
SE/CS 351 Gerald Weber's Slide Set 2 1

SE/CS 351

• ACID properties

SE/CS 351 Gerald Weber's Slide Set 2 2

The ACID properties
• requirements that a transaction manager must meet for the

transactions:

∘ Atomicity: either all of the operations of a transaction
are made durable or none of them are.

∘ Consistency: after the transaction, the database is in a
consistent state.

∘ Isolation: operations in a transaction appear isolated
from all other operations. Transactions have a virtual
serial view on the system.

∘ Durability: once the user has been notified of success,
the transaction will persist, and not be undone.

SE/CS 351 Gerald Weber's Slide Set 2 3

ACID atomicity
• Either all of the operations of a transaction are made

durable or none of them are.

• In a transfer transaction from account 123 to account 321:
i.) withdraw $100 from account 123

ii.) put $100 on account 321

∘ It must not happen that the transaction stops after i.)
and makes i.) durable.

∘ Why not? This would violate an application level
consistency constraint (balances must be kept).

• Commit must be requested by client.

• Database takes care of the rollback in case of abort.

SE/CS 351 Gerald Weber's Slide Set 2 4

ACID consistency
• Is referring to additional high-level features of the DB (and

is not part of the basic transaction model we will use)

• Declarative integrity constraints, such as referential
integrity, must hold between transactions.

• During the transaction, certain integrity constraints might be
violated. On commit, integrity constraints must be fulfilled

∘ by explicit operations in the transaction,

∘ by automatic mechanisms (ON DELETE CASCADE),

∘ by user-defined triggers.

• Any transaction still violating integrity constraints will be
aborted.

SE/CS 351 Gerald Weber's Slide Set 2 5

ACID isolation
• Database operations in a transaction appear isolated from

database operations of all other transactions
∙ does not apply to non-database operations of client programs

• Operations for our example withdrawal:
i.) check availability of funds:

balance > $100 in account 123 at time 11:23:34

ii.) withdraw $100 from account 123 at time 11:23:34+ε

• If someone withdraws funds between i. and ii. , then a
problem can arise.

• Transactions must have a virtual serial view on the system.

• Isolation is expensive, and can be relaxed: isolation levels.

SE/CS 351 Gerald Weber's Slide Set 2 6

ACID durability
• Once the user has been notified of success of transaction t:

• The database system does not abort t any more.

• The effect of t is kept in a crash resistant way.

∘ minimum requirement: transaction is written to
persistent storage: resistant against

∙ OS crash

∙ system outage

∘ preferred: protection against loss of persistent memory:
∙ redundancy and geographic distribution

∙ resistance against catastrophes

SE/CS 351 Gerald Weber's Slide Set 2 7

SE/CS 351

ACID isolation

• schedules that fulfill isolation

• data-disjoint and write-disjoint transactions

• the simple scheduler fulfils ACID isolation

• the simple scheduler is pessimistic

• scheduling as an online problem

SE/CS 351 Gerald Weber's Slide Set 2 8

Serial schedules
• A serial schedule is a schedule s, where one transaction

starts only after all previous transactions have finished.

• Example:

∘ r1[x], r1[y], w1[x], c1, r2[x], w2[x], c2 is serial.

∘ r1[x], r1[y], r2[x], w1[x], c1, w2[x], c2 is not serial.

∘ r2[x], w2[x], c2 , r1[x], r1[y], w1[x], c1 is serial.

• Serial schedules would be the result of mutually exclusive
access by different transactions to the database:
database uses a single lock!

• Serial schedules fulfil ACID-isolation!

TA1 TA2

9

Definition of serializable schedules
• For each numbering r of a set T of transactions, there is one

serial schedule ser(r, T): execute the transactions in that order.

• A schedule s of a set of transactions T is serializable iff:

• There exists one numbering r of T so that s has the same effect
as ser(r,T) on the database and clients, that means: for each
data object x:

∘ the value after s is the same as the value would be after
ser(r,T) (remark: this is a contrafactual condition), and

∘ all clients got the same read results for x.

• In summary: A schedule is serializable, if it is equivalent to a
serial schedule in its effect on the database and the clients.

• ACID isolation means: only serializable schedules are allowed.
SE/CS 351 Gerald Weber's Slide Set 2

SE/CS 351 Gerald Weber's Slide Set 2 10

Data-disjoint transactions
• A set of transactions is data-disjoint, if

no data object is accessed by more
than one transaction from the set.

• For data-disjoint transactions, every
schedule is serializable.

