SE/CS 351

Introduction: transaction management

e motivation: concurrent access to the DB
 the notion of transactions

* the basic transaction model

e idea of lock-based schedulers

e the simple scheduler

SE/CS 351 Gerald Weber's Slide Set 1



Typical architecture for use of databases

. database clients
terminals, !

networks, o JDBC
etc . | application connections
D/ server 1
E /\
.| application
/ server 2 > database
Server
application % _
server 3

SE/CS 351 Gerald Weber's Slide Set 1



Aspects of database access |
e . SIS
e typical scenario: 5
o=

o the database is accessed by programs Cy

o they may be application servers
o they act as client with regard to the database

* The database clients connect to the database through a
remote interface: ODBC, JDBC.

 They issue SQL commands to the database.

o The programs use basically the same interface as the
iInteractive database client

o unusual situation: programs use a dialogue interface

SE/CS 351 Gerald Weber's Slide Set 1



Problem: concurrent access to database

» Several connections to the database are open D/

at the same time. %/

o typical number of connections: in the order U
of 100. Why not much more? Answer:

o Every connection has a large footprint in the
database: consumes a lot of DB memory.

» Every connection issues operations.
e Concurrent operations may affect the same data.
o may lead to inconsistencies.

e well known problem from semantics of
programming languages, important for example in
operation systems.

SE/CS 351 Gerald Weber's Slide Set 1

W



Transactions

 transaction: a sequence of operations that form a logical
unit.

o consider withdrawing money, after checking credit line.
o Program: withdraw(account, amount)
* A single transaction is

o a sequence of actually performed operations.

I.) check availability of funds:
balance > $100 in account 123 at time 11:23:34

ii.) withdraw $100 from account 123 | at time 11:23:34+¢

o Issued by calling withdraw(account, amount) with
actual parameters: withdraw(123, 100)

SE/CS 351 Gerald Weber's Slide Set 1



Scenario of a conflict in concurrent access

« Withdrawal after check is a very important pattern: flight
booking, warehouse management, banking.

Assume balance of account 123 is $120.

Consider two withdrawals arriving concurrently:
withdraw(123, 100): TA,, withdraw(123, 110): TA,

The sequence of operations as they arrive at the DB:

o TA,: check availability of funds: balance of account 123 > $100 ?
o TA,: check availability of funds: balance of account 123 > $110 ?
o TA,: withdraw $100 from account 123
o TA,: withdraw $110 from account 123

e What is the problem here?

SE/CS 351 Gerald Weber's Slide Set 1



Distinguishing program and performed operations

 In our model, the transaction is only the sequence of
commands that is received by the database, not the
program creating the sequence. Motivation for the
definition:

 The database does not see the program that creates the

commands, cannot guess what command comes next, only
the sequence of issued commands is visible.

» A frequent case will be that a single subprogram issues all
the commands of a transaction.

 Sometimes the program that issues the commands is
called a transaction, but this is informal speech.

SE/CS 351 Gerald Weber's Slide Set 1



DB access as read/write operations

e our main model: read/write operations on databases

o example: making a transfer between two accounts.

i.) withdraw $100 from account 123
ii.) put $100 on account 321

e QOperations for the transfer operation performed by the
database client.

e read a123 into local variable d,
» write d-100 to a123 .
e read a321 into local variable b
» write b+100 to a321.

SE/CS 351 Gerald Weber's Slide Set 1



The basic transaction model

 allows precise reasoning on transaction scheduling.
* elementary operations in transaction s:
o read on a data object: r[x] - client gets the content

o write on a data object: w,[x] - client provides new
content

e transaction demarcation:.

o Begin of Transaction (BOT,) -

 often implicit: first operation starts transaction

o Commit: ¢, - successful end of transaction

o Abort: a - unsuccessful end of transaction

SE/CS 351 Gerald Weber's Slide Set 1



Example in the basic transaction model

 The operations in the transfer example:

s Lo~

S.

read al123 into local variable d, ~
write d-100 to a123 . ~
read a321 into local variable b

write b+100 to a321.

commit

J\

 |n the basic transaction model:

1.

2.

3. 4. 5.

TA1: r1[X], W’I[X]’ r1[y]’ W1[y]’ C1

SE/CS 351

Gerald Weber's Slide Set 1

i. withdraw $100

from account 123

i. put$100
on account 321

10



basic transaction model and SQL / JDBC

SQL transactions can be translated into the basic
transaction model for reasoning about concurrency.

SELECT is one or many read operations
UPDATE is
o either one or many pure write operations
o or read and write (one or many).

