Relaxed Isolation, Isolation levels

 ANSI Isolation Levels
* Phenomena

e Preventing lost updates

SE/CS 351 Gerald Weber's Slide Set 4

transaction tuning, relaxed isolation

» Scheduling ensures serializabllity, but reduces throughput,
the number of transactions per time unit (as measured for
example in the TPC-C benchmark).

 Methods of increasing transaction thoughput:
 reduce isolation (reduce locking):

o Reduced transaction isolation levels

o Tables with lower isolation

o Transaction chopping

o Optimistic locking

SE/CS 351 Gerald Weber's Slide Set 4

ANSI/ISO transaction isolation levels

* |Isolation levels are defined with respect to three different
phenomena (results of reduced isolation):

o Dirty read: reading an uncommitted value for x.

o Fuzzy read: reading different, committed values for x

o Phantom: reading a new committed inserted row.

 ANSI/ISO SQL-92 defines four isolation levels:

Isolation Level Dirty read Fuzzy read Phantom
READ UNCOMMITTED | Possible Possible Possible
READ COMMITTED Not Possible | Possible Possible
REPEATABLE READ Not Possible | Not Possible | Possible
SERIALIZABLE Not Possible | Not Possible | Not Possible

SE/CS 351

Gerald Weber's Slide Set 4

Dirty read (recap)

« Transaction TA2 performs a dirty read if it reads an

uncommitted write result of TA1

o scheduling example: wl[x], r2[X],

/

dirty read J

a write-lock on x.

Dirty reads might be no problem for:
o transactions that gather overview data

Dirty reads can happen, if transaction TA2 does not react to

o transactions that investigate options for later transactions

o might lead to inconsistent results.

the transactions have to be read-only.
SE/CS 351 Gerald Weber's Slide Set 4

But they are dangerous for other transactions

|solation level READ UNCOMMITTED allows dirty reads, but

4

Fuzzy read

e Transaction TA1 encounters a fuzzy read phenomenon if it
reads two or more different committed values for x.

o scheduling example: | r,[X],|W,[X], C,,| I{[X] o

I——

 Fuzzy reads can happen, if transactions do

fuzzy readj

o not observe the read-lock of transaction TAL.

* Note, that fuzzy reads require two read operations by TA1,
while dirty reads can happen with a single read.

* Fuzzy read situations can lead to lost updates in a rather
counterfactual way:

o |If the second read does not happen or is not acted
upon: (next slide)

SE/CS 351 Gerald Weber's Slide Set 4 5

Fuzzy read continued: lost updates

e a serious consequence of not using REPEATABLE READ:
a committed transaction might miss an update: lost update

r1[x], ro[X], w,[X], Cs, wy[X], ¢y

r1[x],
example:

. here is the fuzzy read

(o]

* al23is $99. “~one”
« TA, withdraws $17, TA, withdraws $23
o I[x] :d;:=99
o I,[X] :d,:=99

W,[X] :al23 :=76 (==d,-23) «— lost update
w,[X] : @123 := 82 (==d;-17)

o

o

SE/CS 351 Gerald Weber's Slide Set 4

phantom

e A phantom (row) is a phenomenon that is possible in the
relational data model, but goes beyond the basic read/write
model.

e Are caused by inserts, not by updates.
* The following situation describes a phantom row:

o TAl performs: SELECT * FROM mytabl

e gets a result set resl.

o TAZ2 : Iinserts a row r into mytabl and commits.
o TAL performs again SELECT * FROM mytabl

e gets a different result setres2 =resl U {r}

o the row r is the phantom for TAL

SE/CS 351 Gerald Weber's Slide Set 4

Dirty read is worse than fuzzy read

e a case, where a transaction reads two different values, but
one of them is a dirty value:

r1[X], ro[X], Wo[X], ry[X], wylX], ¢4

\ New, dirty value of x

e This is called a dirty read and not a fuzzy read.

* Rationale: dirty read is a more serious phenomenon than
fuzzy read.

