
SE/CS 351 Gerald Weber's Slide Set 1 1

SE/CS 351
Introduction: transaction management

∙ motivation: concurrent access to the DB

∙ the notion of transactions

∙ the basic transaction model

∙ idea of lock-based schedulers

∙ the simple scheduler

SE/CS 351 Gerald Weber's Slide Set 1 2

Typical architecture for use of databases

database
Server

application
server 2

application
server 3

application
server 1

JDBC
connections

database clients
terminals,
networks,
etc

internet

SE/CS 351 Gerald Weber's Slide Set 1 3

Aspects of database access
∙ typical scenario:

∘ the database is accessed by programs

∘ they may be application servers

∘ they act as client with regard to the database

∙ The database clients connect to the database through a
remote interface: ODBC, JDBC.

∙ They issue SQL commands to the database.

∘ The programs use basically the same interface as the
interactive database client

∘ unusual situation: programs use a dialogue interface

application
server 2

application
server 3

application
server 1

termina
ls,
network
s,
etc

in
te
r
n
et

SE/CS 351 Gerald Weber's Slide Set 1 4

Problem: concurrent access to database
∙ Several connections to the database are open

at the same time.

∘ typical number of connections: in the order
of 100. Why not much more? Answer:

∘ Every connection has a large footprint in the
database: consumes a lot of DB memory.

∙ Every connection issues operations.

∙ Concurrent operations may affect the same data.

∘ may lead to inconsistencies.

∙ well known problem from semantics of
programming languages, important for example in
operation systems.

application
server 2

application
server 3

application
server 1

termina
ls,
network
s,
etc

in
te
r
n
et

SE/CS 351 Gerald Weber's Slide Set 1 5

Transactions
∙ transaction: a sequence of operations that form a logical

unit.

∘ consider withdrawing money, after checking credit line.

∘ Program: withdraw(account, amount)

∙ A single transaction is

∘ a sequence of actually performed operations.
i.) check availability of funds:

balance > $100 in account 123 at time 11:23:34

ii.) withdraw $100 from account 123 at time 11:23:34+ε

∘ Issued by calling withdraw(account, amount) with
actual parameters: withdraw(123, 100)

SE/CS 351 Gerald Weber's Slide Set 1 6

Scenario of a conflict in concurrent access
∙ Withdrawal after check is a very important pattern: flight

booking, warehouse management, banking.

∙ Assume balance of account 123 is $120.

∙ Consider two withdrawals arriving concurrently:

∙ withdraw(123, 100): TA1, withdraw(123, 110): TA2

∙ The sequence of operations as they arrive at the DB:
∘ TA1: check availability of funds: balance of account 123 > $100 ?

∘ TA2: check availability of funds: balance of account 123 > $110 ?

∘ TA1: withdraw $100 from account 123

∘ TA2: withdraw $110 from account 123

∙ What is the problem here?

SE/CS 351 Gerald Weber's Slide Set 1 7

Distinguishing program and performed operations

∙ In our model, the transaction is only the sequence of
commands that is received by the database, not the
program creating the sequence. Motivation for the
definition:

∙ The database does not see the program that creates the
commands, cannot guess what command comes next, only
the sequence of issued commands is visible.

∙ A frequent case will be that a single subprogram issues all
the commands of a transaction.

∙ Sometimes the program that issues the commands is
called a transaction, but this is informal speech.

SE/CS 351 Gerald Weber's Slide Set 1 8

DB access as read/write operations
∙ our main model: read/write operations on databases

∘ example: making a transfer between two accounts.
i.) withdraw $100 from account 123

ii.) put $100 on account 321

∙ Operations for the transfer operation performed by the
database client.

∙ read a123 into local variable d,

∙ write d-100 to a123 .

∙ read a321 into local variable b

∙ write b+100 to a321.

SE/CS 351 Gerald Weber's Slide Set 1 9

The basic transaction model
∙ allows precise reasoning on transaction scheduling.

∙ elementary operations in transaction s:

∘ read on a data object: rs[x] - client gets the content

∘ write on a data object: ws[x] - client provides new
content

∙ transaction demarcation:.

∘ Begin of Transaction (BOTs) -
∙ often implicit: first operation starts transaction

∘ Commit: cs - successful end of transaction

∘ Abort: as - unsuccessful end of transaction

SE/CS 351 Gerald Weber's Slide Set 1 10

Example in the basic transaction model
∙ The operations in the transfer example:

1. read a123 into local variable d,

2. write d-100 to a123 .

3. read a321 into local variable b

4. write b+100 to a321.

5. commit

∙ in the basic transaction model:

TA1: r1[x], w1[x], r1[y], w1[y], c1

1. 2. 3. 4. 5.

i. withdraw $100
from account 123

ii. put $100
on account 321

SE/CS 351 Gerald Weber's Slide Set 1 11

basic transaction model and SQL / JDBC
∙ SQL transactions can be translated into the basic

transaction model for reasoning about concurrency.

