
SE/CS 351 Gerald Weber's Slide Set 3 1

SE/CS 351

ACID isolation continued:

• the common scheduler

• update locks, lock-upgrading

• deadlocks

SE/CS 351 Gerald Weber's Slide Set 3 2

schedulers with read locks
• disadvantage of simple scheduler:

• write-disjoint transactions may have to wait for each other,
although this is not necessary.

• Schedulers used in practice often have several types of
locks, including a non-exclusive read lock.

∘ several transactions can have read-locks on the same
object.

• Such schedulers require more complex case distinctions
for e.g. upgrading locks from read-locks to write-locks.

SE/CS 351 Gerald Weber's Slide Set 3 3

the common scheduler
• Akin to schedulers used in practice.

• uses several kinds of locks:

∘ read locks, also known as shared locks (S locks)
∙ Several transactions can have a read lock on the same object:

∙ an object with read locks can only be read, not written.

∘ write locks, also known as exclusive locks (X locks)
∙ If an object has a write lock on x, no other lock can be set on x.

∙ The owner can read and write the object.

∙ A lone read lock on x can be upgraded to a write lock by owner.

∘ update locks (a.k.a. upgrade locks),
∙ Help in acquiring write locks in certain conditions

• Advantage: Objects that are only read can be accessed concurrently.

SE/CS 351 Gerald Weber's Slide Set 3 4

scheduling with shared locks

• s: r1[x], r2[x], c2,r1[y], r3[z], w1[y], c1,w3[x], c3

• TA1: r1[x], r1[y], w1[y], c1

• TA2: r2[x], c2

• TA3: r3[z], w3[x] ___________, c3,

transaction TA2 not waiting any more.

transaction TA3 is waiting, cannot acquire write lock

SE/CS 351 Gerald Weber's Slide Set 3 5

problem with read and write locks:
• As long as several transactions have a read lock on the

same object, a write lock cannot be acquired. Writing
transactions have to wait.

• Without further precautions, a writing transaction might
never be able to acquire the write lock, because new
transactions continuously start to read: the writing
transaction would be in a live-lock:

∘ s: r1[x], r2[x], r3[x], c2, r4[x], r5[x], c3, c4, r6[x],.....

∘ TA1: r1[x], w1[x] _____________________?

SE/CS 351 Gerald Weber's Slide Set 3 6

solution: update locks
• The first writing transaction gets a third type of lock, an

update lock a.k.a. upgrade lock (U lock):

∘ No new reader can access this object, before the write
was de-queued and executed.

∘ Once all readers have finished, the writing transaction
gets the exclusive lock: this process is a lock upgrade

∘ s: r1[x], r2[x], r3[x], c2, c3, w1[x], c1,r4[x],.....

∘ TA1: r1[x], w1[x] ____________,c1

∘ TA4: r4[x] _____________,

transaction TA4 is waiting, cannot acquire read lock

transaction TA1 waiting, but acquires update lock.

SE/CS 351 Gerald Weber's Slide Set 3 7

update locks continued
• Only one transaction can acquire an update

lock

• Later transactions that try to do so will be
blocked

• Often expressed in a matrix:

∘ the columns denote the locks owned by
other transactions that are already
present.

∘ the rows represent the lock that a
transaction wants to acquire.

S U X

S y n n

U y n n

X n n n

y: lock granted and
transaction
not blocked

n: lock not granted
and transaction
blocked

lo
ck

 re
qu

es
te

d

lock present

Deadlocks

∘ example deadlocks

∘ deadlock prevention

∘ deadlock detection

∘ queue graph

∘ wait-for graph

∘ resource hierarchies

SE/CS 351 Gerald Weber's Slide Set 3 8

SE/CS 351 Gerald Weber's Slide Set 3 9

Deadlocks while attempting lock upgrade
• Transactions mostly read x before they write x.

• This results in a lock upgrade: the transaction first has a
read lock on x, then upgrades this to a write lock on x.

• This process can result in a deadlock:
∙ s: r1[x], r2[x], ?

∙ TA1: r1[x], w1[x] _____________?

∙ TA2: r2[x], w2[x] _______?

• This is only one example of a deadlock.

• Alternative: Early declaration of intention to upgrade:

• SQL: “SELECT ... FOR UPDATE”

• should acquire higher lock (but is up to the scheduler).

SE/CS 351 Gerald Weber's Slide Set 3 10

Early declaration of intention to upgrade
• The aforementioned deadlock:

∙ s: r1[x], r2[x], ?

∙ TA1: r1[x], w1[x] _____________?

∙ TA2: r2[x], w2[x] _______?

• Alternative: Use “SELECT ... FOR UPDATE”

• This is a read operation that expresses intent to write.

• We indicate this operation with capital R[] in the schedule
(this is an extension of the basic transaction model):

• Implementation is left to the particular database.

• One natural possible semantics in our scenario:

• R[] requests an update lock and an exclusive lock.

SE/CS 351 Gerald Weber's Slide Set 3 11

Early declaration of intention to upgrade
• The aforementioned deadlock:

∙ s: r1[x], r2[x], ?

∙ TA1: r1[x], w1[x] _____________?

∙ TA2: r2[x], w2[x] _______?

• Alternative using R (“SELECT ... FOR UPDATE”)
∙ s: R1[x], w1[x], c1 R2[x], w2[x], c2

∙ TA1: R1[x], w1[x], c1

∙ TA2: R2[x] ____________, w2[x], c2

• the simple scheduler: all reads are “FOR UPDATE”

transaction TA2 is waiting, because TA1 has the update lock on x

SE/CS 351 Gerald Weber's Slide Set 3

Finding deadlocks: Queue graph (QG)
• is a directed graph, edge-labelled graph

the nodes are transactions.

• If a transaction TAn is entering a queue on object x, and
will get the lock on x eventually from TAm, then an edge is
drawn from TAm to TAn, with edge label x.

• TAm is either the transaction holding the lock on x, or the
predecessor of TAn in the waiting queue for x.

• s: r2[x], r2[y], w2[x], c2,R1[x],w1[x],c1,r3[x],w3[z],c3

• TA1: R1[x] _______________, w1[x],c1

• TA2: r2[x], r2[y], w2[x], c2

• TA3: r3[x]______________________, w3[z], c3

queue graph
at time t

TA1

TA2

TA3t
x

x

12

SE/CS 351 Gerald Weber's Slide Set 3

Finding deadlocks
• Cycles in the QG are deadlocks:

• The cycle will not be resolved by any user
command because no transaction in the
cycle can commit.

• Continuous deadlock-detection: whenever a
transaction enters a waiting queue, a check
for cycles is performed.

• Periodic deadlock-detection: From time to
time, a check for cycles is performed.

• We assume continuous deadlock detection.

Deadlock:

TA1

TA2

TA3

queue-for
graph

TA1

TA2

TA3
z

z

z

z

x

13

SE/CS 351 Gerald Weber's Slide Set 3 14

Deadlock prevention by application programmer

• A strategy to reduce deadlocks:

• If possible, access different data items always in the same
order.

• Example: purchases in a shop always access the central
balance account b and the central tax account t.

• All transactions access first the tax and then the balance.

s: w1[t], w1[b], c1, w2[t]

TA1: w1[t], w1[b], c1

TA2: w2[t]__________

prevents this deadlock:
s: w1[t], w2[b],......…....?
TA1: w1[t], w1[b] ___?
TA2: w2[b], w2[t] ___?

TA2 and TA1 are supposed to
be issued by different programs

