SE/CS 351

ACID isolation continued:
 the common scheduler
e update locks, lock-upgrading

» deadlocks

SE/CS 351 Gerald Weber's Slide Set 3

schedulers with read locks

 disadvantage of simple scheduler:

 write-disjoint transactions may have to wait for each other,
although this is not necessary.

e Schedulers used in practice often have several types of
locks, including a non-exclusive read lock.

o several transactions can have read-locks on the same
object.

» Such schedulers require more complex case distinctions
for e.g. upgrading locks from read-locks to write-locks.

SE/CS 351 Gerald Weber's Slide Set 3

the common scheduler
» Akin to schedulers used in practice.
 uses several kinds of locks:
o read locks, also known as shared locks (S locks)

« Several transactions can have a read lock on the same object:
e an object with read locks can only be read, not written.
o write locks, also known as exclusive locks (X locks)
 If an object has a write lock on x, no other lock can be set on x.
 The owner can read and write the object.
 Alone read lock on x can be upgraded to a write lock by owner.
o update locks (a.k.a. upgrade locks),
e Help in acquiring write locks in certain conditions

« Advantage: Objects that are only read can be accessed concurrently.

SE/CS 351 Gerald Weber's Slide Set 3

scheduling with shared locks

* St rq[X], rfX], Caourylyl, ralz], wylyl, C1,Ws[X], Cq
o TAL: ry[X], rlyl, Wi ly], Cy i
o TAZ: r,[x], C

N | ..

e TA3: r3[z], ws[X]

transaction TA2 not waiting any more.

transaction TA3 is waiting, cannot acquire write lock

SE/CS 351 Gerald Weber's Slide Set 3

problem with read and write locks:

* As long as several transactions have a read lock on the
same object, a write lock cannot be acquired. Writing
transactions have to wait.

« Without further precautions, a writing transaction might
never be able to acquire the write lock, because new
transactions continuously start to read: the writing
transaction would be in a live-lock:

°o S: [[X], r5[X], r3[X], Cy, F4lX], rs[X], C3, Cy4, Tg[X], -

o TAL: r[X], W, [X] ?

SE/CS 351 Gerald Weber's Slide Set 3

solution: update locks
* The first writing transaction gets a third type of lock, an
update lock a.k.a. upgrade lock (U lock):

o No new reader can access this object, before the write
was de-gqueued and executed.

o Once all readers have finished, the writing transaction
gets the exclusive lock: this process is a lock upgrade

o SI I[X], rofX], r5[Xx], C,, C3, Wq[X], Cq,14[X],.....
o TAL: ry[x], w,[X] _ ﬁ ,Clﬁ
o TA4: S A .

o

transaction TA1 waiting, but acquires update lock.

transaction TA4 is waiting, cannot acquire read lock

SE/CS 351 Gerald Weber's Slide Set 3

update locks continued

lock present

* Only one transaction can acquire an update s |u Ix
lock 3

*g,-)' S |y n n

o Later transactions that try to do so will be % y |n |n

blocked g X |n n [n

o Often expressed in a matrix:

o the columns denote the locks owned by . ek granted and
other transactions that are already transaction

not blocked
present.

n: lock not granted
o the rows represent the lock that a and transaction

transaction wants to acquire. blocked

SE/CS 351 Gerald Weber's Slide Set 3 7

Deadlocks

(o]

example deadlocks

(o]

deadlock prevention

o

deadlock detection

o

gueue graph

o

wait-for graph

o

resource hierarchies

SE/CS 351 Gerald Weber's Slide Set 3

Deadlocks while attempting lock upgrade

Transactions mostly read x before they write x.

This results in a lock upgrade: the transaction first has a
read lock on x, then upgrades this to a write lock on x.

This process can result in a deadlock:

o SI IyX], rofX], e, ?
 TALl: r[X], w,[X] ?
e TAZ2: r,[X], W,[X] ?

This is only one example of a deadlock.
Alternative: Early declaration of intention to upgrade:
SQL: “SELECT ... FOR UPDATE"

should acquire higher lock (but is up to the scheduler).

SE/CS 351 Gerald Weber's Slide Set 3

Early declaration of intention to upgrade

 The aforementioned deadlock:
o SI IyX], ro[X], e ?
 TALl: r[x], w,[X] ?
e TA2: 5[], W,[X] ?
e Alternative: Use “SELECT ... FOR UPDATE”"

e This Is a read operation that expresses intent to write.

* We indicate this operation with capital R[] in the schedule
(this is an extension of the basic transaction model):

e Implementation is left to the particular database.
* One natural possible semantics in our scenario:

* R[] requests an update lock and an exclusive lock.

SE/CS 351 Gerald Weber's Slide Set 3

10

Early declaration of intention to upgrade

e The aforementioned deadlock:

o SI IyX], ro[X], e ?
 TALl: r[x], w,[X] ?
e TAZ2: 5[], W,[X] ?
o Alternative using R (“SELECT ... FOR UPDATE")
st RiX wxl ¢, R[], w,lx], ¢
« TALl: Ry[X], w,[X], ¢,
e TAZ2: R,[X] , W,[X], C,

*

transaction TA2 is waiting, because TA1 has the update lock on x

» the simple scheduler: all reads are “FOR UPDATE”"

SE/CS 351 Gerald Weber's Slide Set 3

11

Finding deadlocks: Queue graph (QG)

* is a directed graph, edge-labelled graph
the nodes are transactions.

 If a transaction TAn is entering a queue on object x, and
will get the lock on x eventually from TAm, then an edge is
drawn from TAm to TAn, with edge label x.

« TAm is either the transaction holding the lock on X, or the
predecessor of TAn in the waiting queue for Xx.

s: nlxl, iyl wolx], coRyIXIwyx],cy ralxlWslz],c; quUeue grap h
¢ TAL Ry[X] , Wi[X],Cy at time t
.« TA2 0, Lyl Wl c TAZ2
¢ TA3: ra[x] , Wa[2], 5 X
{ TA1l « A3

SE/CS 351 Gerald Weber's Slide Set 3 12

Finding deadlocks

gueue-for
graph A2

The cycle will not be resolved by any user
Z
command because no transaction in the
TALl z

cycle can commit.

Cycles in the QG are deadlocks:

Continuous deadlock-detection: whenever a
transaction enters a waiting queue, a check
for cycles is performed.

Periodic deadlock-detection: From time to , TAZ2
time, a check for cycles is performed. X
g P {TAB

We assume continuous deadlock detection. TA1l 2

Deadlock:

SE/CS 351 Gerald Weber's Slide Set 3 13

Deadlock prevention by application programmer

» A strategy to reduce deadlocks:

 If possible, access different data items always in the same
order.

 Example: purchases in a shop always access the central
balance account b and the central tax account t.

e All transactions access first the tax and then the balance.

st wy[t], wy[b], cq, wyt]

prevents this deadlock:
TAL W,[t], W,[b], ¢, ﬁ

St wy[t], wy[b], ?

TAZ: Wolt TAL W[, wy[b] 2
TA2 and TA1 are supposed to

be issued by different programs | | TAZ: Wo[b], wy[t] 7

SE/CS 351 Gerald Weber's Slide Set 3 14