• Example:
r1[x], r1[y], w1[x], c1, r2[z], w2[z], c2 fulfils
isolation.

• r1[x], r1[y], r2[z], w1[x], c1, w2[z], c2 fulfils
isolation, too.

• No scheduling necessary

complete content of
database

write access by b
read access by a

No conflict, same
transaction

wb

ra

ra

wa

rb

wb

SE/CS 351 Gerald Weber's Slide Set 2 11

Conflict objects
• data objects are called conflict

objects for a set T of transactions if
they are accessed by at least two
transactions in T.

• At least one write access: write-
conflict object

• No write access: read-conflict
object.

• A set of transaction is data-disjoint,
if it has no conflict objects.

complete content of
database

ra
wb

write-conflict object

read-conflict object

rb

ra
wa

rbra

SE/CS 351 Gerald Weber's Slide Set 2 12

Lock-based scheduling for isolation
• We have seen two different unproblematic cases:

Transactions disjoint in time or disjoint on data.

• So the simple scheduler does the following:

• If two transactions are data disjoint, do nothing.

• If they have a conflict object: Order their execution in time:

∘ Define an order in time in which they should be applied
logically

∘ The scheduler ensures that the schedule that is
performed is equivalent to the serial schedule that
would execute them in that order.

• Hence the produced schedules are serializable.

SE/CS 351 Gerald Weber's Slide Set 2 13

The simple scheduler fulfils full ACID isolation
• All non-conflict objects can be ignored.

• For two transactions that have a conflict, the scheduler
decides on an order in time. One transaction will do all
operations on conflict objects before the other transaction.

• A transaction sees only results of transactions that come
earlier in this order. It has only influence on transactions
that come later in this order.

• the scheduler prevents a transaction TA1 from seeing
effects that would go against this view:

∘ Either TA1 is delayed

∘ Or other transactions are delayed.

SE/CS 351 Gerald Weber's Slide Set 2 14

The simple scheduler fulfils full ACID isolation
• All non-conflict objects can be ignored.

• For two transactions that have a conflict, the scheduler
decides on an order in time. One transaction will do all
operations on conflict objects before the other transaction.

• A transaction sees only results of transactions that come
earlier in this order. It has only influence on transactions
that come later in this order.

• the scheduler prevents a transaction TA1 from seeing
effects that would go against this view:

∘ Either TA1 is delayed

∘ Or other transactions are delayed.

SE/CS 351 Gerald Weber's Slide Set 2 15

Write-disjoint transactions
• A set of transactions is write-disjoint,

if it has no write-conflict objects.

• Still, for write-disjoint transactions,
ACID-isolation holds.

• Example:
r1[x], r1[y], r2[y], w1[x], c1, w2[z], c2 is
write-disjoint.

• Still no scheduling necessary. But
what happens, if a transaction
decides to write a read-conflict
object?

∘ Complex strategies necessary.

complete content of
database

write access by b
read access by b

read-conflict object

rb

wb

ra

ra

wa

rb

wb

SE/CS 351 Gerald Weber's Slide Set 2 16

Scheduling as an online problem.
• The scheduler is an online algorithm.

• The scheduler has to make scheduling decisions based on
incomplete local schedules.

• The scheduler cannot know what command comes later in
each transaction.

• With prior knowledge of all local schedules, better solutions
would be sometimes possible.

• For the simple scheduler: write-disjoint transactions have to
wait for each other, although this is not necessary.

SE/CS 351 Gerald Weber's Slide Set 2 17

The simple scheduler is pessimistic

• The simple scheduler expects for every read, that it might
be followed by a write:

• s: r1[x], r1[y], w1[x], c1,r2[x],w2[x],c2,r3[y],w3[z],c3

• TA1: r1[x], r1[y], w1[x], c1

• TA2: r2[x] _______________, w2[x],c2

• TA3: r3[y]_____________________, w3[z], c3

• Treats all types of conflicts the same way.

transactions TA2 and TA3 waiting, although no write conflict yet.

Oh, good that TA2 was waiting

Transaction TA3 waited, although it was not necessary!

SE/CS 351 Gerald Weber's Slide Set 2 18

Example schedulers and ACID isolation
• We will consider two schedulers that ensure ACID isolation.

• The simple scheduler:

∘ only one type of lock, an exclusive lock.

∘ Might delay write-disjoint transactions: therefore not
really practical.

• The common scheduler (coming up next) is akin to
schedulers used in reality;

∘ it has a more complex locking mechanisms with non-
exclusive and exclusive locks

∘ will not delay write-disjoint transactions