INSERT creates only minor problems, the so called
phantom phenomenon that will be discussed later. In the
basic transaction model, inserts are not discussed.

DELETE also creates only minor problems. In the basic
transaction model, deletes are not discussed.

SE/CS 351 Gerald Weber's Slide Set 1

11



Transaction demarcation and SQL / JDBC
« COMMIT in SQL, Connection.commit() in JDBC.

Warning: Autocommit must be turned off!

o mysql> set autocommit=0;

o JDBC: myConnection.setAutoCommit(false);

abort by the user, a.k.a. rollback:
ABORT in SQL, Connection.rollback() in JDBC.

o All changed of the transaction are undone: see later
under ACID Atomicity, hence the name rollback.

o |s always granted: interesting programming feature.

Begin of Transaction (BOT,) -
o no separate command necessary in SQL, JDBC

SE/CS 351 Gerald Weber's Slide Set 1 12



Transaction demarcation and SQL / JDBC

e Database can abort transaction at any time before it has
confirmed “COMMIT” to the client.

e Abort by the database and abort requested by the client
have the same effect.

* client gets notification, e.g. as a response to a command:
 Even commit is only a request by the client

o database can still respond with abort.

o BUT: If database confirms commit, then

o transaction is finished

o no further abort of this transaction: transaction is durable,
will survive system crashes.

SE/CS 351 Gerald Weber's Slide Set 1 13



Concurrent transactions accessing data
possible conflicts, later

* Thought experiment:
\access on top.

e |f concurrent transactions read and write
random data in a huge database, r, 5

 conflicting access to the same data is not

so likely, but happens. omplete
 Basic idea of lock-based transaction content of
database
management
o tagging data that is accessed by a Qa
rb Wa

transaction t /'

o remove tags after t has finished. write access by a

> We can now detect potential conflicts read access by a

SE/CS 351 Gerald Weber's Slide Set 1 14



ldea of lock-based transaction scheduling

« We tag the data that is accessed by a waiting queue
transaction. The tag is called a lock. 5 \

* in case of conflict: latecomer must wait Cl. b
in a queue for a particular data item. b@

* Alock is released immediately after its | ;omplete content of
owner has committed or aborted. database

« We can now detect and solve b
potential conflicts: scheduling. | ¢

e This solution makes use of / :
transactions as units of work for Lc/)ck held by a
releasing locks. Lock held by b

SE/CS 351 Gerald Weber's Slide Set 1 15



The principle of a scheduler

operations waiting to be

executed

database
server

\

N>
a

L Wo[2Z], 14X, 1o[X],...| < TAZ: -

(TA1: W[x]/

</

TA3: r[z] |
N <

scheduler

JDBC
connections

r[x],

wix].& application

"l server 1
w[y]

wiz],

qx, application

], server 2
w[y]

/

SE/CS 351

Gerald Weber's Sli

7 1o\

m]@ application

rTyl. server 3
w[y]

de Set 1

16



A contract view of the transaction service

* Transactional databases have the following contract with
their clients:

* The service offered by the database to the client:
Database offers virtual view of exclusive access: client does
not encounter concurrent actions of other transactions
during any of its own transactions. Will be later precisely
stated as ACID properties of transactions.

e The price the client has to pay:

o Database client (application server) must provide
transaction demarcation.

o Database client accepts that a transaction t may be
aborted by the database any time during the course of t.

SE/CS 351 Gerald Weber's Slide Set 1 17



Example (bad) phenomenon: dirty read

Transaction TA2 performs a dirty read if it reads an
uncommitted write result of TA1

> scheduling example: ........ w1[X],| r2[x] dirty read J

Dirty reads might be no problem for:
o transactions that gather overview data

o transactions that investigate options for later transactions

But they are dangerous for other transactions
o TA1 might be aborted and its changes might be undone.

o |In case TA1 is aborted, if TA2 has worked with the dirty
value of x, then the result might be inconsistent.

SE/CS 351 Gerald Weber's Slide Set 1 18



Schedulers produce schedules

« Since schedulers cannot execute operations before they

are issued by the clients, schedulers delay operations.

* st ryx], rlyl, rsfz], wylx], Cq, Wo[X], Cy,13[X], €3
* TAT:ryx], rqlyl, A w4[Xx], C /T 7
e TA2:  w,[X] , Cy

” |

. TA3: ozl X

transaction TA2 is waiting, w,[x] not yet executed

worlds, solve problem by doing nothing ©)

The scheduling happens by waiting (best of all possible

e Local transactions are merged into a single schedule

SE/CS 351 Gerald Weber's Slide Set 1

19



Schedules in the basic transaction model

* Purpose: A schedule orders operations of a set of
transactions in time.