∙ SELECT is one or many read operations

∙ UPDATE is

∘ either one or many pure write operations

∘ or read and write (one or many).

∙ INSERT creates only minor problems, the so called
phantom phenomenon that will be discussed later. In the
basic transaction model, inserts are not discussed.

∙ DELETE also creates only minor problems. In the basic
transaction model, deletes are not discussed.

SE/CS 351 Gerald Weber's Slide Set 1 12

Transaction demarcation and SQL / JDBC
∙ COMMIT in SQL, Connection.commit() in JDBC.

∙ Warning: Autocommit must be turned off!

∘ mysql> set autocommit=0;

∘ JDBC: myConnection.setAutoCommit(false);

∙ abort by the user, a.k.a. rollback:

∙ ABORT in SQL, Connection.rollback() in JDBC.

∘ All changed of the transaction are undone: see later
under ACID Atomicity, hence the name rollback.

∘ is always granted: interesting programming feature.

∙ Begin of Transaction (BOTs) -

∘ no separate command necessary in SQL, JDBC

SE/CS 351 Gerald Weber's Slide Set 1 13

Transaction demarcation and SQL / JDBC
∙ Database can abort transaction at any time before it has

confirmed “COMMIT” to the client.

∙ Abort by the database and abort requested by the client
have the same effect.

∙ client gets notification, e.g. as a response to a command:

∙ Even commit is only a request by the client

∘ database can still respond with abort.

∘ BUT: If database confirms commit, then

∘ transaction is finished

∘ no further abort of this transaction: transaction is durable,
will survive system crashes.

SE/CS 351 Gerald Weber's Slide Set 1 14

complete
content of

database

ra
wb

rb

ra
wa

rbra

Concurrent transactions accessing data
∙ Thought experiment:

∙ If concurrent transactions read and write
random data in a huge database,

∙ conflicting access to the same data is not
so likely, but happens.

∙ Basic idea of lock-based transaction
management

∘ tagging data that is accessed by a
transaction t

∘ remove tags after t has finished.

∘ We can now detect potential conflicts
write access by a

read access by a

possible conflicts, later
access on top.

SE/CS 351 Gerald Weber's Slide Set 1 15

Idea of lock-based transaction scheduling
∙ We tag the data that is accessed by a

transaction. The tag is called a lock.

∙ in case of conflict: latecomer must wait
in a queue for a particular data item.

∙ A lock is released immediately after its
owner has committed or aborted.

∙ We can now detect and solve
potential conflicts: scheduling.

∙ This solution makes use of
transactions as units of work for
releasing locks.

complete content of
database

a

a

a

b

c
b

b

Lock held by a
Lock held by b

waiting queue

c

SE/CS 351 Gerald Weber's Slide Set 1 16

The principle of a scheduler

database
server

JDBC
connections

TA1: w[x]

TA2: -

TA3: r[z]
scheduler

… w2[z], r1[x], r2[x],…

operations waiting to be
executed

application
server 2

application
server 1

application
server 3

r[x],
w[x],
r[y],
w[y]

w[z],
r[x],
r[y],
w[y]

r[z],
w[z],
r[y],
w[y]

SE/CS 351 Gerald Weber's Slide Set 1 17

A contract view of the transaction service
∙ Transactional databases have the following contract with

their clients:

∙ The service offered by the database to the client:
Database offers virtual view of exclusive access: client does
not encounter concurrent actions of other transactions
during any of its own transactions. Will be later precisely
stated as ACID properties of transactions.

∙ The price the client has to pay:

∘ Database client (application server) must provide
transaction demarcation.

∘ Database client accepts that a transaction t may be
aborted by the database any time during the course of t.

SE/CS 351 Gerald Weber's Slide Set 1 18

Example (bad) phenomenon: dirty read
∙ Transaction TA2 performs a dirty read if it reads an

uncommitted write result of TA1

∘ scheduling example: w1[x], r2[x],

∙ Dirty reads might be no problem for:

∘ transactions that gather overview data

∘ transactions that investigate options for later transactions

∙ But they are dangerous for other transactions

∘ TA1 might be aborted and its changes might be undone.

∘ In case TA1 is aborted, if TA2 has worked with the dirty
value of x, then the result might be inconsistent.

dirty read

SE/CS 351 Gerald Weber's Slide Set 1 19

Schedulers produce schedules
∙ Since schedulers cannot execute operations before they

are issued by the clients, schedulers delay operations.

∙ s: r1[x], r1[y], r3[z], w1[x], c1, w2[x], c2,r3[x], c3

∙ TA1: r1[x], r1[y], w1[x], c1

∙ TA2: w2[x] _______________________, c2

∙ TA3: r3[z], r3[x] __________________, c3,

∙ The scheduling happens by waiting (best of all possible
worlds, solve problem by doing nothing )

∙ Local transactions are merged into a single schedule

transaction TA2 is waiting, w2[x] not yet executed

SE/CS 351 Gerald Weber's Slide Set 1 20

Schedules in the basic transaction model
∙ Purpose: A schedule orders operations of a set of

transactions in time.

