘ TA2 : inserts a row r into mytabl and commits.

∘ TA1 performs again SELECT * FROM mytabl
∙ gets a different result set res2 = res1  ∪ {r} 

∘ the row r is the phantom for TA1 



SE/CS 351 Gerald Weber's Slide Set 4 8

Dirty read is worse than fuzzy read
• a case, where a transaction reads two different values, but 

one of them is a dirty value:

r1[x], r2[x], w2[x], r1[x], w1[x], c1

• This is called a dirty read and not a fuzzy read.

• Rationale: dirty read is a more serious phenomenon than 
fuzzy read.

New, dirty value of x



SE/CS 351 Gerald Weber's Slide Set 4 9

dirty write following a dirty read
• Transactions in isolation level READ UNCOMMITTED can 

perform dirty reads, but are not allowed to write.

• Some DB’s support an isolation level NONE, we assume 
this allows transactions to even write. Every write in a 
transaction following a dirty read we want to call a dirty 
write, since it can be influenced by the dirty read.

∘ scheduling example:  r1[x] w1[x], r2[x], w2[y], c2, a1

• Transaction level NONE is similar (but not identical) to a 
situation where all transactions have Autocommit=TRUE. 

• A dirty write is a phenomenon that is more serious than a 
dirty read.

dirty read dirty write 



Describing phenomena:

SE/CS 351

• The names of the phenomena intuitively refer to one operation 
in the schedule, bolded in the following examples

• Fuzzy read:   r1[x], r2[x], w1[x],  c1, r2[x], w2[z], c2, 

• Lost update:  r1[x], r2[x], w1[x], c1 w2[x], c2, 

• Dirty read:     r1[x], r2[x],  w1[x],      r2[x],  r2[z], c2, c1

• Dirty write:     r1[x], r2[x],  w1[x],      r2[x],  w2[z], c2, c1

• However, these operations are very variable for seemingly 
similar situations and therefore not good for identifying.

• Instead we talk about the conflict object (this is always x in 
the examples above), and the conflict writing transaction 
(here TA1) of the phenomenon.

Gerald Weber's Slide Set 4 10

Must be x 
for lost
update



SE/CS 351 Gerald Weber's Slide Set 4 11

Lost updates cannot be avoided by more reads 
• The operations in the withdraw example:

1. read  a123 into local variable d, 

2. Check whether d greater than amount to be withdrawn

3. IF yes: write b-amount to a123.

4. commit

• Two alternatives in the basic transaction model:

Alternative A: TA1: r1[x],            w1[x],              c1

Alternative B: TA1: r1[x],            r1[x],w1[x],       c1

• First question: what to do if the second read is different? 
Assume rollback.

• Can Alternative B prevent a lost update? No:

1. 2. 3. 4.



SE/CS 351 Gerald Weber's Slide Set 4 12

Lost updates
One case: second read of TA2 prevents lost update:

• s:    r1[x], r2[x],   r1[x],       w1[x],      c1, r2[x], a2

• TA1: r1[x],            r1[x],      w1[x],       c1

• TA2:         r2[x],                    r2[x] _________, a2

(Rollback of TA2 because of changed value.)

Second case:  Second read of TA2 happens slightly earlier: 
again a lost update happens.

• s:    r1[x], r2[x],   r1[x], r2[x], w1[x],      c1, w2[x], c2

• TA1: r1[x],            r1[x],         w1[x],       c1

• TA2:         r2[x],            r2[x],    w2[x] ________, c2



SE/CS 351 Gerald Weber's Slide Set 4 13

Preventing lost update in READ COMMITTED
Explicitly getting an update lock with SELECT FOR UPDATE 

can prevent lost updates even in READ COMMITTED level.

Current situation:

• s:      r1[x], r2[x], w1[x],      c1, w2[x], c2

• TA1: r1[x],         w1[x],       c1

• TA2:          r2[x],       w2[x] ______, c2

• Second read is now SELECT FOR UPDATE

• s:      R1[x],       w1[x],      c1, R2[x], w2[x], c2

• TA1: R1[x],         w1[x],     c1

• TA2:             R2[x] ____________, w2[x], c2



Summary
• We have seen the following bad phenomena of reduced 

isolation: phantom, fuzzy read, lost update, dirty read, dirty 
write. 

• They are increasingly serious, except for the fuzzy read/lost 
update pair.

• They correspond to five increasingly relaxed isolation 
levels: SERIALIZABLE, REPEATABLE READ, READ 
COMMITTED, READ UNCOMMITTED, NONE. 

• The first level SERIALIZABLE allows no phenomenon, the 
last level NONE allows all phenomena to occur.

SE/CS 351 Gerald Weber's Slide Set 4 14