 Example:
o Schedule

§ . ry[x], rolX], rylyl, walx], r3lyl, 3, Wolx], a,, ¢

il

A1: r[x], rqlyl, wqlx], c; (")
o Lines do not cross: the schedule respects the local

order in the transaction. (*) is called the local schedule
of TA1.

SE/CS 351 Gerald Weber's Slide Set 1



Example schedulers

* We will discuss mainly two different schedulers, we call them
the simple scheduler and the common scheduler.

« The simple scheduler:
o ensures isolation: lock-based scheduling works!

o Has a very simple locking protocol with only one type of
lock, an exclusive lock.

o Will delay transactions very often (is pessimistic) and is
therefore not really practical.

« The common scheduler is akin to schedulers used in
reality; it has a more complex locking mechanisms with non-
exclusive and exclusive locks and will delay fewer
transactions.

SE/CS 351 Gerald Weber's Slide Set 1 21



The Slmple SCthUlel’ [e.g. Ullmann 1980]

The simple scheduler uses only one type of locks:

Exclusive lock: At each point in time there can be only one
lock per data object.

has an owner transaction (that has acquired the lock)

Only the owner can access the data object; a transaction
has to acquire an exclusive lock in order to make any
access (read or write) to a data object.

Each data object has one queue for transactions waiting for
the lock.

A transaction waiting for a lock is blocked: It cannot
execute any other operation. Accordingly, one transaction
can be only in one queue.

SE/CS 351 Gerald Weber's Slide Set 1 22



Transactions wait for exclusive locks

For the simple scheduler:

« If a transaction makes any access to an unlocked data
object x, then the transaction acquires the lock.

e Executes its operation on x

 If a transaction TA1 makes any access to a locked object x,
the scheduler puts TA1 into the waiting queue for x.

* The waiting queue is managed first-in-first-out (FIFO).

 If alock is released, and transactions are waiting, the
scheduler takes the first of the waiting transactions out of
the queue and grants the lock to this transaction.

SE/CS 351 Gerald Weber's Slide Set 1 23



Example schedule diagram

e Schedule delivered by the simple scheduler,
and the times when the transactions issued the command:

* si rfx], nlyl, rs[z], wylx], ¢4, rolX], CoW5X], g
CTATRD, rhl wilx, c ﬁ s

¢ TA2: '\ rix] , C

. TA3: ral2], WalX] e,

transaction TA1 acquires the exclusive lock on x

transaction TA3 is waiting, w3[x] not yet executed

SE/CS 351 Gerald Weber's Slide Set 1 24



The scheduler and the locks are one unit

The locks and the queues for
latecomers are datastructures of the
scheduler.

The scheduler is the algorithm for
managing and using the locks.

We lock single data items in the read-
write model.

Access to the data object has to be
given by the scheduler according to the
specification of the locking protocol.

SE/CS 351 Gerald Weber's Slide Set 1

waiting queue

complete content of
database

/

Lc/)ck held by a

Lock held by b

25



Strict two phase locking (S2PL)

The simple scheduler uses strict " humber
two phase locking (S2PL) of

Phase locks

S2PL is used by many schedulers. 1

S2PL has many favourable theoretical
properties.

Phase 2

transactions acquire locks during their )
Ime
lifetime (first phase).

They release all locks immediately after
commit/abort, but not earlier (strict second phase).

No explicit lock commands necessary:
comfortable, no break of abstraction.

SE/CS 351 Gerald Weber's Slide Set 1 26



The simple scheduler ignores read/write difference

« for the purpose of scheduling, read and write operations
are not distinguished by the simple scheduler:

° S r1 [X]’ r’l [y]’ r.3[2]’ W1 [X], C1’ rZ[X]’ C2’W3 :X]’ C3
« TAT: r1 [X]’ r1 [y]v W1 [X], C1 H 7N
e TA2:  1,[X] , Cy

e TA3: 0zl wyl] ¢,

transaction TAZ2 is waiting, although no write conflict

Treats all types of conflicts the same way.

Nevertheless we denote the operations still as read and
write operations.

SE/CS 351 Gerald Weber's Slide Set 1 27



Summary

The notion of transactions: transactions are a sequence of
actual commands, not a program.

Transactions group operations into a logical unit.

Concurrent access to data can lead to conflicts; conflicts
can lead to inconsistencies.

Locking with the S2PL protocol can detect all conflicts,
without need for explicit, user-level locking commands.

The simple scheduler can avoid inconsistencies by
delaying transactions.

SE/CS 351 Gerald Weber's Slide Set 1