∙ Example:

∘ Schedule
s : r1[x], r2[x], r1[y], w1[x], r3[y], c3, w2[x], a2, c1

∘ Transaction
TA1: r1[x], r1[y], w1[x], c1 (*)

∘ Lines do not cross: the schedule respects the local
order in the transaction. (*) is called the local schedule
of TA1.

SE/CS 351 Gerald Weber's Slide Set 1 21

Example schedulers
∙ We will discuss mainly two different schedulers, we call them

the simple scheduler and the common scheduler.

∙ The simple scheduler:
∘ ensures isolation: lock-based scheduling works!

∘ Has a very simple locking protocol with only one type of
lock, an exclusive lock.

∘ Will delay transactions very often (is pessimistic) and is
therefore not really practical.

∙ The common scheduler is akin to schedulers used in
reality; it has a more complex locking mechanisms with non-
exclusive and exclusive locks and will delay fewer
transactions.

SE/CS 351 Gerald Weber's Slide Set 1 22

The simple scheduler [e.g. Ullmann 1980]

∙ The simple scheduler uses only one type of locks:

∙ Exclusive lock: At each point in time there can be only one
lock per data object.

∙ has an owner transaction (that has acquired the lock)

∙ Only the owner can access the data object; a transaction
has to acquire an exclusive lock in order to make any
access (read or write) to a data object.

∙ Each data object has one queue for transactions waiting for
the lock.

∙ A transaction waiting for a lock is blocked: It cannot
execute any other operation. Accordingly, one transaction
can be only in one queue.

SE/CS 351 Gerald Weber's Slide Set 1 23

Transactions wait for exclusive locks
For the simple scheduler:

∙ If a transaction makes any access to an unlocked data
object x, then the transaction acquires the lock.

∙ Executes its operation on x

∙ If a transaction TA1 makes any access to a locked object x,
the scheduler puts TA1 into the waiting queue for x.

∙ The waiting queue is managed first-in-first-out (FIFO).

∙ If a lock is released, and transactions are waiting, the
scheduler takes the first of the waiting transactions out of
the queue and grants the lock to this transaction.

SE/CS 351 Gerald Weber's Slide Set 1 24

Example schedule diagram
∙ Schedule delivered by the simple scheduler,

and the times when the transactions issued the command:

∙ s: r1[x], r1[y], r3[z], w1[x], c1, r2[x], c2,w3[x], c3

∙ TA1: r1[x], r1[y], w1[x], c1

∙ TA2: r2[x] __________________, c2

∙ TA3: r3[z], w3[x] _____________, c3,

transaction TA3 is waiting, w3[x] not yet executed

transaction TA1 acquires the exclusive lock on x

SE/CS 351 Gerald Weber's Slide Set 1 25

The scheduler and the locks are one unit
∙ The locks and the queues for

latecomers are datastructures of the
scheduler.

∙ The scheduler is the algorithm for
managing and using the locks.

∙ We lock single data items in the read-
write model.

∙ Access to the data object has to be
given by the scheduler according to the
specification of the locking protocol.

complete content of
database

a

a

a

b

b

b

Lock held by a
Lock held by b

waiting queue

c

SE/CS 351 Gerald Weber's Slide Set 1 26

Strict two phase locking (S2PL)
∙ The simple scheduler uses strict

two phase locking (S2PL)

∙ S2PL is used by many schedulers.

∙ S2PL has many favourable theoretical
properties.

∙ transactions acquire locks during their
lifetime (first phase).

∙ They release all locks immediately after
commit/abort, but not earlier (strict second phase).

∙ No explicit lock commands necessary:
comfortable, no break of abstraction.

Phase
1

time

Phase 2

number
of
locks

SE/CS 351 Gerald Weber's Slide Set 1 27

The simple scheduler ignores read/write difference

∙ for the purpose of scheduling, read and write operations
are not distinguished by the simple scheduler:

∙ s: r1[x], r1[y], r3[z], w1[x], c1, r2[x], c2,w3[x], c3

∙ TA1: r1[x], r1[y], w1[x], c1

∙ TA2: r2[x] __________________, c2

∙ TA3: r3[z], w3[x] _____________, c3,

∙ Treats all types of conflicts the same way.

∙ Nevertheless we denote the operations still as read and
write operations.

transaction TA2 is waiting, although no write conflict

Summary
∙ The notion of transactions: transactions are a sequence of

actual commands, not a program.

∙ Transactions group operations into a logical unit.

∙ Concurrent access to data can lead to conflicts; conflicts
can lead to inconsistencies.

∙ Locking with the S2PL protocol can detect all conflicts,
without need for explicit, user-level locking commands.

∙ The simple scheduler can avoid inconsistencies by
delaying transactions.

SE/CS 351 Gerald Weber's Slide Set 1 28