SE/CS 351 Gerald Weber's Slide Set 4

dirty write following a dirty read

e Transactions in isolation level READ UNCOMMITTED can
perform dirty reads, but are not allowed to write.

« Some DB'’s support an isolation level NONE, we assume
this allows transactions to even write. Every write in a
transaction following a dirty read we want to call a dirty
write, since it can be influenced by the dirty read.

dirty read | dirty write

\ —
o scheduling example: rl1[x] wl[x], r2[x]i|w2[y], c2, al

* Transaction level NONE is similar (but not identical) to a
situation where all transactions have Autocommit=TRUE.

« A dirty write is a phenomenon that is more serious than a
dirty read.

SE/CS 351 Gerald Weber's Slide Set 4

Describing phenomena:

The names of the phenomena intuitively refer to one operation
In the schedule, bolded in the following examples

Must be x
Fuzzy read: r,[Xx], ro[x], w,[X], ¢, r [X], W,[z], C,, for lost
y 1 2 1[X]s €4, 1olX] 2[]2/update
Lost update: r[x], r,[X], w[X], C; W,[X], Cy,
Dirty read: ry[X], ro[x], wq[X], r,[X], r5[Z], C,, C;

Dirty write: ry[x], r,[X], wq[X], r,[X], w,[z], C,, C;
However, these operations are very variable for seemingly
similar situations and therefore not good for identifying.

Instead we talk about the conflict object (this is always X in
the examples above), and the conflict writing transaction
(here TAl) of the phenomenon.

SE/CS 351 Gerald Weber's Slide Set 4 10

Lost updates cannot be avoided by more reads

 The operations in the withdraw example:
1. read al23 into local variable d,
2. Check whether d greater than amount to be withdrawn
3. IF yes: write b-amount to al123.

4. commit

e Two alternatives in the basic transaction model:

1. 2. 3. 4.
Alternative A: TA: r{[X], w,[X], Cy
Alternative B: TA: r{[X], r [x],w,[X], Cy

e First question: what to do if the second read is different?
Assume rollback.

e Can Alternative B prevent a lost update? No:

SE/CS 351 Gerald Weber's Slide Set 4 11

Lost updates

One case: second read of TA2 prevents lost update:

o Sirqy[Xx], rofX], ryfXx], Wy[X], ¢y, ILlX], a,
. TAL: 1,[x], nixL wixl, c H
o TAZ: r,[X], r5[X] , Ay

(Rollback of TA2 because of changed value.)

Second case: Second read of TA2 happens slightly earlier:
again a lost update happens.

o SIrqg[X], rIX], relX], roIX], wylX], €, Wo[X], €
o TAL: ry[X], rx], w,[X], Cy H
o TAZ2: r,[X], L[X], W,[X] , Cy

SE/CS 351 Gerald Weber's Slide Set 4 12

Preventing lost update in READ COMMITTED

Explicitly getting an update lock with SELECT FOR UPDATE
can prevent lost updates even in READ COMMITTED level.

Current situation:

* s x|, rplX], wyX], cq, Wy[X], C;

TAL: ry[x], w, [X], Cy H

TA2: r,5[X], W,[X] , Cy
Second read is now SELECT FOR UPDATE

S. R4[X], wi[X], cq, RolX], wylX], c,

TAL: R[X], w[X], ¢, ﬁ
TAZ2: R,[X] , W,[X], C,

SE/CS 351 Gerald Weber's Slide Set 4 13

Summary

* We have seen the following bad phenomena of reduced
Isolation: phantom, fuzzy read, lost update, dirty read, dirty
write.

« They are increasingly serious, except for the fuzzy read/lost
update pair.

e They correspond to five increasingly relaxed isolation
levels: SERIALIZABLE, REPEATABLE READ, READ
COMMITTED, READ UNCOMMITTED, NONE.

* The first level SERIALIZABLE allows no phenomenon, the
last level NONE allows all phenomena to occuir.

SE/CS 351 Gerald Weber's Slide Set 4 14

